
1

2

CS 4/56101

Design and Analysis of
Algorithms

Kent State
University
Dept. of Math & Computer Science

LECT-6

3

Sorting

2

 LECT-06, S-4
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Sorting

• A lit tle old estimate said that more than half the
time on many commercial computers was spent in
sorting.

• Knuth’s book lists about 25 sorting methods and
claims they are only fraction of the algorithms that
have been devised so far.

• Types of sorting:
– External vs. Internal

 LECT-06, S-5
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Insertion Sort

• Insertion in an Ordered List

3

 LECT-06, S-6
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Sorting by Insertion

Select 6 Names and play contiguous and
linked list versions! (Volunteer needed!)

• Maintain two lists, one sorted, another unsorted.

• Initially the sorted list has size zero, unsorted
list has all the original keys.

• One by one insert the keys from unsorted list to
the right position in the sorted list.

 LECT-06, S-7
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Sorting by Insertion (Example)

4

 LECT-06, S-8
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Insertion Sort (contiguous list)
void InsertionSort(List *list)

{

 Position fu; /*first unsorted entry position*/

 Position place; /*searches sorted part of list*/

 ListEntry current; /*holds entry temporarily*/

 for (fu = 1; fu < list->count; fu++)

 if(LT(list->entry[fu].key,list->entry[fu-1].key)){

 current = list->entry[fu];

 for (place = fu - 1; place >= 0; place--) {

 list->entry[place+1]=list->entry[place];

 if (place==0||

LE(list->entry[place-1].key, current.key))

 break;

 }

 list->entry[place] = current;

 }

}

 LECT-06, S-9
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Insertion Sort (linked list)
void InsertionSort(List *list)

{

 ListNode *fu; /* the first unsorted node to be inserted */

 ListNode *ls; /* the last sorted node (tail of sorted sublist) */

 ListNode *current, *trailing;

 if (list->head) {

 ls = list->head; /* An empty list is already sorted. */

 while (ls->next) {

 fu = ls->next; /* Remember first unsorted node. */

 if (LT(fu->entry.key, list->head->entry.key)) {

 ls->next = fu->next; fu->next = list->head; list->head = fu;

/*Insert first unsorted at the head of sorted list.*/

 } else { /* Search the sorted sublist. */

 trailing = list->head;

 for (current = trailing->next; GT(fu->entry.key, current->entry.key);

 current = current->next)

 trailing = current;

 /* First unsorted node now belongs between trailing and current. */

 if (fu == current)

 ls = fu;

 else {

 ls->next = fu->next; fu->next = current; trailing->next = fu;

 }

 }

 }

 }

}

5

 LECT-06, S-10
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis

• i th entry requires anywhere between 0 to (i-1)
iterations. On the average it requires

– [0+1….+(i-1)]/(i-1)= i/2 iterations

• Each iteration has
– 1 comparison and

– 1 assignment

• Outside the loop there are
– 1 comparison and

– 2 assignments

– cost is

void InsertionSort(List *list)

{

 Position fu; /*first unsorted entry position*/

 Position place; /*searches sorted part of list*/

 ListEntry current; /*holds entry temporarily*/

 for (fu = 1; fu < list->count; fu++)

 if(LT(list->entry[fu].key,list->entry[fu-1].key)){

 current = list->entry[fu];

 for (place = fu - 1; place >= 0; place--) {

 list->entry[place+1]=list->entry[place];

 if (place==0||

LE(list->entry[place-1].key,
current.key))

 break;

 }

 list->entry[place] = current;

 }

}

2
2

1
2

+=

+=

i
sAssignment

i
Comp

 LECT-06, S-11
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis

• i th entry requires anywhere between 0 to (i-1)
iterations. On the average it requires

– [0+1….+(i-1)]/(i-1)= i/2 iterations

• Each iteration has
– 1 comparison and

– 1 assignment

• Outside the loop there are
– 1 comparison and

– 2 assignments

– cost is

• i iterates from 2 to n:

2
2

1
2

+=

+=

i
sAssignment

i
Comp

• But before we proceed lets
simplify using Big-O rules:

• Total Cost:

)1(
2

)1(
2

O
i

sAssignment

O
i

nsComparisio

+=

+=

)(
4

1
)(

2

1
)]1(

2
[2

22

nOnnOiO
i n

i

n

i

+=+=+= ∑∑
==

6

 LECT-06, S-12
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Quiz:

When the worst case
performance occurs?

