

Random Variable \& Binomial Distribution

Random Variable

- A random variable is a function from a finite or

DESIGN \& ALALYSIS OF ALGORITHM countably infinite sample space S to the real numbers. It associates a real number with each possible outcome of an experiment.

- Generally we associate a probability value with each possible outcome of X. The function describing the distribution is called probability distribution function.
- Example (Binomial Distribution):
- We are tossing a coin.
- We score $\mathrm{x}_{\mathrm{i}}=1$ for head and 0 for tail.

$$
\begin{aligned}
& \operatorname{Pr}\{X=k\} \\
& =f(n, k, p)
\end{aligned}
$$

- Each time the probability of head is p.
- If we toss n times, what is the probability the score $\mathrm{X}=$ $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{\mathrm{n}}$ will be exactly 2,3 , .. k or n ?

Binomial Distribution

- We are tossing a coin n times. Each time the probability of head is p . What is the probability that X , exactly has the value k ?
- the ways of picking k heads
- the probability of occurring each
- Binomial probability distribution is written as:

$$
\operatorname{Pr}\{X=k\}=b(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- The name "binomial" comes from the fact the terms of the expansion of

$$
(p+q)^{n}, \text { when } p+q=1
$$

- A relation:

$$
\sum_{k=0}^{n} b(k ; n, p)=\sum_{k=1}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+q)^{n}=1
$$

Expectation \& Variance of X

- Expectation:
- Variance:

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=n p q
$$

Expectation of X (derivation)

- Expectation:

$$
\begin{aligned}
& E[X]=\sum_{k=0}^{n} k b(k: n, p) \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k} \cdot q^{n=k}=\sum_{k=1}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k} \cdot q^{n-k} \\
& =n p \cdot \sum_{k=1}^{n} \frac{n-1!}{(k-1)!(n-k)!} p^{k-1} \cdot q^{n-k} \\
& =n p \cdot \sum_{k^{\prime}=0}^{n^{\prime}} \frac{n^{\prime}!}{k^{\prime}!\left(n^{\prime}-k^{\prime}\right)!} p^{k^{\prime}} \cdot q^{n^{\prime}-k^{\prime}} \\
& =n p \sum_{k^{\prime}=0}^{n^{\prime}} b\left(k^{\prime}: n^{\prime}, p\right)=n p
\end{aligned}
$$

Counting Sort

Idea

- The range of possible keys are known
- all the key are integers in the range 1 to k .
- They can be sorted in $\mathrm{O}(\mathrm{n})$ time!
- Find out the final position of each key.
- Move them there.
- Since, there might be some duplication do some extra tricks..

DESIGN \& ALALYSIS OF ALGORITHM

Complexity

- Analysis:
- $\mathrm{K}=$ possible types of keys
- $\mathrm{n}=$ number of keys
- L:1-2: Initialization $O(k)$
- L:3-4: Counting O(n)
- L:6-7: Position offset $\mathrm{O}(\mathrm{k})$
- L:9-11: Moves O(n)
- Overall time complexity $\mathrm{O}(\mathrm{n}+\mathrm{k})$
Counting-Sort (A, B, k)
1 for $i \leftarrow 1$ to k
2 do $C[i] \leftarrow 0$.
- A Definition: Stability of a Sorting Algorithm
- Counting sort is stable.
- Quick sort is not.

Radix Sort

Idea

- Have a number of buckets.
- Sort one alphabet at a time.
- Stack them up.
- Sort next key!

Linked Radix Sort

DESIGN \& ALALYSIS OF ALGORITHM

The Main Function

```
void RadixSort(List *list)
{
    int i, j;
    Node *x;
    Queue queues[MAXQUEUEARRAY];
    for (i = 0; i < MAXQUEUEARRAY; i++)
        CreateQueue(&queues[i]);
    for (j = KEYSIZE - 2; j >= 0; j--) {
        while(!ListEmpty(list)) {
        DeleteList(0, &x, list);
            AppendNode(x, &queues[QueuePosition(x-
>entry[j])]);
        }
        Rethread(list, queues);
    }
}
```


\square

Complexity

- N is the number of keys ALGORITHM
- k is the max length of the key.
- Time complexity is $\mathrm{O}(\mathrm{nk})$.
- The best- Merge Sort was $\mathrm{n} \log \mathrm{n}$!
- If k is large, but only few key are long Merge sort will be better.

Any difference between a comparison in quick sort and a comparison in radix sort?

- Is Radix Sort Stable?
- So long as the single alphabet sort is.

