

Minimum Spanning Tree

Minimum Spanning Tree

- $G=(V, E)$ is an undirected graph, where V is a set of nodes and E is a set of possible interconnections between pairs of nodes.
- For each edge (u,v) in E, we have a weight W(u,v).
- Find an acyclic subset T of E, that connects all the vertices and whose total weight is minimum.

LECT-14, S-3 G0os, javed@kent.edu Javed I. Khan@1999

A Spanning Trees

Quiz: Are minimum spanning trees unique?

Kruskal's Algorithm

DESIGN \& ALALYSIS OF

- Consider v isolated trees in the forest. Each initially with only one node.
- Pick the shortest path that connects two trees in the forest.
- In other words, select a least-cost edge that does not result in a cycle when added to a set of already selected edges.

Proof of Correctness of an Algorithm

Correctness of Krsukal's Algorithm

- Let T be the tree found by Kruskal's algorithm.
- Let U be the actual minimum spanning tree.
- We will prove cost of $T=$ cost of U.
- Do you agree?
- T and U and all spanning trees must have exactly $\mathrm{V}-1$ edges.
- If , $k(k>o)$ number of edges in U are not in T, then exactly k number of edges in T must not be in U.
- We will one by one substitute a unique edge of U by unique edge of T to prove that the cost does not change.

Correctness of Kruskal's Algorithm (contd..)

- Let e be the least-cost edge in T that is not in U .
- Add e to U.
- It must create a cycle.
- There must be an edge f in this cycle which was not in T.
- Take it out. The new spanning tree has cost
$\mathrm{V}=\mathrm{U}+\{\mathrm{e}\}-\{\mathrm{f}\}$
- Can $\{\mathrm{e}\}<\{f\}$?
- No because , then U cannot be minimum spanning tree.
- Can $\{\mathrm{e}\}>\{\mathrm{f}\}$?
- No because, then f will be included by Kruskal's greedy scheme before e. That did not happen!
- Therefore $\{\mathrm{e}\}=\{\mathrm{f}\}$
- Therefore $\mathrm{T}=\mathrm{U}$

Complexity of Kruskal's Algorithm

MST-Kruskal (G, w)
1
$2 \leftarrow \emptyset$
2 for each vertex $v \in V[G] \quad$ do Make-Set (v)

- 1-3: Initialization $\mathrm{O}(\mathrm{v})$
- 4: sorting $O(E \log E)$
- 5: E iterations.
- 6: Each FIND-SET is $\mathrm{O}(\log \mathrm{E})$ total cost= $2 \mathrm{E} . \mathrm{O}(\log \mathrm{E})$
- 7: 2E
- 8: UNION is at most V-1
- Overall complexity is $\mathrm{O}(\mathrm{V}+\mathrm{E} \log \mathrm{E})$

Prim's Algorithm

- Like Kruskal's, but, start with any node.
- Extend the tree to the closest node!

LECT-14, S-15 ALGooS, javed@kent.edu Javed I. Khan@1999

Prim's Algorithm

$\operatorname{MST}-\operatorname{Prim}(G, w, r)$ ALGORITHM
Key[u] is the cost of reaching vertex u from current tree set.

$k e y[r] \leftarrow 0$
$\pi[r] \leftarrow$ NIL
Start from any node r. Its
cost is zero. PI[u] is the root of u.
-

do $u \leftarrow \operatorname{Extract-Min}(Q) \quad$ Take the vertex closest to the tree.
for cach $v \in A d j[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then $\pi[v] \leftarrow u$
$k e y[v] \leftarrow w(u, v)$

For each node adj to u, but not in spanning tree, update the reaching cost.

Complexity of Prim's Algorithm

- 1-5: Initialization $\mathrm{O}(\mathrm{v})$
- 6: Loop executes V times.
- 7: Each EXTRACT-MIN is $\mathrm{O}(\log \mathrm{V})$. Total $\mathrm{O}(\mathrm{V} \log \mathrm{V})$.
- 8: Loop 8-11 executes E times.
- 9: membership can be tested in constant time.
- 11: v have to be deleted from Q (not shown): $\mathrm{O}(\log \mathrm{V})$
- Total: $\mathrm{O}(\mathrm{V} \log \mathrm{V}+\mathrm{E} \log \mathrm{V})$

Shortest Path

Shortest Path

Given a directed graph in which each edge has a nonnegative weight or cost, find a path of least total weight from a given vertex, called the source, to every other vertex in the graph.

- Other Variants:
- Single Destination shortest-path problem.
- Single-pair shortest path problem.
- All pairs shortest-paths problem.

Greedy Method
 (Dijkstra's Algorithm)

- We keep a set S of vertices whose closest distances to the source, Vertex 0 , are known and add one vertex to S at each stage.
- We maintain a table D that gives, for each vertex v, the distance from 0 to v along a path all of whose vertices are in S, except possibly the last one.
- To determine what vertex to add to S at each step, we apply the greterferiterion of

Algorithm

- 1. INITIALIZE_SINGLE-SOURCE(G,s)
- 2. $\mathrm{S}=\mathrm{EMPTY}$.
- 3. $\mathrm{Q}=\mathrm{V}[\mathrm{G}]$
- 4. While Q not EMPTY
- 5. $u=$ EXTRACT-MIN (Q)
- 6. Add u in S
- 7. For each vertex vadjacent to u
- 8.

Do Update cost

- if $\mathrm{D}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- then $\mathrm{D}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- GoFrom[v]=u

Complexity

- Each EXTRACT-MIN takes $\mathrm{O}(\mathrm{V})$.
- Each time at least one vertex will be added.
- Therefore it can take at most V iterations.
- Step 5 is $\mathrm{O}\left(\mathrm{v}^{2}\right)$
- On the other hand, in steps $4-8$ each path will be processed only once.
- Thus the complexity is $\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)$.
- 1. INITIALIZE_SINGLE-SOURCE(G,s)
- 2. S = EMPTY.
- 3. $\mathrm{Q}=\mathrm{V}[\mathrm{G}]$
- 4. While Q not EMPTY
- 5. $\mathrm{u}=$ EXTRACT-MIN(Q)
- 6. Add u in S
- 7. For each vertex vadjacent to u
- 8. Do Update cost
- if $D[v]>d[u]+w[u, v]$
- then $\mathrm{D}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$ GoFrom[v]=u

Bellman-Ford Algorithm

DESIGN \& ALALYSIS OF ALGORITHM

- It can solve the shortest-path problem, even if there are negative weighted links.
- What if there is a negative weighted cycle?
- Its complexity is O (V.E)