When the best case
performance occurs?

 LECT-06, S-13
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comments on Insertion Sort

• Insertion sort is an excellent method to
check if a sorted list is still sorted.

• It is also good if a list is nearly in order.

• The main disadvantage of insertion sort is
that there are too many moves, even on
sorted keys, if just one key is out of place.

• A data which needs to travel at far away
location needs to go through many steps.

• One data moves just one position in one
iteration.

7

 LECT-06, S-14
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Selection Sort

• Selection sort one by one selects the max (or min)
keys from the unsorted list and just appends them
at the end of the sorted list.

• Consequently, there is no insertion cost.

 LECT-06, S-15
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Selection Sort (Contiguous list)

void SelectionSort(List *list)

{

 Position current; /*position of place being
correctly filled*/

 Position max; /*position of largest remaining
key */

 for (current = list->count - 1; current > 0;
current--) {

 max = MaxKey(0, current, list);

 Swap(max, current, list);

 }

}

8

 LECT-06, S-16
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Selection Sort (Contiguous list)
Position MaxKey(Position low, Position high, List *list)

{

 Position largest; /* position of largest key so far */

 Position current; /* index for the contigous list */

 largest = low;

 for (current = low + 1; current <= high; current++)

 if (LT(list->entry[largest].key, list->entry[current].key))

 largest = current;

 return largest;

}

void Swap(Position low, Position high, List *list)

{

 ListEntry temp = list->entry[low];

 list->entry[low] = list->entry[high];

 list->entry[high] = temp;

}

 LECT-06, S-17
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis

• Swap is called n-1 times
– each has 3 assignments

• MaxKey is called n-1 times. Length t of the sub
list varies from n to 2.

– Each requires t-1 comparisons.

– Total 3(n-1) assignments.

• Thus there are:
– Thus (n-1)+(n-2)+….+1

– =.5 n (n-1) comparisons.

)(
2

1 2 nOn +=

9

 LECT-06, S-18
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comparison of Selection
and Insertion Sort

• Quiz:

• What is the best case for selection sort?

• What is the worst case for selection sort?

• Which method should we use
– For large n?

– If we know, the list is almost sorted?

– Cost of assignment is large?

Selection sort is good
at moving but bad at
comparison. Insertion
sort is just opposite!

Can we combine both
the good qualities?

 LECT-06, S-19
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Shell Sort

• The problem with insertion sort is that, if a
data needs to move much long distance it
have to go through many iterations.

• Solution is Shell Sort!

• Invested by D.L. Shell in 1959.

10

 LECT-06, S-20
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Idea (Step-1)

 LECT-06, S-21
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Step-2

11

 LECT-06, S-22
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Shell Sort
• How to select the increments?

– 5,3,,1 worked. Many other choices will work also.

• However, no study so far could conclusively prove
one choice is better that the other.

• Only requirement is that last round should be of
increment 1 (that’s an pure insertion sort).

• Probably it in not a good idea to use increments in
power’s of 2. Why?

• Analysis:
– exceedingly difficult

– for large n it appears the number of moves is in n1.25 to 1.6
n 1.25.

23

Lower Bounds of
Sorting

12

 LECT-06, S-24
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comparison Tree of Insertion Sort
(a,b,c)

•The worst path is the worst case performance.

•The average path is the average performance.

 LECT-06, S-25
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comparison Tree of Selection Sort
(a,b,c)

•Selection sort tree is more bushy on the average.

13

 LECT-06, S-26
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Limits of Sorting Algorithms

• If there are n numbers to sort how many possible
outcomes?

)(log44.1log.

2)5.1)(log
2

1
(!log

12

log
2log)(loglog)

2

1
(!log

nOnnn

nnn

n

e
nennn

+−=

+−+≈

++⋅−+≈ π

• Sterling’s approximation of n!: log e=1.442

27

Next Class:
Quick & Merge Sort

