AVL Tree

Idea

• The performance (Search, Insertion, Deletion):
 – of binary tree depends on the balance
 – Indeed it is possible to build a nearly balanced tree if all
 the nodes are available at the beginning.

• AVL tree is a mechanism where a tree can be kept
 nearly balanced while trees are dynamically added
 or deleted.
 – The height of an AVL tree will never exceed 1.44 log n.

• AVL: Two Russian Mathematicians G.M.
 ADELSON_VELSKII and E.M. LANDIS
 developed this tree in 1962.
AVL Tree

- An AVL tree is a binary search tree in which the heights of the left and right subtrees of the root differ by at most 1 and in which the left and right subtrees are again AVL trees.

- With each node of an AVL tree is associated a balance factor that is left higher, equal, or right higher according, respectively, as the left subtree has height greater than, equal to, or less than that of the right subtree.

- In each node structure there is an extra field: BalanceFactor bf;

Examples: Which one are AVL?
Insertion in AVL

- Usual Binary tree insertion should work.
 - Check if the new key will go left or right.
 - Insert it recursively in left or right subtree as needed.

- What about the Height?
 - Often it will not result in any increase of the subtree height, do nothing.
 - If it increases the height of the shorter subtree, still do nothing except update the BF of the root.
 - Only if it increases the height of the taller subtree then need to do something special.

Simple Insertion
InsertAVL

TreeNode *InsertAVL(TreeNode *root, TreeNode *newnode, Boolean *taller)
{
 if (!root) {
 root = newnode;
 root->left = root->right = NULL;
 root->bf = EH;
 *taller = TRUE;
 } else if (EQ(newnode->entry.key, root->entry.key)) {
 Error("Duplicate key is not allowed in AVL tree.");
 } else if (LT(newnode->entry.key, root->entry.key)) {
 root->left = InsertAVL(root->left, newnode, taller);
 if (*taller) /* Left subtree is taller. */
 switch(root->bf) {
 case LH: /* Node was left high. */
 root = LeftBalance(root, taller); break;
 case EH: /* Node is now left high. */
 root->bf = LH; break;
 case RH: /* Node now has balanced height. */
 *taller = FALSE; break;
 } else {
 (continued...)
 } else {
 (continued...)
 }
 } else {
 root->right = InsertAVL(root->right, newnode, taller);
 if (*taller) /* Right subtree is taller. */
 switch(root->bf) {
 case LH: /* Node now has balanced height. */
 root->bf = EH; "Node now has balanced height."/
 *taller = FALSE; break;
 case EH: /* Node is right high. */
 root->bf = RH; break;
 case RH: /* Node was right high. */
 root = RightBalance(root, taller); break;
 }
 return root;
 }
}
Balancing unbalanced AVL

- Problem:
 - let us assume we have used InsertAVL
 - now the right subtree height has grown one and the right subtree was already taller!
 - How to restore the balance?

- Solution:
 - there can be three situations:
 - the right subtree itself is now left heavy
 - the right subtree itself is now right heavy
 - the right subtree now has equal heights in both sides.

Case-1: Right Higher

- Left Rotation:

```c
// include "Rotation.c" (from Node.c)
// include "TreeNode.h"

TreeNode* Root = p;
if (p == NULL) // impossible rotate on NULL node
  return NULL;
else if (p->right == NULL) // impossible make an empty subtree the root
  return NULL;
else {
  TreeNode* rightChild = p->right;
  p->right = rightChild->left;
  rightChild->left = p;
  return rightChild;
}
```
Case-2: Left Higher

- Double Left Rotation:

Behavior of Algorithm

- The number of times the function InsertSVL calls itself recursively a new node can be as large as the height of the tree.

- How many times the routine RightBalance or LeftBalance will be called?
 - Both of them makes the BF of the root EQ.
 - Thus it will not further increase the tree height for outer recursive calls.
 - Only once they will be called!
 - Most insertion will induce no rotation.
 - Even when, they usually occur near the leaf.
Case-3: Equal Height

- Can it Happen?
Deletion of a Node

- Reduce the problem to the case when the node x to be deleted has at most one child.
- 2. Delete x. We use a Boolean variable shorter to show if the height of a subtree has been shortened.
- 3. While shorter is TRUE do the following steps for each node p on the path from the parent of x to the root of the tree. When shorter becomes FALSE, the algorithm terminates.
Deletion of a Node

4. Case 1: Node \(p \) has balance factor equal.
5. Case 2: The balance factor of \(p \) is not equal, and the taller subtree was shortened.
6. Case 3: The balance factor of \(p \) is not equal, and the shorter subtree was shortened. Apply a rotation as follows to restore balance. Let \(q \) be the root of the taller subtree of \(p \).
7. Case 3a: The balance factor of \(q \) is equal.
8. Case 3b: The balance factor of \(q \) is the same as that of \(p \).
9. Case 3c: The balance factors of \(p \) and \(q \) are opposite.

Deletion-1

No operation
Deletion-2

Single Rotation

Deletion-3

Double Rotation
Example

Example (continued..)
The Height of AVL Tree (WC)

- Let F_h be the minimum number of nodes that a AVL tree of height h can have. Then:

$$|F_h| = |F_{h-1}| + |F_{h-2}| + 1$$

Fibonacci Trees

$$|F_0| = 1 \quad |F_1| = 2$$
The Height of AVL Tree (WC)

- Fibonacci vs. Our Series (n=h+2)

 OurSeries: \(F_3, F_2, F_1 = F_0 = 1, F_1 = 1, F_2 = 2, \ldots F_{h-2}, F_{h-1}, F_h \)

 Fibonacci: \(f_0 = 0, f_1 = 1, f_2 = 1, f_3 = 2, \ldots f_{n-2}, f_{n-1}, f_n \)

- \(|F_h| + 1 \) satisfies the definition of Fibonacci number.
 \[
 (|F_h| + 1) = (|F_{h-1}| + 1) + (|F_{h-2}| + 1)
 \]

- By evaluation Fibonacci:
 \[
 (|F_h| + 1) = \frac{1}{\sqrt{5}} \left[\frac{1 + \sqrt{5}}{2} \right]^{h+2} = \frac{(GR)^{h+2}}{\sqrt{5}}
 \]

- By taking log in both sides: \(h \approx 1.44 \log |F_h| \)

- In the worst case AVL will perform no more than 44% more of the perfect case!