

Dynamic Programming

Dynamic Programming

- Dynamic Programming, like the divide-and-conquer method, solves problems by combining the solutions to sub-problems.
- Pure divide-and-conquer:
- divides problems into independent sub-problems,
- solves the sub-problem recursively, and then,
- combines their solutions to solve the original sub-problem.
- Dynamic programming in contrast is used when the sub-problems are not independent, that is subproblems share sub-problems.
- It is typically applied to optimization problems.

Example: Matrix Chain Multiplication

Matrix Multiplication

$\operatorname{MAtrix}-\operatorname{Multiply}(A, B)$
 then error "incompatible dimensions"
 else for $i \leftarrow 1$ to rows[A]
 do for $j \leftarrow 1$ to columns $[B]$
 do $C[i, j] \leftarrow 0$
 for $k \leftarrow 1$ to columns[A]
 do $C[i, j] \leftarrow C[i, j]+A[i, k] \cdot B[k, j]$
 return C

DESIGN \& ALALYSIS OF ALGORITHM

- Cost of multiplying $\mathrm{A}[\mathrm{p}][\mathrm{q}] \times \mathrm{B}[\mathrm{q}][\mathrm{r}]$ is p.q.r
- What is the cost of multiplying three matrices A , B, and C of sizes $10 \times 100,100 \times 5$, and 5×50 ?
- How to find the best way of multiplying?

Matrix Chain Multiplication

- Given a chain $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, . . \mathrm{A}_{\mathrm{n}}$ of n matrices, such than A_{i} has dimension $p_{i-1} x p_{i}$, find the sequence of multiplication that will result in minimum number of scalar multiplication.
- Recursive Cost Function Catalan numbers:
$\left(A_{1} \cdot\left(A_{2} \cdot\left(A_{3} \cdot A_{4}\right)\right)\right)$ $\left(\left(A_{1} \cdot A_{2}\right) \cdot\left(A_{3} \cdot A_{4}\right)\right)$ $\left(\left(A_{1} \cdot\left(A_{2} \cdot A_{3}\right)\right) \cdot A_{4}\right)$

$\begin{aligned} & p(n)=\left\{\begin{array}{c} 1 \text { if } n=1 \\ \sum_{k=1}^{n-1} p(k) \cdot P(n-k), \text { if } \end{array}\right. \\ & P(n+1)=\Omega\left(\frac{4^{n}}{n^{\frac{3}{2}}}\right) \end{aligned}$	$n>1$

Observations

- Existence of Optimal Substructure: In an optimum sequence of decisions, each subsequence must also be optimum.
- $\left(A_{1} A_{2} A_{3}\right) \cdot\left(A_{4} \cdot A_{5} \cdot A_{6}\right)$
- Total cost is $\mathrm{C}(1 . .3)+\mathrm{C}(4 . .6)+$ cost of multiplying the two final matrices.
- Recursive Solution Possible: If $m[i, j]$ is the optimum cost of multiplying all matrices between $i^{\text {th }}$ and $j^{\text {th }}$ matrices $\ldots\left(A_{i} A_{i+1} \ldots . A_{j}\right)$..
- if $\mathrm{i}==\mathrm{j}$ then $\mathrm{m}[\mathrm{i}, \mathrm{j}]=0$
- otherwise,
$m[i, j]=\min _{i \leq k \leq j}\left\{m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right\}$

Recursive Solution

Recursive-Matrix-Chain (p, i, j)
 1 if $i=j$
 then return 0
 $m[i, j] \leftarrow \infty$
 4 for $k \leftarrow-i$ to $j-1$
 $5 \quad$ do $q \leftarrow \operatorname{Recursive-Matrix-Chain}(p, i, k)$
 $+\operatorname{Recursive-Matrix-Chain}(p, k+1, j)+p_{i-1} p_{k} p_{j}$
 if $q<m[i, j]$
 then $m[i, j] \leftarrow q$
 return $m[i, j]$

- Running time is exponential $\mathrm{O}\left(2^{\mathrm{n}}\right)$!

