A Course on Algorithm
Design & Analysis

CS 4/56101
Design and Analysis of Algorithms

Kent State University
Dept. of Computer Science
LECT-8
Random Variable & Binomial Distribution

Random Variable

- A random variable is a function from a finite or countably infinite sample space \(S \) to the real numbers. It associates a real number with each possible outcome of an experiment.
- Generally we associate a probability value with each possible outcome of \(X \). The function describing the distribution is called the probability distribution function.
- Example (Binomial Distribution):
 - We are tossing a coin.
 - We score \(x_i = 1 \) for head and 0 for tail.
 - Each time the probability of head is \(p \).
 - If we toss \(n \) times, what is the probability the score \(X = x_1 + x_2 + x_3 + x_n \) will be exactly 2, 3, .. \(k \) or \(n \)?

\[
\Pr\{X = k\} = f(n, k, p)
\]
Binomial Distribution

- We are tossing a coin n times. Each time the probability of head is p. What is the probability that X, exactly has the value k?
 - the ways of picking k heads
 - the probability of occurring each
 - Binomial probability distribution is written as:

\[\Pr(X = k) = b(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k} \]

- The name “binomial” comes from the fact the terms of the expansion of

\[(p + q)^n, \text{ when } p + q = 1 \]

- A relation:

\[\sum_{k=0}^{n} b(k; n, p) = \sum_{k=0}^{n} \binom{n}{k} p^k (1 - p)^{n-k} = (p + q)^n = 1 \]

Expectation & Variance of X

- Expectation:

\[E[X] = \sum_{k=0}^{n} k b(k; n, p) = np \]

- Variance:

\[Var[X] = E[(X - E[X])^2] = npq \]
Expectation of X (derivation)

- Expectation:

\[
E[X] = \sum_{k=0}^{n} kb(k : n, p)
\]

\[
= \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^k q^{n-k}
\]

\[
= np \sum_{k=1}^{n} \frac{n-1}{(k-1)!(n-k)!} p^{k-1} q^{n-k}
\]

\[
= np \sum_{k=0}^{n} k'!(n'-k')! p^{k'} q^{n-k'}
\]

\[
= np \sum_{k'=0}^{n} b(k' : n', p) = np
\]

Variance of X (derivation)

\[
E[X^2] = E[(X_1 + X_2 + X_3 + \ldots + X_n)^2]
\]

\[
= \sum_{i=1}^{n} E[X_i^2] + 2 \binom{n}{2} E[X_i] E[X_j]
\]

\[
= np + 2 \frac{n(n-1)}{2} p^2 = np + n^2 p^2 - np^2
\]

\[
Var[X] = E[(X - E[X])^2]
\]

\[
= E[X^2] - E[X] E[X]
\]

\[
= np + (np)^2 - np^2 - (np)^2
\]

\[
= np(1 - p) = npq
\]
Counting Sort

Idea

- The range of possible keys are known
- All the key are integers in the range 1 to k.
- They can be sorted in O(n) time!
- Find out the final position of each key.
- Move them there.
- Since, there might be some duplication do some extra tricks.
Example (range 1-6)

```
Example (range 1-6)

A
1 2 3 4 5 6 7 8
3 6 4 1 3 4 1 4

B
1 2 3 4 5 6 7 8
1 2 3 4 5 6

C
1 2 4 6 7 8
2 2 4 7 7 8
```

Code

```
Code
L1-2: Initialization
L3-4: Counting
L6-7: Position
L10-11: Move

COUNTING-SORT(A, B, k)
1 for i ← 1 to k
2 do C[i] ← 0
3 for j ← 1 to length[A]
4 do C[A[j]] ← C[A[j]] + 1
5 ▷ C[i] now contains the number of elements equal to i.
6 for i ← 2 to k
7 do C[i] ← C[i] + C[i − 1]
8 ▷ C[i] now contains the number of elements less than or equal to i.
9 for j ← length[A] downto 1
11 C[A[j]] ← C[A[j]] − 1
```

L10-11: Update next’s position
Complexity

- Analysis:
 - K = possible types of keys
 - n = number of keys
 - L:1-2: Initialization O(k)
 - L:3-4: Counting O(n)
 - L:6-7: Position offset O(k)
 - L:9-11: Moves O(n)

- Overall time complexity O(n+k)

- A Definition: Stability of a Sorting Algorithm
 - Counting sort is stable.
 - Quick sort is not.

```plaintext
COUNTING-SORT(A, B, k)
1     for i ← 1 to k
2         do C[i] ← 0
3     for j ← 1 to length[A]
4         do C[A[j]] ← C[A[j]] + 1
5     for i ← 2 to k
6         do C[i] ← C[i] + C[i-1]
7     for j ← length[A] downto 1
8         do B[C[A[j]]] ← A[j]
9     C[A[j]] ← C[A[j]] - 1
```

Radix Sort
Idea

- Have a number of buckets.
- Sort one alphabet at a time.
- Stack them up.
- Sort next key!

Example

<table>
<thead>
<tr>
<th>Initial order</th>
<th>Sorted by letter 3</th>
<th>Sorted by letter 2</th>
<th>Sorted by letter 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat</td>
<td>mop</td>
<td>map</td>
<td>car</td>
</tr>
<tr>
<td>mop</td>
<td>map</td>
<td>top</td>
<td>rap</td>
</tr>
<tr>
<td>cat</td>
<td>tar</td>
<td>rap</td>
<td>cat</td>
</tr>
<tr>
<td>map</td>
<td>car</td>
<td>tar</td>
<td>cot</td>
</tr>
<tr>
<td>car</td>
<td>top</td>
<td>rat</td>
<td>map</td>
</tr>
<tr>
<td>top</td>
<td>cot</td>
<td>mop</td>
<td>rat</td>
</tr>
<tr>
<td>cot</td>
<td>tar</td>
<td>cat</td>
<td>rap</td>
</tr>
<tr>
<td>tar</td>
<td>rap</td>
<td>cot</td>
<td>top</td>
</tr>
<tr>
<td>rap</td>
<td>cot</td>
<td>top</td>
<td>top</td>
</tr>
</tbody>
</table>
Linked Radix Sort

The Main Function

```c
void RadixSort(List *list)
{
    int i, j;
    Node *x;
    Queue queues[MAXQUEUEARRAY];

    for (i = 0; i < MAXQUEUEARRAY; i++)
        CreateQueue(&queues[i]);

    for (j = KEYSIZE - 2; j >= 0; j--) {
        while(!ListEmpty(list)) {
            DeleteList(0, &x, list);
            AppendNode(x, &queues[QueuePosition(x->entry[j])]);
        }
        Rethread(list, queues);
    }
}
```
/* QueuePosition: determine the queue position (0 through 27) for a character.*/
int QueuePosition(char c)
{
 if (c == ' ')
 return 0;
 else if (isalpha(c))
 return tolower(c) - 'a' + 1;
 else
 return 27;
}

/* Rethread: rethread a list from an array of queues.*/
void Rethread(List *list, Queue queues[])
{
 int i;
 Node *x;
 for (i = 0; i < MAXQUEUEARRAY; i++)
 while (!QueueEmpty(&queues[i])) {
 ServeNode(&x, &queues[i]);
 InsertList(ListSize(list), x, list);
 }
}

Complexity

- N is the number of keys
- k is the max length of the key.
- Time complexity is O(nk).
- The best- Merge Sort was n log n!
- If k is large, but only few key are long Merge sort will be better.
- Is Radix Sort Stable?
 - So long as the single alphabet sort is.

Any difference between a comparison in quick sort and a comparison in radix sort?