CS 4/56101 Kent State

» University
Desgn and Ana‘lySIS Of Dept. of Math & Computer Science
Algorithms LECT-7

Divide & Conqguer
Sort

Divide and Conquer

void Sort(List *list)
{
if (list has length >= 1)

.)

Fartition list into lowlist, highlist;

Sort(lowlist);
Sort(highlist);
Combine(lowlist, highlist);

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-4
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Merge Sort Example

Mergesort:

We chop the list into two sublists of sizes as nearly equal as
possible and then sort them separately. Afterward, we care-
fully merge the two sorted sublists into a single sorted list.

DESIGN &
ALALYSISOF
ALGORITHM

void Sort(List *list)

1
if (list has length >= 1)

e Let'sSort:

26 33352919 12 22

Note: When we cannot divide into two equal list we
will make thefirst onelarge.

Partition list into lowlist, highlist;

Sort(lowlist);

Sort(highlist)

Combine(lowlist, highlist);
}

LECT-06, S-5
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Recursion Tree of Merge Sort

26 33 35 29 19

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-6
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Quick Sort Example

Quicksort: DESIGN &
ALALYSISOF
We first choose some key from the list for which, we hope, ALGORITHM

about half the keys will come before and half after. Call this
key the pivot. Then we partition the items so that all those
with keys less than the pivot come in one sublist, and all those
with greater keys come in another. Then we sort the two
reduced lists separately, put the sublists together, and the

whole list will be in order.

e Let'sSort:

26 33352919 12 22

Note: Let us pick thefirst element on thelist asthe pivot.

void Sort(List =list)
{
if (list has length >= 1)
{
Partition list into lowlist, highlist;

Sort(lowlist);

Sort(highlist);

Combine(lowlist, highlist);
3

LECT-06, S-7
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Execution Trace of Quick Sort

Sort (26, 33, 35, 29, 12, 22)

Partition into (19, 12, 22) and 33, 35, 29); pivot = 26
Sort (19, 12, 22)

Partition into {12) and (22); pivot = 19
Sort (12)

Sort (22)

Combine into (12, 19, 22)

Sort (33, 35, 29)

Partition into (29) and (35); pivot = 33
Sort (29)

Sort (35)

Combine into (29, 33, 35)

Combine into (12, 19, 22, 26, 29, 33 35)

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-8
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Recursion Tree of Quick Sort

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-9
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Another Example with QS

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-10
ALGOOS, javed@kent.edu
Javed I. Khan@1999

}

Main for Merge Sort

Li st secondhal f;

di vision */

if (ListSize(list) > 1) {

void MergeSort(List *list)

/* holds the second half of the list after

Di vide(list, &secondhalf); /* Divide the list in half.
MergeSort (list); /* Sort the first half.
Mer geSor t (&econdhal) ; /* Sort the second half.
Merge(list, &secondhalf, list); /* Merge the two sorted

sublists. */

}

/* |Is there a need to sort? */

*/
*/
*/

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-11
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Divide (Linked List)

void Divide(List *list, List *secondhal f)

Li st Node *current, *m dpoint;

if ((mdpoint = list->head) == NULL)
secondhal f - >head = NULL;
el se {

for (current = mdpoint->next; current;) {
current = current->next;
if (current) {
m dpoi nt = mi dpoi nt - >next ;
current = current->next;

}

secondhal f - >head = mi dpoi nt - >next;
m dpoi nt->next = NULL;

| I

midpant current

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-12
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Merging Two Sorted List
G~ TP T~ T[T
@econd)—>-|1|"‘7j_"{5|%?|ﬁ

After merging:

AL L TP (lP)
G~ P

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-13
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Code for Merge (Linked List)

void Merge(List *first, List *second, List *out)

Li st Node *pl, *p2; /* pointers to traverse first and second lists */
Li st Node *lastsorted; /* always points to | ast node of sorted list */

if (!first->head)
*out = *second;

el se if (!second->head)
*out = *first;

el se {
pl first->head; /* First find the head of the nerged list. */
p2 second- >head;

if (LE(pl->entry.key, p2->entry.key)) {
*out = *first;
pl = pl->next;

