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Minimum Spanning Tree
• G=(V,E) is an undirected graph, where V is a set of

nodes and E is a set of possible interconnections
between pairs of nodes.

•  For each edge (u,v) in E, we have a weight W(u,v).

• Find an acyclic subset T of E, that connects all the
vertices and whose total weight is minimum.
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A Spanning Trees

Quiz: Are minimum spanning trees unique?
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Kruskal’s Algorithm

• Consider v isolated trees in the forest. Each
initially with only one node.

• Pick the shortest path that connects two trees in
the forest.

• In other words, select a least-cost edge that
does not result in a cycle when added to a set
of already selected edges.
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Algorithm
Spanning Tree edge set.

Initialize V forests.

Sort edges.

Make sure two ends 
are in two trees. 

No cycle.

If no cycle, add  the edge 
in the spanning tree set.

Merge the trees in the forest
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Example: Kruskal’s Algorithm
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Example: Kruskal’s Algorithm



5

 LECT-14, S-9
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Example: Continued..

10

Proof of Correctness
of an Algorithm
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Correctness of Krsukal’s Algorithm

• Let T be the tree found by Kruskal’s algorithm.

• Let U be the actual minimum spanning tree.

• We will prove cost of T= cost of U.

• Do you agree?
– T and U and all spanning trees must have exactly

V-1 edges.

– If , k (k>o) number of edges in U are not in T, then
exactly k number of edges in T must not be in U.

• We will one by one substitute a unique edge of U
by unique edge of T to prove that the cost does not
change.
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Correctness of Kruskal’s Algorithm
(contd..)

• Let e be the least-cost edge in T that is not in U.

• Add e to U.
– It must create a cycle.

– There must be an edge f in this cycle which was not in T.

• Take it out. The new spanning tree has cost
V=U+{ e} -{ f}

• Can { e} < { f} ?
– No because , then U cannot be minimum spanning tree.

• Can { e}>{ f} ?
– No because, then f will be included by Kruskal’s greedy

scheme before e. That did not happen!

• Therefore { e} ={ f}

• Therefore T=U
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Correctness of Kruskal’s algorithm

Two solution’s
with same cost.

U

T

V=U+{b,c}-{a,h}
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Complexity of Kruskal’s Algorithm

• 1-3: Initialization O(v)
• 4: sorting O(E log E)
• 5: E iterations.
• 6: Each FIND-SET is O(log E) total cost= 2E.O(log E)
• 7: 2E
• 8: UNION is at most V-1
• Overall complexity is O(V+E log E)
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Prim’s Algorithm

• Like Kruskal’s, but, start with any node.

• Extend the tree to the closest node!
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Prim’s Algorithm

Add the vertices in a Queue

Key[u] is the cost of reaching 
vertex u from current tree set.

Start from any node r. Its 
cost is zero. PI[u] is the root of u. 

Take the vertex closest to the tree.  

For each node adj to u, but not in spanning 
tree, update the reaching cost.  
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Example: Prim’s Algorithm
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Example: Prim’s Algorithm
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Example: Prim’s Algorithm
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Complexity of Prim’s Algorithm

• 1-5: Initialization O(v)
• 6: Loop executes V times.
• 7: Each EXTRACT-MIN is  O(log V). Total O(V log V).
• 8: Loop 8-11 executes E times.
• 9: membership can be tested in constant time.
• 11: v have to be deleted from Q (not shown): O(log V)
• Total: O(V log V+E log V)
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Shortest Path

• Other Variants:
– Single Destination shortest-path problem.

– Single-pair shortest path problem.

– All pairs shortest-paths problem.
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Greedy Method
(Dijkstra’s Algorithm)

• We keep a set S of vertices whose closest
distances to the source, Vertex 0, are known
and add one vertex to S at each stage.

• We maintain a table D that gives, for each
vertex v, the distance from 0 to v along a
path all of whose vertices are in S, except
possibly the last one.

• To determine what vertex to add to S at each
step, we apply the � � � � � � criterion of
choosing the vertex v with the smallest
distance recorded in the table D, such that v
is not already in S.
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Example (contd..)
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Algorithm

• 1. INITIALIZE_SINGLE-SOURCE(G,s)

• 2. S = EMPTY.

• 3. Q= V[G]

• 4. While Q not EMPTY

• 5. u= EXTRACT-MIN(Q)

• 6. Add u in S

• 7. For each vertex v adjacent to u

• 8. Do Update cost
– if D[v] > d[u]+w[u,v]

– then D[v]=d[u]+w[u,v]

– GoFrom[v]=u
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Proof of Correctness

• Let us assume the path through another node x,
which is not yet included in S to v is closer.

• Then D[x] must be smaller than D[v], but in
that case x should already be included in S!

v

0
x

Quiz: what if
we allow
negative
distances?
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Complexity

• Each EXTRACT-MIN takes
O(V).

• Each time at least one vertex
will be added.

• Therefore it can take at most
V iterations.

• Step 5 is O(v2)

• On the other hand, in steps
4-8 each path wil l be
processed only once.

• Thus the complexity is
O(V2+E).

• 1. INITIALIZE_SINGLE-SOURCE(G,s)

• 2. S = EMPTY.

• 3. Q= V[G]

• 4. While Q not EMPTY

• 5. u= EXTRACT-MIN(Q)

• 6. Add u in S

• 7. For each vertex v adjacent to u

• 8. Do Update cost
– if D[v] > d[u]+w[u,v]

– then D[v]=d[u]+w[u,v]

– GoFrom[v]=u
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Bellman-Ford Algorithm

• It can solve the shortest-path problem, even if
there are negative weighted links.

• What if there is a negative weighted cycle?

• Its complexity is O(V.E)


