
1

2

CS 4/56101

Design and Analysis of
Algorithms

Kent State
University
Dept. of Math & Computer Science

LECT-7

3

Divide & Conquer
Sort

2

 LECT-06, S-4
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Divide and Conquer

 LECT-06, S-5
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Merge Sort Example

• Let’s Sort:

26 33 35 29 19 12 22
Note: When we cannot divide into two equal list we
will make the first one large.

3

 LECT-06, S-6
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Recursion Tree of Merge Sort

 LECT-06, S-7
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Quick Sort Example

• Let’s Sort:

26 33 35 29 19 12 22

Note: Let us pick the first element on the list as the pivot.

4

 LECT-06, S-8
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Execution Trace of Quick Sort

 LECT-06, S-9
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Recursion Tree of Quick Sort

5

 LECT-06, S-10
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Another Example with QS

 LECT-06, S-11
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Main for Merge Sort

void MergeSort(List *list)
{
 List secondhalf; /* holds the second half of the list after
division */

 if (ListSize(list) > 1) { /* Is there a need to sort? */
 Divide(list, &secondhalf); /* Divide the list in half. */
 MergeSort(list); /* Sort the first half. */
 MergeSort(&secondhalf); /* Sort the second half. */
 Merge(list, &secondhalf, list); /* Merge the two sorted
sublists. */
 }
}

6

 LECT-06, S-12
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Divide (Linked List)

void Divide(List *list, List *secondhalf)
{
 ListNode *current, *midpoint;

 if ((midpoint = list->head) == NULL)
 secondhalf->head = NULL;
 else {
 for (current = midpoint->next; current;) {
 current = current->next;
 if (current) {
 midpoint = midpoint->next;
 current = current->next;
 }
 }
 secondhalf->head = midpoint->next;
 midpoint->next = NULL;
 }
}

midpoint current

 LECT-06, S-13
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Merging Two Sorted List

7

 LECT-06, S-14
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Code for Merge (Linked List)
void Merge(List *first, List *second, List *out)
{
 ListNode *p1, *p2; /* pointers to traverse first and second lists */
 ListNode *lastsorted; /* always points to last node of sorted list */

 if (!first->head)
 *out = *second;
 else if (!second->head)
 *out = *first;
 else {
 p1 = first->head; /* First find the head of the merged list. */
 p2 = second->head;
 if (LE(p1->entry.key, p2->entry.key)) {
 *out = *first;
 p1 = p1->next;
 } else {
 *out = *second;
 p2 = p2->next;
 }
 lastsorted = out->head; /* lastsorted gives last entry of merged list. */
 while (p1 && p2)
 if (LE(p1->entry.key, p2->entry.key)) {
 lastsorted->next = p1;
 lastsorted = p1;
 p1 = p1->next;
 } else {
 lastsorted->next = p2;
 lastsorted = p2;
 p2 = p2->next;
 }
 if (p1) /* Attach the remaining list. */
 lastsorted->next = p1;
 else
 lastsorted->next = p2;
 }
}

 LECT-06, S-15
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Quick Sort for Contiguous List

void RecQuickSort(List *list, Position low, Position
high)
{
 Position pivotpos; /* position of the pivot
after partitioning */

 if (low < high) {
 pivotpos = Partition(list, low, high);
 RecQuickSort(list, low, pivotpos - 1);
 RecQuickSort(list, pivotpos + 1, high);
 }
}

pivotpos

8

 LECT-06, S-16
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Partitioning in Quick Sort

 LECT-06, S-17
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Partitioning in Quick Sort

If entry is
smaller than
pivot

If entry is
larger or
equal to the
pivot

9

 LECT-06, S-18
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Partition (code)

Position Partition(List *list, Position low, Position high)
{
 ListEntry pivot;
 Position i, lastsmall, pivotpos;

 Swap(low, (low + high) / 2, list);
 pivot= list->entry[low];
 pivotpos = low;
 for (i = low + 1; i <= high; i++)
 if (LT(list->entry[i].key, pivot.key)) {
 Swap(++pivotpos, i, list);

lastsmall++;
 }/* Move large entry to right and small to left. */

 Swap(low, pivotpos, list);
 return pivotpos;
}

19

Analysis of
Quick & Merge Sort

10

 LECT-06, S-20
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Need Volunteer!

• To keep various performances of various
algorithms.

• Insertion Sort: Worst Case assignments?

• Selection Sort: Worst case comparisons?

Worst case of Selection Sort is twice as bad than average case.

Need Volunteer!

 LECT-06, S-21
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Few Results!

axx

a

a
aaa

nnn
n

nn
nS

bab

m
m

n

logloglog

)1(

1
....1

6

)12)(1(
....321

2

)1(
.....321

1
21

2222

⋅=
−

−=++++

++=++++

+=++++=

+

11

 LECT-06, S-22
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Harmonic Numbers

When n is large .7 disappears!

1
2

1

3

1
...

1

11 ++++
−

+=
nn

H n

)1(log69.)1(log2ln

7.ln5.ln)5.ln(

22 OnOn

nn

+=+⋅=
+≈−+=∫

+ 5.

5.

1n

dx
x

Need Volunteer!

 LECT-06, S-23
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Analysis of Merge Sort

• Merging two lists of size k requires at most (k-1)
comparisons. There are:

• Note this is worst case at exact count!

• Exercise E2 outlines a method which shows
average case is:

1log)1(log

)12(

)12(
1log

)2....2222(....

)1(...)1
4

(4)1
2

(2)1(

log

1log3210

+−=−−=
−

−−=

+++++−+++=

−⋅++−⋅+−⋅+−

−

nnnnnn

nn

nnn

n

n
n

nn
n

n

n

11583.1log +−= nnn
Need Volunteers again!

