CS4/56101

-

Design and Analysis of

Algorithms

Kent State
University

Dept. of Math & Computer Science
LECT-6

Sorting

Sorting
DESIGN &
« Alittle old estimate said that more than helf the ALGORITHN
time on many commercial computerswas ent in
sorting.
* Knuth’sbooklists abou 25 sorting methods and
claimsthey are only fraction d the algorithms that
have been devised so far.
* Typesof sorting:
— Externa vs. Internal
LECT-06, S-4
ALGOOS, javed@kent.edu
Javed I. Khan@1999

| nsertion Sort

DESIGN &

e Insertioninan Ordered List ALALYSISOF

ALGORITHM

LECT-06, S-5
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Sorting by Insertion

« Maintain two lists, ore sorted, ancther unsorted.

* Initialy the sorted list has sze zero, ursorted
list has all the original keys.

* Oneby oreinsert the keys from unsorted list to
the right positionin the sorted list.

Select 6 Names and play contiguous and

linked list versions! (Volunteer needed!)

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-6
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Sorting by Insertion (Example)

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-7
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Insertion Sort (contiguous list)

voi d InsertionSort(List *list)

{
Posi tion fu; /*first unsorted entry position*/
Posi ti on pl ace; | *searches sorted part of list*/
Li stEntry current; /*holds entry tenporarily*/
for (fu=1; fu < list->count; fu++)
if(LT(list->entry[fu].key,list->entry[fu-1].key)){
current = list->entry[fu];
for (place = fu - 1; place >= 0; place--) {
list->entry[place+1] =list->entry[pl ace]
if (place==0|
LE(list->entry[place-1].key, current.key))
br eak;
}
list->entry[place] = current
}
}

JavET T R I

Insertion Sort (linked list)

void InsertionSort(List *list)

{
Li st Node *fu; /* the first unsorted node to be inserted */
Li st Node *I's; /* the last sorted node (tail of sorted sublist) */
Li st Node *current, *trailing;
if (list->head) {
I's = |ist->head; /* An enpty list is already sorted. */
while (Is->next) {
fu = Is->next; /* Renenber first unsorted node. */
if (LT(fu->entry.key, list->head->entry.key)) {
| s->next = fu->next; fu->next = list->head; |ist->head = fu;
/*Insert first unsorted at the head of sorted list.*/
} else { /* Search the sorted sublist. */
trailing = |ist->head;
for (current = trailing->next; GI(fu->entry.key, current->entry.key);
current = current->next)
trailing = current;
/* First unsorted node now bel ongs between trailing and current. */
if (fu == current)
Is = fu;
el se {
|'s->next = fu->next; fu->next = current; trailing->next = fu;
}
}
}
}
}

JavET T RITaT I9:

Analysis

i th entry requires anywhere between 0to (i-1)
iterations. On the average it requires

— [0+1... +(i-1)]/(i-1)= i/2 iterations

DESIGN &
ALALYSISOF
ALGORITHM

Each iteration has
— 1 comparisonand
— 1 assignment
Outside the loopthere are
— 1 comparisonand
— 2 assignments
cost is

{

void InsertionSort(List *list)

Position fu; /*first unsorted entry position*/
Posi tion place; /*searches sorted part of list*/
ListEntry current; /*holds entry tenporarily*/

for (fu =1; fu < list->count; fu++)
if(LT(list->entry[fu].key,list->entry[fu-1].key)){
current = list->entry[fu];
for (place = fu - 1; place >= 0; place--) {
list->entry[pl ace+1] =l i st->entry[place];
if (place==0]|
LE(list->entry[place-1]. key,
current. key))
br eak;
}
list->entry[place] = current;

}

LECT-06, S-10
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Analysis

i th entry requires anywhere between 0to (i-1)
iterations. On the average it requires

— [0+1... +(i-1)]/(i-1)= i/2 iterations

DESIGN &
ALALYSISOF
ALGORITHM

Each iteration has
— 1 comparisonand
— 1 assignment
Outside the loopthere are
— 1 comparisonand
— 2 assignments
cost is

i iteratesfrom2to n

But before we proced lets
simplify usng Big-O rules:

Total Cost:

LECT-06, S-11
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Quiz:

When the wor st case
performance occurs?

When the best case
performance occur s?

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-12
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Comments on Insertion Sort

* |nsertionsort is an excdlent methodto
check if asorted list is gill sorted.

» Itisalsogoodif alistisnearly in order.

* Theman dsadvantage of insertion sort is
that there are too many moves, even on
sorted keys, if just one key isout of place

* A datawhich readsto travel at far away
location needs to gothroughmany steps.

