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Idea

• The performance (Search, Insertion, Deletion):
– of binary tree depends on the balance

– Indeed it is possible to build a nearly balanced tree if all
the nodes are available at the beginning.

• AVL tree is a mechanism where a tree can be kept
nearly balanced while trees are dynamically added
or deleted.

– The height of an AVL tree will never exceed 1.44 log n.

• AVL: Two Russian Mathematicians G.M.
ADELSON_VELSKII and E.M. LANDIS
developed this tree in 1962.
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AVL Tree

• An AVL tree is a binary search tree in which the
heights of the left and right subtrees of the root
differ by at most 1 and in which the left and right
subtrees are again AVL trees.

• With each node of an AVL tree is associated a
balance factor that is left higher, equal, or right
higher according, respectively, as the left subtree
has height greater than, equal to, or less than that
of the right subtree.

• In each node structure there is an extra field:

BalanceFactor bf;
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Examples: Which one are AVL?
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Insertion in AVL

• Usual Binary tree insertion should work.
– Check if the new key will go left or right.

– Insert it recursively in left or right subtree as needed.

• What about the Height?
– Often it will not result in any increase of the subtree

height, do nothing.

– If it increases the height of the shorter subtree, still do
nothing except update the BF of the root.

– Only if it increases the height of the taller subtree then
need to do something special.
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Simple Insertion
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InsertAVL
TreeNod e * InsertA VL( TreeNod e *root, TreeNod e * newnode , Boolean *tall er)
{
    if (!ro ot) {
        root = newnode ;
        root->l eft = root->rig ht = NULL;
        root->b f = EH;
        * taller = TRUE;

    } else if  (EQ( newnode - >entry.key, ro ot->entry.key)) {
        Error(" Duplicate key i s not allowed in  AVL tree.");

    } else if  (LT( newnode - >entry.key, ro ot->entry.key)) {
        root->l eft = InsertA VL(root->left, newnode , taller);
        if (*ta l ler)                        /* Left  subtree is  taller.  */
            switch( r oot->bf) {

            case LH :                        /* Nod e was left high .      */
                root = LeftBal ance(root, tall er); break;

            case EH :
                root->b f = LH;  break;       /* Node is  now left high.    */

            case RH :
                root->b f = EH;          /* Node now ha s balanced height. * /
                * taller = FALSE; break;
            }

    } else {

( continu ed…)

First node.

If smaller key

If the height of the 
left subtree increases

If greater key...
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InsertAVL (continued..)
TreeNode *InsertAVL(TreeNode *root, TreeNode *newnode, Boolean *taller)
{

(continued..)

    } else {
        root->right = InsertAVL(root->right, newnode, taller);
        if (* taller)                        /* Right subtree is taller. * /
            switch(root->bf) {

            case LH:
                root->bf = EH;          /* Node now has balanced height.*/
                * taller = FALSE; break;

            case EH:
                root->bf = RH; break;   /* Node is right high.      * /

            case RH:                        /* Node was right high.     * /
                root = RightBalance(root, taller); break;
            }
    }
    return root;
}

If Key goes 
in right sub-tree



5

 LECT-10, S-32
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Balancing unbalanced AVL

• Problem:
– let us assume we have used InsertAVL

–  now the right subtree height has grown one and the
right subtree was already taller!

– How to restore the balance?

• Solution:
– there can be three situations:

– the right subtree itself is now left heavy

– the right subtree itself is now right heavy

– the right subtree now has equal heights in both sides..
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Case-1: Right Higher

• Left Rotation:

Tr eeNode * Rotat eLef t ( Tr eeNode *p)
{
    Tr eeNode * r i ght chi l d =  p;

    i f (! p)
        Er ror ( "I t is im poss i bl e
t o ro t at e an em pty t re e in
Rotat eLef t." ) ;

    el se i f ( !p- >ri ght)
        Er ror ( "I t is im poss i bl e
t o make an e mpt y subtr ee t he r oot
i n Rotat eLef t." ) ;

    el se {
        rightchild = p->right;
        p->right = rightchild-
>left;
        rightchild->left = p;
    }
    r etur n r i ght chi l d;
}
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Case-2: Left Higher

• Double Left Rotation:
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Behavior of Algorithm

• The number of times the function InsertSVL
calls itself recursively a new node can be as
large as the height of the tree.

• How many times the routine RightBalace or
LeftBalance will be called?

– Both of them makes the BF of the root EQ.

– Thus it will not further increase the tree height for
outer recursive calls.

– Only once they will be called!

– Most insertion will i nduce no rotation.

– Even when, they usually occur near the leaf.
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Case-3: Equal Height

• Can it Happen?
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Example-1
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Example-2
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Deletion of a Node

• Reduce the problem to the case when the node x
to be deleted has at most one child.

• 2. Delete x. We use a Boolean variable shorter to
show if the height of a subtree has been
shortened.

• 3. While shorter is TRUE do the following steps
for each node p on the path from the parent of x
to the root of the tree. When shorter becomes
FALSE, the algorithm terminates.
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Deletion of a Node
4. Case 1: Node p has balance factor equal.

5. Case 2: The balance factor of p is not equal, and
the taller subtree was shortened.

6. Case 3: The balance factor of p is not equal, and
the shorter subtree was shortened. Apply a
rotation as follows to restore

balance. Let q be the root of the taller subtree of p.

7. Case 3a: The balance factor of q is equal.

8. Case 3b: The balance factor of q is the same as that
of p.

9. Case 3c: The balance factors of p and q are
opposite.
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Deletion-1

No operation
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Deletion-2

Single Rotation
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Deletion-3

Double Rotation



11

 LECT-10, S-44
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example
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Example (continued..)
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Example (continued..)
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The Height of AVL Tree (WC)

• Let Fh be the minimum number of nodes that a
AVL tree of height h can have. Then:

121 ++= −− hhh FFF

Fibonacci Trees21 10 == FF
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The Height of AVL Tree (WC)
• Fibonacci vs. Our Series (n=h+2)

• |Fh| +1 satisfies the definition of Fibonacci number.

• By evaluation Fibonacci:

• By taking log in both sides:

• In the worst case AVL wil l perform no more than
44% more of the perfect case!
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