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Dynamic Programming

• Dynamic Programming, like the divide-and-conquer
method, solves problems by combining the solutions
to sub-problems.

• Pure divide-and-conquer:
– divides problems into independent sub-problems,

– solves the sub-problem recursively, and then,

– combines their solutions to solve the original sub-problem.

• Dynamic programming in contrast is used when the
sub-problems are not independent, that is sub-
problems share sub-problems.

• It is typically applied to optimization problems.

4

Example:
Matrix Chain
Multiplication
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Matrix Multiplication

• Cost of multiplying A[p][q] x B[q][r] is p.q.r

• What is the cost of multiplying three matrices A,
B, and C of sizes 10x100, 100x5, and 5x50?

• How to find the best way of multiplying?
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Matrix Chain Multiplication

• Given a chain A1, A2, A3, .. An of n matrices,
such than Ai has dimension p i-1x pi, find the
sequence of multiplication that will result in
minimum number of scalar multiplication.

– Recursive Cost Function Catalan numbers:
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Observations

• Existence of Optimal Substructure: In an optimum
sequence of decisions, each subsequence must also
be optimum.

• (A1 A2 A3 ). (A4. A5. A6)
– Total cost is C(1..3) + C(4..6) + cost of multiplying the

two final matrices.

• Recursive Solution Possible: If  m[i,j] is the
optimum cost of multiplying all matrices between
ith and jth matrices  ….(A i Ai+1 …. A j )..

– if i==j then  m[i,j]= 0

– otherwise,
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Recursive Solution

• Running time is exponential O(2n)!
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Observation-2

• Existence of Overlapping Sub-problem: the same
sub-sequence is part of many super sequences.

• For a string of limited size, the actual number of
subproblems are quite small . O(n2) only!
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Dynamic Programming Solution:
A Bottom up approach

• Compute the optimum cost for
multiplying all matrix chains of size 2.

• Store them in a matrix m[i,j], when i-j
spans two matrices.

• Use the above values to compute
optimum cost for multiplying all matrix
chains of size 3.

• Then size 4 .. Up to size n.
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Algorithm

No cost for chains of size 0

Size of chains increases

Find the best k

Best k for optimum division 
of the sequence i-j
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Constructing the Optimal Solution
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Complexity of Algorithm

No cost for chains of size 0

Size of chains increases

Find the best k

Best k for optimum division 
of the sequence i-j

• Running time?

• Space?

16

Example:
Optimal Polygon

Triangulation
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Polygon Triangulation
• We are given a convex polygon P=<v0,v1,…v n-1>

and a weight function w defined on triangles
formed by sides and chords of P. The problem is
to find a triangulation that minimizes the sum of
the weights of the triangles in the triangulation.
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Observations

• Optimum substructure:

• Overlapping subproblems:
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Dynamic programming Solution

• For all degenerated polygon of size 2, <v i-1, vi>  cost
= zero.

• For all polygons of size 3 the cost is

• For all polygons of size 4 or more try all division
point k and pick the best:
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Example:
Knap/ Sack Problem
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1/0 Knapsack Problem

• You have a shopping bag (knapsack) with capacity
C lb. There are n items in a super market. Each
item has a value pi and weight wi. Which of the n
items will you pick to maximize your profit?
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Observations

• Optimum substructure: If a solution is optimum for
a large profit P with  weight W items, each of the
smaller subsolutions with profit P-ci and weight W-
wi are also optimum.

• Overlapping Subproblems: An optimum solution
with smaller subset of objects in a bag can be part
of a large number of superproblems.
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Problem Formulation

• Objective is to maximize

• subject to constraints:

• Select the 0/1 values for x’s.
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Solution

• Let f(i,y) denote the profit value of an optimal
solution with remaining capacity y and
remaining objects i,i+1, ….n.

• When, there is only the last object (terminating
condition):

• Otherwise (recursion):
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Recursive Solution

F(i,y)
{ if(i=n) return (y<w[n]?

0:p[n];
if(y<w[i]) return f(i+1,y);
return
max(F(i+1,y),F(i+1,y-
w[i])+p[i]);

}

Complexity?

 LECT-16, S-26
ALG00S, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ALALYSIS OF
ALGORITHM

Dynamic Prog. Solution

• Matrix f[ i][y], wil l store the best profit value for all
remaining capacity y smaller than C, for remaining
objects.

• A bottom up approach, first computes f(n,*). For all
y less that wn it is zero. For all y between wn and C
it is Wn. (terminating condition)

•  Now compute f(i,*) in the order i=n-1, n-2….2.
(use the recursion condition).

• Complexity: O(nc).