} else {

*out = *second;

p2 = p2->next;

lastsorted = out->head; /* lastsorted gives last entry of merged list. */
while (pl && p2)
if (LE(pl->entry.key, p2->entry.key)) {
| astsorted->next = pl;
lastsorted = pl;
pl = pl->next;
} else {
| astsorted->next = p2;
lastsorted = p2;
p2 = p2->next;

}

if (pl) /* Attach the remaining list. */
| astsorted->next = pil;

el se
| astsorted->next = p2;

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-14
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Quick Sort for Contiguous List

voi d RecQui ckSort (List *list, Position |ow, Position
hi gh)
{

Posi tion pivotpos; /* position of the pivot
after partitioning */

if (low < high) {
pivotpos = Partition(list, low high);
RecQui ckSort (list, low, pivotpos - 1);
RecQui ckSort (list, pivotpos + 1, high);

pivotpos

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-15
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Partitioning in Quick Sort
DESIGN &
- ALALYSISOF
Goal (postcondition): ALGORITHM
| L L
low pivotpos high
Loop invariant:
P <P =p 7
low pivotpos i
LECT-06, S-16
ALGO0S, javed@kent.edu
Javed I. Khan@1999

Partitioning in Quick Sort
Restore the invariant: DESIGN &
ALALYSISOF
Swap ALGORITHM
b “p >p “p 2 <4—If entry is
smaller than
T T pivot
pivotpos i
D <p i >p i 2 ot entry is
T T larger or
ual to the
pivotpos i [e)?VOt
Final position:
| f | <p | : | =p T |
low pivotpos high LECT-06. S-17
ALGO0S, javed@Lent-.edu
Javed |. Khan@1999

DESIGN &
ALALYSISOF
ALGORITHM
Position Partition(List *list, Position |ow, Position high)
{
Li stEntry pivot;
Position i, lastsmall, pivotpos;
Swap(low, (low + high) / 2, list);
pivot= list->entry[low;
pi vot pos = | ow,
for (i =low+ 1; i <= high; i++)
if (LT(list->entry[i].key, pivot.key)) {
Swap(++pi votpos, i, list);
lastsmal | ++;
}/* Move large entry to right and snall to left. */
Swap(| ow, pivotpos, list);
return pivotpos;
}
LECT-06, S-18
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Analysis of
Quick & Merge Sort

19

Need Volunteer!

* To keep various performances of various
algorithms.

* Insertion Sort: Worst Case assgnments?
» Selection Sort: Worst case comparisons?

DESIGN &
ALALYSISOF
ALGORITHM

Need Volunteer!
Selection Insertion (average)
Assignments of entries 3.0n 4+ O(1) 0.25n% + O(n)
Comparisons of keys 0.502 + O(n) 0.251%2 + O(n)

Wor ¢t case of Selection Sort istwice asbad than aver age case.

LECT-06, S-20
ALGOO0S, javed@kent.edu

Javed |. Khan@1999

Few Results!

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-21
ALGO0S, javed@kent.edu

Javed |. Khan@1999

10

Harmonic Numbers

\

DESIGN &
ALALYSISOF
ALGORITHM

n+.
" J.ldX =In(n+.5)-In.5=
5 X

=In2[og, n+0O(1

Need Volunteer!

I ALGOOS, javed@kent.edu
Javed I. Khan@1999

Analysis of Merge Sort

DESIGN &
ALALYSISOF

Merging two lists of size k requires at most (k-1) ALGORITHM

comparisons. There ae:

Note thisisworst case at exad court!

Exercise E2 oulines a methodwhich shows

average caseis:

Need Volunteers again!

LECT-06, S-23
ALGOOS, javed@kent.edu
Javed |. Khan@1999

11

Merge Sort:
the ultimate sorting method?

DESIGN &
ALALYSISOF
ALGORITHM

Average Performance

QUIZ: Can we
improve finding
themiddle?

The lowest bound of any comp. sorting
algorithm we have derived:

Itisindedd, for linked list in randam
initial order, it isdifficult to surpass

LECT-06, S-24
ALGOOS, javed@kent.edu
Javed I. Khan@1999

Merge Sort:
the ultimate sorting method?

