Amortization Analysis

16

Amortized Analysis

DESIGN & ALALYSIS OF ALGORITHM

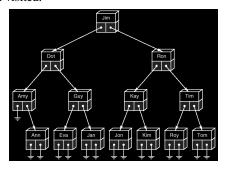
- When one event in a sequence affects the cost of later events:
 - One particular task may be expensive.
 - But it may leave data structure in a state that next few tasks becomes easier.
- Example:
 - Analysis of single sort? (Quick sort may be better)
 - Analysis of a continual sort? (Quick sort may be worst)

LECT-11, S-17 ALG00S, javed@kent.edu Javed I. Khan@1999

Amortized Cost of Tree Traversal

- Consider in-order traversal of BT with n nodes:
 - cost is number of links visited to reach the vertex from the last vertex visited.

DESIGN & ALALYSIS OF ALGORITHM



Amortized Cost:

2(n-1)/n < 2

Best-case=1 (child-to-parent)

 $worst\text{-}case\text{=}1\text{-}n\;(\text{parent-to-left child in a lefti-chain BT})$

What is the amortized cost?

LECT-11, S-18 ALG00S, javed@kent.edu Javed I. Khan@1999

Amortized Cost of Incrementing Binary Integers

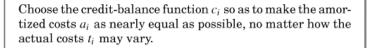
- The actual cost varies from step to step.
 - So we will use a cerditbalance function which smooths out the cost.
- Choose the credit-balance function c_i so as to make the amortized costs a_i as nearly equal as possible, no matter how the actual costs t_i may vary.

step i	integer	t_i	c_i	a_i
0	0 0 0 0		0	
1	$0\ 0\ 0\ 1$	1	1	2
2	0010	2	1	2
3	$0\ 0\ 1\ 1$	1	2	2
4	$0\ 1\ 0\ 0$	3	1	2
5	$0\ 1\ 0\ 1$	1	2	2
6	0110	2	2	2
7	$0\ 1\ 1\ 1$	1	3	2
8	$1\ 0\ 0\ 0$	4	1	2
9	$1\ 0\ 0\ 1$	1	2	2
10	$1\ 0\ 1\ 0$	2	2	2
11	$1\ 0\ 1\ 1$	1	3	2
12	1100	3	2	2
13	$1\ 1\ 0\ 1$	1	3	2
14	1110	2	3	2
15	1111	1	4	2
16	0000	4	0	0

- $t_i = \text{actual cost} = \text{number of digits changed}$
- $c_i = \text{credit-balance function} = \text{number of 1's in integer}$
- $a_i = \text{amortized cost} = t_i + c_i c_{i-1}$

Amortized Analysis

DEFINITION The **amortized cost** a_i of each operation is defined to be $a_i = t_i + c_i - c_{i-1}$ for i = 1, 2, ..., m, where t_i is the actual cost and c_i is a credit balance.



Lemma 9.5 The total actual cost and total amortized cost of a sequence of m operations on a data structure are related by

$$\sum_{i=1}^{m} t_i = \left(\sum_{i=1}^{m} a_i\right) + c_0 - c_m.$$

DESIGN & ALALYSIS OF ALGORITHM

LECT-11, S-20 LG00S, javed@kent.edu Javed I. Khan@1999

Cost of One Insertion/ Retrieval in Splay Tree

- One Insertion can result in a series of zig-zag, zig-zig, zag-zag, zag, zig operations.
- We will assume a credit-balance function for each of these operations.
- Based on it we will try to estimate the cost of m operations which makes one insertion by evaluating:
- and then: $\sum_{i=1}^{m} t_i = \left(\sum_{i=1}^{m} a_i\right) + c_0 c_m$.
- Finally we will estimate the cost of m sequential insertion/searches.

DESIGN & ALALYSIS OF ALGORITHM

LECT-11, S-21 LG00S, javed@kent.edu Javed I. Khan@1999

Today's Math:

DESIGN & ALALYSIS OF ALGORITHM

Lemma 9.6 If α , β , and γ are positive real numbers with $\alpha + \beta \leq \gamma$, then $\lg \alpha + \lg \beta \leq 2 \lg \gamma - 2$.

$$(\sqrt{\alpha} - \sqrt{\beta})^2 \ge 0$$

$$\alpha + \beta \ge 2\sqrt{\alpha \cdot \beta}$$

$$2\log(\alpha + \beta) \ge 2 \cdot \log 2 + \log \alpha + \log \beta$$

$$2\log \gamma - 2 \ge \log \alpha + \log \beta$$

LECT-11, S-22 ALG00S, javed@kent.edu Javed I. Khan@1999

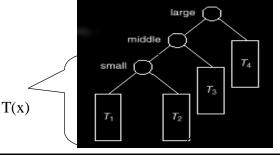
Credit Balance Function for Splaying

Let T be a binary search tree, T_i be T as it is after step i of splaying, $T_i(x)$ be the subtree with root x in T_i , $|T_i(x)|$ be the number of nodes in $T_i(x)$, and define the **rank** of x to be $r_i(x) = \lg |T_i(x)|$.