12

 LECT-06, S-24
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Merge Sort:
the ultimate sorting method?

• Average Performance:

• The lowest bound of any comp. sorting
algorithm we have derived:

• It is indeed, for linked list in random
initial order, it is difficult to surpass.

11583.1log +−= nnn

)(log44.1log.!log nOnnnn +−≈

QUIZ: Can we
improve finding

the middle?

 LECT-06, S-25
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

• Unfortunately Merge Sort for contiguous is not
an unqualified success.

• The difficulty is merging in-place. It
– Requires extra O(n) space.

– One algorithm has been found that use a no extra
space, but requires O(n2) time.

– Yet another algorithms been found that littl e extra
space and requires O(n) time, but is very complex.

• solutions requires:
– more space

– or more time

– or more programming effort.

Merge Sort:
the ultimate sorting method?

13

 LECT-06, S-26
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Worst Case Analysis of Quick Sort

• Count of Comparisons and Swaps

• Comparison and Swap counts wil l be different.

• Comparison Count: Worst Case:

)1()(1)(−−++−= rncrcnnc

?)1(1)(

123)3(3)4(

12)2(2)3(

1)1(1)2(

0)1(

=−+−=
++=+=

+=+=
=+=

=

ncnnc

cc

cc

cc

c

nn
nn

5.5.
2

)1(2 −=−=

Need another WC
Volunteer again!

nn 5.05.0 2 −=

 LECT-06, S-27
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

WC Analysis of Quick Sort (cont..)

• Swap Count: Worst Case:
– partition function performs one swap inside the loop when

the key is smaller than the pivot.

– It performs two swaps outside the loop

– In worst case it will perform (n-1)+2=n+1 swaps.

• The partition function is called only when n>1, and
S(2)=3

• Number of assignments are three times the number of
swaps!

????

3....)1()1()(

=
++−+++= nnnnS

15.15. 2 −+= nn

)1(1)(−++= nSnnS

Need another
WC Volunteer again!

35.45.1 2 −+= nn

14

 LECT-06, S-28
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Average case Analysis of Quick Sort
• Counting Swaps:

– The pivot selection will partition the list into two parts. The
partition can be anywhere between p=1 to n in the list. For n>1:

– To determine the average case we will allow all possibiliti es of
p=1 to n and take an average over the sum of all:

)()1()1(),(pnSpSppnS avgavg −+−++=

∑
=

=
n

p
avg pnS

n
nS

1

),(
1

)(

)]1(...)1()0([
2

2

3

2
)(−++++= nSSS

n

n
nSavg

 LECT-06, S-29
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solving Recurrence

• From the recurrence we can write:

• with multiplying n and n-1 respectively and
subtracting:

)]1(...)1()0([
2

2

3

2
)(−++++= nSSS

n

n
nS aaaa

)]2(...)1()0([
1

2

2

3

2

1
)1(−+++

−
++−=− nSSS

n

n
nS aaaa

???
3

)2(

3

1
...

1

11

1

)(

)1(1

1

)(

)1(21)1().1()(.

=+++
−

+=
+

−+=
+

−++=−−−

S

nnn

nS
n

nS

nn

nS

nSnnSnnSn

a

a

aaa

15

 LECT-06, S-30
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Solving Recurrence (contd..)

• From the recurrence we can write:

• with multiplying n and n-1 respectively and
subtracting:

• Each swap needs at least 3 assignments

)]1(...)1()0([
2

2

3

2
)(−++++= nSSS

n

n
nS aaaa

)]2(...)1()0([
1

2

2

3

2

1
)1(−+++

−
++−=− nSSS

n

n
nS aaaa

)()log(69.)(

)1(ln
3

)2(

3

1
...

1

11

1

)(

)1(1

1

)(

)1(21)1().1()(.

nOnnnS

On
S

nnn

nS
n

nS

nn

nS

nSnnSnnSn

a

a

a

aaa

+≈

+=+++
−

+=
+

−+=
+

−++=−−−

Need another
AC Volunteer again!

)(log2 nOnn +=

 LECT-06, S-31
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Average case Analysis of Quick Sort

• Counting Comparisons:
– The partition of a list will make exactly n-1 comparisons:

– Solution can be derived in the exactly same way!

)()1()1(),(pnCpCnpnC avgavg −+−+−=

)(log39.1)(ln2)(nOnnnOnnnCavg +≈+=

• I have not decided, whether I wil l make it a part of
midterm or a future quiz, but I wil l advise you to try
it out for every step tonight! And the final step will
look this:

16

 LECT-06, S-32
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Comparisons with Insertion and
Selection sort

• What was the weak point of insertion sort?
– too much swapping or too much comparisons

• What was the weak point of selection sort?
– too much swapping or too much comparisons

Worst Case Volunteers Wakeup!

 LECT-06, S-33
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Worst Case Comparisons

• Quick sort is three times worse in Swaps than
Insertion sort!

• Quick sort is three times worse in number of
comparisons than Selection sort!

• Hence in the worst case the so-called Quick sort is
a disaster! Its name is nothing less than false
advertising!

• Then why we have not scraped Quick sort yet?

17

 LECT-06, S-34
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Average Case Comparisons

• The average case for quick sort on contiguous list
is one of the most eff icient among the known
algorithms.

• It requires just 39% more comparisons than
mergesort (or best possible case).

• It requires about 100% more assignments than
mergesort (in good architecture only 39% more).

– Considering a 2n space contiguous implementation of
the merging algorithm for merge sort.

Average Case Volunteers Wakeup!

QUIZ: How
can we ensure
that a sorting
problem
always
appears as an
average case
to a quick
sort?