Unfortunately Merge Sort for contiguouws is not
an unqulified success
The difficulty ismergingin-place. It
— Requires extraO(n) space
— One dgorithm has been foundthat use ano extra
space bu requires O(n?) time.
— Yet another algorithms been found that littl e extra
space and requires O(n) time, but is very complex.
solutions requires:
— more space
— or moretime
— or more programming effort.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-25
ALGOOS, javed@kent.edu
Javed |. Khan@1999

12

Worst Case Analysis of Quick Sort

* Coun of Comparisons and Swaps

* Comparison and Swap courtswill be diff erent.
* Comparison Court: Worst Case:

DESIGN &
ALALYSISOF
ALGORITHM

Need another WC
Volunteer again!

LECT-06, S-26
ALGO0S, javed@kent.edu

Javed |. Khan@1999

WC Analysis of Quick Sort (cont..)

Swap Count: Worst Case:

— partition function performs one swap inside the loopwhen
the key is small er than the pivot.

— It performs two swaps outside the loop =]__5n2
— Inworst caseit will perform (n-1)+2=n+1 swaps.

The partition functionis called oy when n>1, and

S(2)=3

DESIGN &
ALALYSISOF
ALGORITHM

Need another
WC Volunteer again!

Number of asgsgnments are three times the number of
swaps!

LECT-06, S-27
ALGO0S, javed@kent.edu
Javed |. Khan@1999

13

Average ase Analysis of Quick Sort
* Courting Swaps:
— Thepivot sdectionwill partitionthe list into two parts. The

partition can be anywhere between p=1to ninthelist. For n>1:

— To determine the average case we will allow al posshiliti es of
p=1to n andtake a average over the sum of all:

An equation of this form is called a recurrence relation
because it expresses the answer to a problem in terms of
earlier, smaller cases of the same problem.

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-28
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Solving Recurrence

* From the recurrence we can write:

with multiplying n and n-1 respectively and
subtracting:

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-29

ALGO0S, javed@kent.edu
Javed |. Khan@1999

14

Solving Recurrence (contd..)

DESIGN &
ALALYSISOF
ALGORITHM

* From the recurrence we can write:

=2nlogn+0O(n)
* with multiplying n and n1 respectively and
subtracting:

Need another
AC Volunteer again!

» Each swap needs at least 3 assignments LECT-06, S-30

ALGOOS, javed@kent.edu

Javed |. Khan@1999

Average ase Analysis of Quick Sort

DESIGN &
ALALYSISOF

* Courting Comparisons: ALGORITHM

— Thepartition of alist will make exactly n-1 comparisons:

— Solution can be derived in the exactly same way!

* | have not dedded, whether | will make it apart of
midterm or afuture quiz, but | will advise youto try

it out for every step tonight! And the final step will
look this:

LECT-06, S-31
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Comparisons with Insertion and
Selection sort

What was the we& pant of insertion sort?
— toomuch swapping or too much comparisons
What was the wed&k pant of selection sort?

— too much swapping a too much comparisons

Worst Case Volunteers Wakeup!

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-32
ALGO0S, javed@kent.edu
Javed I. Khan@1999

Worst Case Comparisons

Quick sort is three times worse in Swaps than
Insertion sort!

Quick sort is three times worse in number of
comparisons than Selection sort!

Hence in the worst case the so-called Quick sort is
adisaster! Its name is nothing less than false
advertising!

Then why we have not scraped Quick sort yet?

DESIGN &
ALALYSISOF
ALGORITHM

LECT-06, S-33
ALGO0S, javed@kent.edu
Javed |. Khan@1999

16

Average Case Comparisons

Average Case Volunteers Wakeup!

The average case for quick sort on contiguous list
isone of the most efficient amongthe known
algorithms.

It requires just 39% more comparisons than
mergesort (or best possible @ase).

It requires abou 100% more asgnments than
mergesort (in goodarchitedure only 39% more).

— Considering a 2n space contiguaus implementation of
the merging agorithm for merge sort.

DESIGN &
ALALYSISOF
ALGORITHM

QUIZ: How
can weensure
that a sorting
problem
always
appearsasan
aver age case
toaquick
sort?

LECT-06, S-34
ALGOOS, javed@kent.edu
Javed I. Khan@1999

17