DESIGN & ALALYSIS OF ALGORITHM

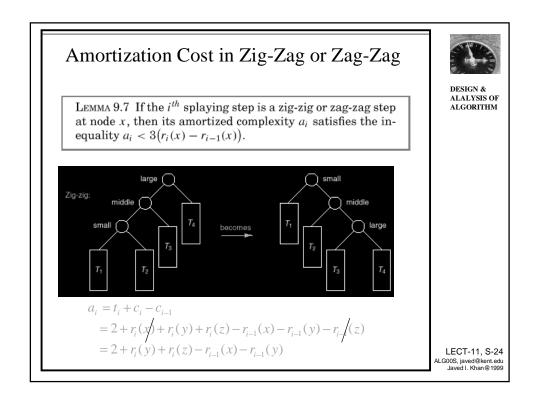
The Credit Invariant

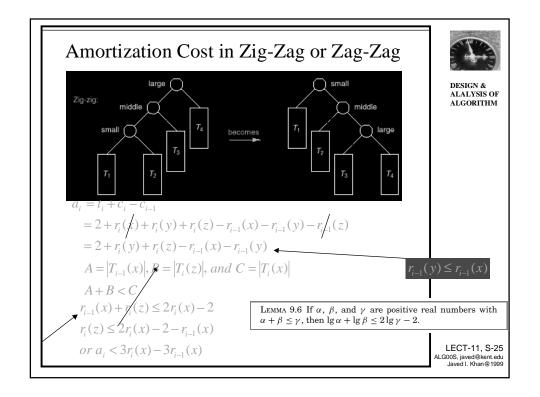
For every node x of T and after every step i of splaying, node x has credit equal to its rank $r_i(x)$.



r(x)=0 when the tree has only one node.

LECT-11, S-23 ALG00S, javed@kent.edu Javed I. Khan@1999





Amortization Cost for Other Operations

ALALYSIS OF ALGORITHM

Lemma 9.7 If the i^{th} splaying step is a zig-zig or zag-zag step at node x, then its amortized complexity a_i satisfies the inequality $a_i < 3(r_i(x) - r_{i-1}(x))$.

Lemma 9.8 If the i^{th} splaying step is a zig-zag or zag-zig step at node x, then its amortized complexity a_i satisfies

$$a_i < 2(r_i(x) - r_{i-1}(x)).$$

Lemma 9.9 If the i^{th} splaying step is a zig or a zag step at node x, then its amortized complexity a_i satisfies

$$a_i < 1 + (r_i(x) - r_{i-1}(x)).$$

LECT-11, S-26 ALG00S, javed@kent.edu Javed I. Khan@1999

Total Amortization Cost for one Retrieval/Insertion

DESIGN & ALALYSIS OF ALGORITHM

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m-1} a_i + a_m$$

$$\leq \sum_{i=1}^{m-1} (3r_i(x) - 3r_{i-1}(x)) + (1 + 3r_m(x) - 3r_{m-1}(x))$$

$$= 1 + 3r_m(x) - 3r_0(x)$$

$$\leq 1 + 3r_m(x)$$

$$= 1 + 3\log n$$

Theorem 9.10 The amortized cost of an insertion or retrieval with splaying in a binary search tree with n nodes does not exceed $1+3\lg n$ upward moves of the target node in the tree.

LECT-11, S-27 LG00S, javed@kent.edu Javed I. Khan@1999

Amortization cost of a sequence of m insertions/retrievals

DESIGN & ALALYSIS OF ALGORITHM

- The total actual cost of a sequence of m splay differs from the total amortizatized cost only by c₀-c_m.
- C_m is at most log n.

Lemma 9.5 The total actual cost and total amortized cost of a sequence of m operations on a data structure are related by

$$\sum_{i=1}^{m} t_i = \left(\sum_{i=1}^{m} a_i\right) + c_0 - c_m.$$

Corollary 9.11 The total complexity of a sequence of m insertions or retrievals with splaying in a binary search tree which never has more than n nodes does not exceed

$$m(1+3\lg n) + \lg n$$

upward moves of a target node in the tree.

LECT-11, S-28 ALG00S, javed@kent.edu Javed I. Khan@1999

Next Class

Heap Sort Priority Queue

29