Bucket Sort

Idea

- Counting sort assumes that the input consists of integers in a small range.
- Bucket sort assumes that the inputs are generated by a random process and elements are uniformly distributed over the interval [0,1].

- Algorithm:
 - Throws the numbers in their right buckets.
 - Sort each bucket with regular insertion sort.
 - Concatenate the buckets.
Example

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.78</td>
</tr>
<tr>
<td>2</td>
<td>.17</td>
</tr>
<tr>
<td>3</td>
<td>.39</td>
</tr>
<tr>
<td>4</td>
<td>.26</td>
</tr>
<tr>
<td>5</td>
<td>.72</td>
</tr>
<tr>
<td>6</td>
<td>.94</td>
</tr>
<tr>
<td>7</td>
<td>.21</td>
</tr>
<tr>
<td>8</td>
<td>.12</td>
</tr>
<tr>
<td>9</td>
<td>.23</td>
</tr>
<tr>
<td>10</td>
<td>.68</td>
</tr>
</tbody>
</table>
```

```
12 | 17 |
21 | 23 | 26 |
39 |
```

Code

```
BUCKET-SORT(A)
1  n ← length[A]
2  for i ← 1 to n
3      do insert A[i] into list B[(n*A[i])]
4  for i ← 0 to n - 1
5      do sort list B[i] with insertion sort
6  concatenate the lists B[0], B[1], ..., B[n - 1] together in order
```
Proof of Correctness

- If two items are in the same bucket then they are in proper relative order.
- If two items are in two different buckets, even then they are in right order.

Complexity

- Each small list is sorted with insertion sort:
 \[\sum_{i=0}^{n-1} O(E[n_i^2]) = O\left(\sum_{i=0}^{n-1} E[n_i^2] \right) \]
- What is the expected length of the small lists?
 - Probability of a list to have length 1, 2... n?
 - Binomial distribution:
 \[p = \frac{1}{n}, E[n_i] = np = 1, Var[n_i] = npq = 1 - \frac{1}{n} \]
 \[E[n_i^2] = Var[n_i] + E^2[n_i], \]
 \[= (1 - \frac{1}{n}) + 1^2 = 2 - \frac{1}{n} = \Theta(1) \]
 \[\sum_{i=0}^{n-1} O(E[n_i^2]) = O\left(\sum_{i=0}^{n-1} E[n_i^2] \right) = O(n) \]
Main Sorting Themes

- Comparison Based Sorting
- Address Calculation Sorting
- Transposition Sorting
- BubbleSort
- Inset and Keep Sorting
- Priority Queue Sorting
- TreeSort
- Insertion Sort
- Selection Sort
- QuickSort
- MergeSort
- RadixSort
- CountingSort
- Diminishing Increment Sorting
- ShellSort
- Divide & Conquer Sorting
- HeapSort
- Quiz: Fit BucketSort in this Tree

Class Mechanics

- Discussion about Final Project
- Feedback on Grade
- Quiz
Motivation

- For Contiguous array, the best is QuickSort. Quicksort has no O(nlogn) worst case bound. HeapSort has worst case bound O(n log n) and sorts in place.
Heap

DEFINITION A heap is a list in which each entry contains a key, and, for all positions \(k \) in the list, the key at position \(k \) is at least as large as the keys in positions \(2k \) and \(2k + 1 \), provided these positions exist in the list.

Idea

- **Build the heap,**
 - by one by one inserting the keys.
- **One by one take the roots out of the tree.**
 - Insert it in the sorted list.
 - After each deletion rearrange the heap so that the largest again reaches at the top.
Example

Example (contd..)
Main & BuildHeap Code

```c
void HeapSort(List *list) {
    Position lu;    /* Entries beyond lu have been
    ListEntry current;    /* holds entry temporarily
    removed from list */

    BuildHeap(list); /* First phase: turn list into
        a heap. */
    for (lu = list->count - 1; lu >= 1; lu--) {
        current = list->entry[lu]; /* Extract last element
            from list. */
        list->entry[lu] = list->entry[0]; /* Move top of
            heap to end of list. */
        InsertHeap(current, 0, lu - 1, list);
    }
}

void BuildHeap(List *list) {
    Position low;           /* Entries beyond low form a
        heap. */
    for (low = list->count / 2 - 1; low >= 0; low--)
        InsertHeap(list->entry[low], low, list->count,
            list);
}
```

Second half of the nodes already satisfies the heap condition.

InsertHeap

```c
void InsertHeap(ListEntry current,
    Position low, Position high, List *list) {
    Position large;
    large = 2 * low + 1;
    while (large <= high) {
        if (large < high && LT(list->entry[large].key,
                list->entry[large + 1].key))
            large++;
        if (GE(current.key, list->entry[large].key))
            break;
        else {
            list->entry[low] = list->entry[large];
            low = large;
            large = 2 * low + 1;
        }
    }
    list->entry[low] = current;
}
```
Analysis

- Each insertion may check log n heap nodes.
- Each check has two comparisons and one assignment.
- Let m=n/2, k varies from m-1 to 0. Cost of building is:
 \[2 \sum_{k=0}^{m-1} \log \frac{n}{k} = 2(m \log n - \log m!) \approx 5m \approx 2.5n \]
 \[\log m = \log n - 1 \]
 \[\log m! = m \log m - 1.5m \approx m \log m - 2.5m \]
- For sorting n elements we need to Insert (or restore
 the heap) n times. The cost is:
 \[2 \sum_{k=2}^{n} \log k \leq 2n \log n \]
- The worst case complexity is 2n log n comparisons
 and n log n assignments.

Heap Sort and Quick Sort

- Worst-case performance of Heap Sort (2nlogn) is
 poorer than the average-case performance of Quick
 Sort (1.39nlogn).
- However, the worst-case of Quick Sort is far worse
 than that of Heap Sort.
- The average-case analysis of Heap Sort is quite
 complex, however it shows it is almost same as its
 worst-case.
- On the average, therefore Quick Sort runs almost
 twice as fast as Heap Sort.