
1

1

CS 4/56101

Design and Analysis of
Algorithms

Kent State
University
Dept. of Math & Computer Science

LECT-13

2

Graphs

2

 LECT-13, S-3
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Definitions

• A graph G consists of a set V , whose members
are called the vertices of G, together with a set E
of pairs of distinct vertices from V .

• The pairs in E are called the � � � � � of G.

• If the pairs are unordered, G is called an � � � � � � � 	 � �
� �
 � � .

• If the pairs are ordered, G is called a directed
graph (or digraph).

• Two vertices in an undirected graph are called
 �
 � � � 	 if there is an edge from the first to the
second.

 LECT-13, S-4
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Definitions: Paths & Links

• A �
 	 � is a sequence of distinct vertices, each
adjacent to the next.

• A � � � � � is a path containing at least three vertices
such that the last vertex on the path is adjacent to
the first.

• A graph is called � � � � � � 	 � � if there is a path from
any vertex to any other vertex.

• A � � � � 	 � � � is defined as a connected undirected
graph with no cycles.

• In a directed graph a path or a cycle means
always moving in the direction indicated by the
arrows. Such a path (cycle) is called a � � � � � 	 � � path
(cycle).

3

 LECT-13, S-5
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Definitions: Connected components

• A directed graph is called � � � � � � � � � � � � � � � � � if
there is a directed path from any vertex to any
other vertex.

• If we suppress the direction of the edges and the
resulting undirected graph is connected, we call
the directed graph � � � � � � � � � � � � � � � .

• The � � � � � � ! � � � � � � � � " of a vertex is the number
of edges on which it lies, hence also the number
of vertices adjacent to it.

 LECT-13, S-6
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Examples

4

 LECT-13, S-7
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Examples

 LECT-13, S-8
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Examples

5

 LECT-13, S-9
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Representation

 LECT-13, S-10
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Linked List

6

 LECT-13, S-11
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Contiguous List

 LECT-13, S-12
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Mixed

7

13

Graph Traversal

 LECT-13, S-14
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Graph Traversal: Depth First

Visit(v);
for all vertices w adjacent to v do
 Traverse(w, Visit);

How to avoid cycles & disconnected nodes?

8

 LECT-13, S-15
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Depth First Search
/* DepthFirst: depth-first traversal of a graph.
Pre: The graph G has been created.
Post: The function Visit has been performed at each vertex of G in depth-first order.
Uses: Function Traverse produces the recursive depth-first order. */

void DepthFirst(Graph G, void (*Visit)(Vertex))
{
 Boolean visited[MAXVERTEX];
 Vertex v;

 for (all v in G)
 visited[v] = FALSE;
 for (all v in G)
 if (!visited[v])
 Traverse(v, Visit);
}

void Traverse(Vertex v, void (*Visit)(Vertex))
{
 Vertex w;

 visited[v] = TRUE;
 Visit(v);
 for (all w adjacent to v)
 if (!visited[w])
 Traverse(w, Visit);
}

 LECT-13, S-16
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Graph Traversal: Breadth First

9

 LECT-13, S-17
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Breadth First Search
void BreadthFirst(Graph G, void (*Visit)(Vertex))
{
 Queue Q; /* QueueEntry defined to be Vertex. */
 Boolean visited[MAXVERTEX];
 Vertex v, w;

 for (all v in G)
 visited[v] = FALSE;
 CreateQueue(Q);

 for (all v in G)
 if (!visited[v]) {
 Append(v, Q);

 do {
 Serve(v,Q);
 if (!visited[v]) {
 visited[v] = TRUE;
 Visit(v);
 }

 for (all w adjacent to v)
 if (!visited[w])
 Append(w, Q);
 } while (!QueueEmpty(Q));
 }
}

 LECT-13, S-18
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Topological Sorting

10

19

Topological
Sorting

 LECT-13, S-20
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Topological Sorting: Depth First

11

 LECT-13, S-21
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Idea: Depth-First

• By Depth-first traversal find the last node
which has no successor.

• Place it in the last order.

• By recursion, when the routine returns, put
its immediate successors into topological
order.

• Use a variable ‘place’ to indicate the rank in
the topological order.

 LECT-13, S-22
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Code

void DepthTopSort(Graph *G, Toporder T)
{
 Vertex v; /* next vertex whose successors are to be
ordered*/
 int place /* next position in the topological order to be filled*/

 for (v = 0; v < G->n; v++)
 visited[v] = FALSE;
 place = G->n - 1;
 for (v = 0; v < G->n; v++)
 if (!visited[v])
 RecDepthSort(G, v, &place, T);
}

12

 LECT-13, S-23
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

void RecDepthSort(Graph *G, int v, int *place, Toporder T)
{
 Vertex curvertex; /* vertex adjacent to v */
 Edge *curedge; /* traverses list of vertices adjacent to v */

 visited[v] = TRUE;
 curedge = G->firstedge[v]; /* Find the first vertex succeeding v. */

 while (curedge) {
 curvertex = curedge->endpoint; /* curvertex is adjacent to v. */
 if (!visited[curvertex])
 RecDepthSort(G, curvertex, place, T); /* Order the successors of
curvertex. */
 curedge = curedge->nextedge; /* Go on to the next immediate
successor of/ v. */
 }

 T[*place] = v; /* Put v itself into the topological order. */
 (*place)--;
}

Since each of the nodes
and links are visited
only once the
complexity is O(n+e)

 LECT-13, S-24
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Topological Sort: Breadth-First

• Setup an array “predecessorcount[]’ to keep a
count of immediate predecessors to a node.

• The first vertices has zero count.

• Put these vertices with zero count into a queue.

• Visit each of them in the queue.

• When visit them
– remove them from the queue,

– assign the next place in the sorted list,

– reduce the predecessor count of each of their
successors by one.

– If any of its successor’s count becomes zero, put it in
the queue.

13

 LECT-13, S-25
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Topological Sorting: Breadth First

Since each of the nodes
and links are visited
only once the
complexity is O(n+e)

Errata: link 9-3 does not
exist.