* Onedatamovesjust one positionin ore
iteration.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-13
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Selection Sort

» Selection sort one by ore selects the max (or min)

keys from the unsorted list and just appends them
at theend of the sorted list.

» Consequently, there is no insertion cost.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-14
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Selection Sort (Contiguous list)

voi d Sel ectionSort(List *list)

{
Position current; /*position of place being
correctly filled*/
Posi ti on max; /*position of |argest renmining
key */
for (current = list->count - 1; current > 0
current--) {
max = MaxKey(O, current, list);
Swap(max, current, list);
}
}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-15
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Selection Sort (Contiguous list)

Posi tion MaxKey(Position |ow, Position high, List *list)
{

Position |argest; /* position of |argest key so far */
Position current; /* index for the contigous list */

| argest = | ow,

for (current = low + 1; current <= high; current++)

if (LT(list->entry[largest].key, list->entry[current].key))
largest = current;
return |argest;

void Swap(Position low, Position high, List *list)

{
ListEntry temp = list->entry[low;
list->entry[low = list->entry[high];
list->entry[high] = tenp;

}

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-16

ALGO0S, javed@kent.edu
Javed I. Khan@1999

Analysis

* Swapiscaled n1times
— each has 3 assgnments
» MaxKeyiscaled n1times. Length t of the sub
list variesfromnto 2.
— Each requirest-1 comparisons.
— Totd 3(n-1) assignments.
* Thusthere are:
— Thus(n-1)+(n-2)+....+1
— =5 n(n-1) comparisons.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-17
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Comparison of Selection
and Insertion Sort

DESIGN &
ALALYSISOF
ALGORITHM

Selection Insertion (average)
Assignments of entries 3.0n 4+ O(1) 0.25n% + O (n)
Comparisons of keys 0.502 + O(n) 0.2512 + O(n)
* Quiz:

 What is the best case for seledion sort?
« What isthe worst case for selection sort?

¢ Which methodshoud we use
— Forlargen?

Selection sort is good
at moving but bad at
comparison. Insertion
sort isjust opposite!

Can we combine both
the good qualities?

— If weknow, thelist is amost sorted?
— Cost of assgnment is large?

LECT-06, S-18
ALGO0S, javed@kent.edu
Javed I. Khan@1999

Shell Sort

* The problem with insertion sort isthat, if a
data needs to move much long dstance it
have to gothroughmany iterations.

e Solutionis Shell Sort!
* Invested by D.L. Shell in 1959.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-19
ALGO0S, javed@kent.edu
Javed |. Khan@1999

|dea (Step-1)

Sublists incr. 5

Tim
Dot
E IIIF .':1
Roy

Kim
Guy
Amy
Jon

Jim
Kay
Ron
Jan

Dot
Amy
Jan
Ann
Kim
Guy
Eva
Jon
Tam
[im
Kay
Ron
Roy

Recomb
Jim
Dot
Amy
NEN]
Ann
Kam
Guy
Eva
Jan
lom
Tim
Kay
Ron
Roy

DESIGN &

LECT-06, S-20
ALGOOS, javed@kent.edu
Javed I. Khan@1999

DESIGN &
ALALYSISOF
ALGORITHM

Sublists incr. 3 List incr. 1

Guy -

Amy

Kim
_ Jim

T, Jon
Jon Kay — = Kay
Ron — _ - Kim
Roy
Kay Kim —

= Hoy
Tom-——___ - Tim

Roy Tim —— ™ Tom

LECT-06, S-21
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Shell Sort

How to select the increments?

— 53,,1worked. Many other choiceswill work also.
However, nostudy so far could conclusively prove
one choiceis better that the other.

Only requirement isthat last round shoud be of
increment 1 (that’s an pure insertion sort).
Probably it in na agoodideato use incrementsin
power’sof 2. Why?

Anaysis:
— exceedingly difficult

— forlargen it appeas the number of movesisin "-25to 16
n12s

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-22
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Lower Bounds of
Sorting

23

11

Comparison Tree of Insertion Sort
(ab,c)

Insartion sort

*Theworst path isthe worst case performance.

*The average path isthe average per formance.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-24
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Comparison Tree of Selection Sort
(ab,c)

«Selection sort treeismore bushy on the average.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-25
ALGOOS, javed@kent.edu

Javed |. Khan@1999

12

Limits of Sorting Algorithms

If there are n numbers to sort how many passble

outcomes?

THeorEM 7.2 Any algorithm that sorts a list of n entries by
use of key comparisons must, in its worst case, perform at
least [lg n!] comparisons of keys, and, in the average case,

it must perform at least lg n! comparisons of keys.

Sterling' s approximation d n!:

log e=1.442

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-26
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Next Class:
Quick & Merge Sort

27

13

