
1

24

AVL Tree

 LECT-10, S-25
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Idea

• The performance (Search, Insertion, Deletion):
– of binary tree depends on the balance

– Indeed it is possible to build a nearly balanced tree if all
the nodes are available at the beginning.

• AVL tree is a mechanism where a tree can be kept
nearly balanced while trees are dynamically added
or deleted.

– The height of an AVL tree will never exceed 1.44 log n.

• AVL: Two Russian Mathematicians G.M.
ADELSON_VELSKII and E.M. LANDIS
developed this tree in 1962.

2

 LECT-10, S-26
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

AVL Tree

• An AVL tree is a binary search tree in which the
heights of the left and right subtrees of the root
differ by at most 1 and in which the left and right
subtrees are again AVL trees.

• With each node of an AVL tree is associated a
balance factor that is left higher, equal, or right
higher according, respectively, as the left subtree
has height greater than, equal to, or less than that
of the right subtree.

• In each node structure there is an extra field:

BalanceFactor bf;

 LECT-10, S-27
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Examples: Which one are AVL?

3

 LECT-10, S-28
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Insertion in AVL

• Usual Binary tree insertion should work.
– Check if the new key will go left or right.

– Insert it recursively in left or right subtree as needed.

• What about the Height?
– Often it will not result in any increase of the subtree

height, do nothing.

– If it increases the height of the shorter subtree, still do
nothing except update the BF of the root.

– Only if it increases the height of the taller subtree then
need to do something special.

 LECT-10, S-29
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Simple Insertion

4

 LECT-10, S-30
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

InsertAVL
TreeNod e * InsertA VL(TreeNod e *root, TreeNod e * newnode , Boolean *tall er)
{
 if (!ro ot) {
 root = newnode ;
 root->l eft = root->rig ht = NULL;
 root->b f = EH;
 * taller = TRUE;

 } else if (EQ(newnode - >entry.key, ro ot->entry.key)) {
 Error(" Duplicate key i s not allowed in AVL tree.");

 } else if (LT(newnode - >entry.key, ro ot->entry.key)) {
 root->l eft = InsertA VL(root->left, newnode , taller);
 if (*ta l ler) /* Left subtree is taller. */
 switch(r oot->bf) {

 case LH : /* Nod e was left high . */
 root = LeftBal ance(root, tall er); break;

 case EH :
 root->b f = LH; break; /* Node is now left high. */

 case RH :
 root->b f = EH; /* Node now ha s balanced height. * /
 * taller = FALSE; break;
 }

 } else {

(continu ed…)

First node.

If smaller key

If the height of the
left subtree increases

If greater key...

 LECT-10, S-31
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

InsertAVL (continued..)
TreeNode *InsertAVL(TreeNode *root, TreeNode *newnode, Boolean *taller)
{

(continued..)

 } else {
 root->right = InsertAVL(root->right, newnode, taller);
 if (* taller) /* Right subtree is taller. * /
 switch(root->bf) {

 case LH:
 root->bf = EH; /* Node now has balanced height.*/
 * taller = FALSE; break;

 case EH:
 root->bf = RH; break; /* Node is right high. * /

 case RH: /* Node was right high. * /
 root = RightBalance(root, taller); break;
 }
 }
 return root;
}

If Key goes
in right sub-tree

5

 LECT-10, S-32
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Balancing unbalanced AVL

• Problem:
– let us assume we have used InsertAVL

– now the right subtree height has grown one and the
right subtree was already taller!

– How to restore the balance?

• Solution:
– there can be three situations:

– the right subtree itself is now left heavy

– the right subtree itself is now right heavy

– the right subtree now has equal heights in both sides..

 LECT-10, S-33
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Case-1: Right Higher

• Left Rotation:

Tr eeNode * Rotat eLef t (Tr eeNode *p)
{
 Tr eeNode * r i ght chi l d = p;

 i f (! p)
 Er ror ("I t is im poss i bl e
t o ro t at e an em pty t re e in
Rotat eLef t.") ;

 el se i f (!p- >ri ght)
 Er ror ("I t is im poss i bl e
t o make an e mpt y subtr ee t he r oot
i n Rotat eLef t.") ;

 el se {
 rightchild = p->right;
 p->right = rightchild-
>left;
 rightchild->left = p;
 }
 r etur n r i ght chi l d;
}

6

 LECT-10, S-34
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Case-2: Left Higher

• Double Left Rotation:

 LECT-10, S-35
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Behavior of Algorithm

• The number of times the function InsertSVL
calls itself recursively a new node can be as
large as the height of the tree.

• How many times the routine RightBalace or
LeftBalance will be called?

– Both of them makes the BF of the root EQ.

– Thus it will not further increase the tree height for
outer recursive calls.

– Only once they will be called!

– Most insertion will i nduce no rotation.

– Even when, they usually occur near the leaf.

7

 LECT-10, S-36
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Case-3: Equal Height

• Can it Happen?

 LECT-10, S-37
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example-1

8

 LECT-10, S-38
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example-2

 LECT-10, S-39
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Deletion of a Node

• Reduce the problem to the case when the node x
to be deleted has at most one child.

• 2. Delete x. We use a Boolean variable shorter to
show if the height of a subtree has been
shortened.

• 3. While shorter is TRUE do the following steps
for each node p on the path from the parent of x
to the root of the tree. When shorter becomes
FALSE, the algorithm terminates.

9

 LECT-10, S-40
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Deletion of a Node
4. Case 1: Node p has balance factor equal.

5. Case 2: The balance factor of p is not equal, and
the taller subtree was shortened.

6. Case 3: The balance factor of p is not equal, and
the shorter subtree was shortened. Apply a
rotation as follows to restore

balance. Let q be the root of the taller subtree of p.

7. Case 3a: The balance factor of q is equal.

8. Case 3b: The balance factor of q is the same as that
of p.

9. Case 3c: The balance factors of p and q are
opposite.

 LECT-10, S-41
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Deletion-1

No operation

10

 LECT-10, S-42
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Deletion-2

Single Rotation

 LECT-10, S-43
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Deletion-3

Double Rotation

11

 LECT-10, S-44
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example

 LECT-10, S-45
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example (continued..)

12

 LECT-10, S-46
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example (continued..)

 LECT-10, S-47
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

The Height of AVL Tree (WC)

• Let Fh be the minimum number of nodes that a
AVL tree of height h can have. Then:

121 ++= −− hhh FFF

Fibonacci Trees21 10 == FF

13

 LECT-10, S-48
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

The Height of AVL Tree (WC)
• Fibonacci vs. Our Series (n=h+2)

• |Fh| +1 satisfies the definition of Fibonacci number.

• By evaluation Fibonacci:

• By taking log in both sides:

• In the worst case AVL wil l perform no more than
44% more of the perfect case!

)1()1()1(21 +++=+ −− hhh FFF

5

)(

2

51

5

1
)1(

2
2

++

=






 +=+
h

h

h

GR
F

hFh log44.1≈

2143210

1210123

,,.,3,2,1,1,0:

,,,....2,1..,,,:

++

−−−−−

=====
===

nn

hhh

fffffffFibonacci

FFFFFFFFOurSeries

