

Naïve Method

Knuth-Morris-Pratt Algorithm

- Jumps can be computed by preprocessing the pattern, by comparing the pattern with itself
- $\quad \mathrm{PI}[\mathrm{q}]$ is the length of the longest prefix of P , that is a proper suffix of P .
- The worst-case complexity is $\mathrm{O}(\mathrm{m})$.

Complexity

- The running time for COMPUTE-PREFIX- FUNCTION is:
- $\mathrm{O}(\mathrm{m})$
- The total jump cannot exceed $(\mathrm{m}+\mathrm{n})$,= Thus complexity is $\mathrm{O}(\mathrm{m}+\mathrm{n})$.

State Machine

FSM for Detecting String Which Ends with Even 1s

DESIGN \&
ALALYSIS OF ALGORITHM

Figure 34.5 A simple two-state finite automaton with state set $Q=\{0,1\}$, start state $q_{0}=0$, and input alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. (a) A tabular representation of the transition function δ. (b) An equivalent state-transition diagram. State 1 is the only accepting state (shown blackened). Directed edges represent transitions. For example, the edge from state 1 to state 0 labeled b indicates $\delta(1, \mathrm{~b})=0$. This automaton accepts those strings that end in an odd number of a's. More precisely, a string x is accepted if and only if $x=y z$, where $y=\varepsilon$ or y ends with a b , and $z=\mathrm{a}^{k}$, where k is odd. For example, the sequence of states this automaton enters for input abaaa (including the start state) is $\langle 0,1,0,1,0,1\rangle$, and so it accepts this input. For input abbaa, the sequence of states is $\langle 0,1,0,0,1,0\rangle$, and so it rejects this input.

Complexity

- Fastest Compute State Transition is:
- $\mathrm{O}(\mathrm{mz}$)
- Total WC running time is:
- $\mathrm{O}(\mathrm{n}+\mathrm{mz})$

Boyer-Moore Algorithm (1976)

Boyer-Moore Algorithm

- Comparing from the Right to Left:
- in the pattern, each time, there is a mismatch, see how many position the pattern can be shifted left.
- More Look ahead in the Preprocessing
- bring into consideration the character that caused the mismatch while considering what to do next.

Complexity

- Boyer-Moore string search algorithm never uses more than $\mathrm{M}+\mathrm{N}$ character comparisons, and uses about N/M steps of the alphabet is not small and the pattern is not long.

Rabin-Karp Method (1980)

RK Algorithm

RABIN-KARP-MATCHER (T, P, d, q)
RABIN-KARP-MATCHER (T, P, d, q)
$1 \quad n \leftarrow$ length $[T]$
$1 \quad n \leftarrow$ length $[T]$
$1 \quad n \leftarrow$ length $[T]$
$2 \quad m \leftarrow$ length $[P]$
$2 \quad m \leftarrow$ length $[P]$
$2 \quad m \leftarrow$ length $[P]$
$3 h \leftarrow d^{m-1} \bmod q$
$3 h \leftarrow d^{m-1} \bmod q$
$3 h \leftarrow d^{m-1} \bmod q$
$4 p \leftarrow 0$
$4 p \leftarrow 0$
$4 p \leftarrow 0$
$5 \quad t_{0} \leftarrow 0$
$5 \quad t_{0} \leftarrow 0$
$5 \quad t_{0} \leftarrow 0$
6 for $i \leftarrow 1$ to m
6 for $i \leftarrow 1$ to m
6 for $i \leftarrow 1$ to m
do $p \leftarrow(d p+P[i]) \bmod q$
do $p \leftarrow(d p+P[i]) \bmod q$
do $p \leftarrow(d p+P[i]) \bmod q$
$t_{0} \leftarrow\left(d t_{0}+T[i]\right) \bmod q$
$t_{0} \leftarrow\left(d t_{0}+T[i]\right) \bmod q$
$t_{0} \leftarrow\left(d t_{0}+T[i]\right) \bmod q$
for $s \leftarrow 0$ to $n-m$
for $s \leftarrow 0$ to $n-m$
for $s \leftarrow 0$ to $n-m$
do if $p=t_{s}$
do if $p=t_{s}$
do if $p=t_{s}$
then if $P[1 \ldots m]=T[s+1 \ldots s+m]$
then if $P[1 \ldots m]=T[s+1 \ldots s+m]$
then if $P[1 \ldots m]=T[s+1 \ldots s+m]$
then "Pattern occurs with shift" s
then "Pattern occurs with shift" s
then "Pattern occurs with shift" s
if $s<n-m$
if $s<n-m$
if $s<n-m$
then $t_{s+1} \leftarrow\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$
then $t_{s+1} \leftarrow\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$
then $t_{s+1} \leftarrow\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$

- Radix is d . The prime is q .

Complexity

- In the worst case the running time is $\mathrm{O}((\mathrm{n}-\mathrm{m}+1) \mathrm{m})$.
- (case $\mathrm{T}=\mathrm{a}^{\mathrm{n}}$ and $\mathrm{P}=\mathrm{a}^{\mathrm{m}}$)
- Each evaluation after the first one is $\mathrm{O}(1)$ in text.
- Average Case Complexity
- Only one match in most cases $O(1)$
- Thus running time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

