
1

21

Bucket Sort

LECT-08, S-22
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Idea

• Counting sort assumes that the input consists of 
integers in a small range.

• Bucket sort assumes that the inputs are generated 
by a random process and elements are uniformly 
distributed over the interval [0,1].

• Algorithm:
– Throws the numbers in their right buckets.
– Sort each bucket with regular insertion sort.
– Concatenate the buckets.



2

LECT-08, S-23
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Example

LECT-08, S-24
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Code



3

LECT-08, S-25
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Proof of Correctness

• If two items are in the same bucket then they 
are in proper relative order.

• If two items are in two different buckets, even 
then they are in right order.

LECT-08, S-26
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Complexity
• Each small list is sorted with insertion sort: 

• What is the expected length of the small lists?
– Probability of a a list to have length 1.. , 2… n?
– Binomial distribution:









= ∑∑

−

=

−

=

1

0

2
1

0

2 ][])[(
n

i
i

n

i
i nEOnEO

)1(121)11(

],[][][

11][,1][,1

2

22

Θ=−=+−=

+=

−=====

nn

nEnVarnE
n

npqnVarnpnE
n

p

iii

ii

)(][])[(
1

0

2
1

0

2 nOnEOnEO
n

i
i

n

i
i =








= ∑∑

−

=

−

=



4

LECT-08, S-27
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Main Sorting Themes

Comparison Based
Sorting 

Address Calculation
Sorting 

Transposition
Sorting 

Diminishing Increment 
Sorting 

Inset and Keep
Sorting 

Priority Queue
Sorting 

Divide & Conquer
Sorting 

ShellSort

Insertion Sort
MergeSortQuickSort

HeapSort

Selection Sort

TreeSort

CountingSort
RadixSort

BubbleSort

Quiz: Fit 
BucketSort
in this Tree

LECT-08, S-28
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Class Mechanics

• Discussion about Final Project
• Feedback on Grade
• Quiz



5

29

Heap Sort

LECT-08, S-30
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Motivation

• For Contiguous array, the best is QuickSort.  
Quicksort has no O(nlogn) worst case bound. 
HeapSort has worst case bound O(n log n) and sorts 
in place.



6

LECT-08, S-31
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Heap

LECT-08, S-32
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Idea

• Build the heap, 
– by one by one inserting the keys.

• One by one take the roots out of the tree.
– Insert it in the sorted list.
– After each deletion rearrange the heap so that the 

largest again reaches at the top.



7

LECT-08, S-33
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Example

LECT-08, S-34
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Example (contd..)



8

LECT-08, S-35
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Main & BuildHeap Code
void HeapSort(List *list)
{
    Position lu;            /* Entries beyond lu have been
sorted. */
    ListEntry current;      /* holds entry temporarily
removed from list */

    BuildHeap(list);        /* First phase: turn list into
a heap. */
    for (lu = list->count - 1; lu >= 1; lu--) {
        current = list->entry[lu]; /* Extract last element
from list. */
        list->entry[lu] = list->entry[0]; /* Move top of
heap to end of list. */
        InsertHeap(current, 0, lu - 1, list);
    }
}

void BuildHeap(List *list)
{
    Position low;           /* Entries beyond low form a
heap. */

    for (low = list->count / 2 - 1; low >= 0; low--)
        InsertHeap(list->entry[low], low, list->count,
list);
}

Second half of the ndoes already 
satisfies the heap condition.

LECT-08, S-36
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

InsertHeap
void InsertHeap(ListEntry current,
Position low, Position high, List *list)
{
    Position large;
    large = 2 * low + 1;
    while (large <= high) {
        if (large < high && LT(list->entry[large].key,

list->entry[large + 1].key))
            large++;

if (GE(current.key, list->entry[large].key))
            break;
        else {

list->entry[low] = list->entry[large];
            low = large;
            large = 2 * low + 1;
        }
    }
    list->entry[low] = current;
}



9

LECT-08, S-37
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Analysis
• Each insertion may check log n heap nodes.
• Each check has two comparisons and one assignment.
• Let m=n/2, k varies from m-1 to 0. Cost of building is:

• For sorting n elements we need to Insert (or restore 
the heap) n times. The cost is:

• The worst case complexity is 2n log n comparisons
• and n log n assignments.   

mmmmmmm
nm

nmmnm
k
nm

k

5.2log5.1log!log
1loglog

5.25)!loglog(2log2
1

0

−≈−=
−=

≈≈−=∑
−

=

nnk
n

k
log2log2

2
≤∑

=

LECT-08, S-38
ALG06F, javed@kent.edu

Javed I. Khan@2006

DESIGN & 
ALALYSIS OF 
ALGORITHM

Heap Sort and Quick Sort

• Worst-case performance of Heap Sort (2nlogn) is 
poorer than the average-case performance of Quick 
Sort (1.39nlogn).

• However, the worst-case of Quick Sort is far worse 
than that of Heap Sort.

• The average-case analysis of Heap Sort is quite 
complex, however it shows it is almost same as its 
worst-case.

• On the average, therefore Quick Sort runs almost 
twice as fast as Heap Sort.