- Existence of Overlapping Sub-problem: the same sub-sequence is part of many super sequences.
- For a string of limited size, the actual number of subproblems are quite small. $\mathrm{O}\left(\mathrm{n}^{2}\right)$ only!

Dynamic Programming Solution:
 A Bottom up approach

- Compute the optimum cost for multiplying all matrix chains of size 2 .
- Store them in a matrix m[i,j], when i-j spans two matrices.
- Use the above values to compute optimum cost for multiplying all matrix chains of size 3 .
- Then size 4 .. Up to size n .

Algorithm

DESIGN \& ALALYSIS OF
Matrix-Chain-Order(p) ALGORITHM
$n \leftarrow l e n g t h[p]-1$
for $i \leftarrow 1$ to n d $m[i, i] \leftarrow 0$
for $l \leftarrow 2$ to n do for $i \leftarrow 1$ to $n-l+1$
do $j \leftarrow i+l-1$
$m[i, j] \leftarrow \infty$
for $k \leftarrow i$ to $j-1$
do $q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$ if $q<m[i, j]$
then $m[i, j] \leftarrow q$
$s[i, j] \leftarrow k$
return m and s
Best k for optimum division of the sequence $i-j$

Example

Constructing the Optimal Solution

DESIGN \& ALALYSIS OF ALGORITHM

In the example of Figure 16.1 , the call Matrix-Chain-Multiply $(A, s$,
$1,6)$ computes the matrix-chain product according to the parenthesization
$\left(\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)\right)$.

Example: Optimal Polygon Triangulation

Polygon Triangulation

- We are given a convex polygon $\mathrm{P}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}-1}\right\rangle$ and a weight function w defined on triangles ALGORITHM formed by sides and chords of P . The problem is to find a triangulation that minimizes the sum of the weights of the triangles in the triangulation.

LECT-16, S-17 ALG00S, javed@kent.edu Javed I. Khan@1999

Dynamic programming Solution

- For all degenerated polygon of size $2,\left\langle\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right\rangle \operatorname{cost}$
= zero.
- For all polygons of size 3 the cost is
$w\left(\Delta v_{i} v_{j} v_{k}\right)=\left|v_{i} v_{j}\right|+\left|v_{j} v_{k}\right|+\left|v_{k} v_{i}\right|$
- For all polygons of size 4 or more try all division point k and pick the best:
$t[i, j]=\min _{i \leq k \leq j-1}\left\{t[i, k]+t[k+1, j]+w\left(\Delta v_{i-1} v_{k} v_{j}\right)\right\}$

Example: Knap/ Sack Problem

Observations

- Optimum substructure: If a solution is optimum for a large profit P with weight W items, each of the smaller subsolutions with profit $\mathrm{P}-\mathrm{c}_{\mathrm{i}}$ and weight W w_{i} are also optimum.
- Overlapping Subproblems: An optimum solution with smaller subset of objects in a bag can be part of a large number of superproblems.

Solution

- Let $\mathrm{f}(\mathrm{i}, \mathrm{y})$ denote the profit value of an optimal solution with remaining capacity y and remaining objects $\mathrm{i}, \mathrm{i}+1, \ldots . \mathrm{n}$.
- When, there is only the last object (terminating condition):
$f(n, y)= \begin{cases}p_{n} & \text { if } y \geq w_{n} \\ 0 & 0 \leq y<w_{n}\end{cases}$
- Otherwise (recursion):
$f(i, y)=\left\{\begin{array}{l}\max \left\{f(i+1, y), f\left(i+y, y-w_{i}\right)+p_{i}\right\} \quad \text { if } y \geq w_{i} \\ f(i+1, y) \quad 0 \leq y<w_{i}\end{array}\right.$

Dynamic Prog. Solution

- Matrix $f[i][y]$, will store the best profit value for all remaining capacity y smaller than C , for remaining objects.
- A bottom up approach, first computes $f(n, *)$. For all y less that w_{n} it is zero. For all y between w_{n} and C it is W_{n}. (terminating condition)
- Now compute $\mathrm{f}(\mathrm{i}, *)$ in the order $\mathrm{i}=\mathrm{n}-1, \mathrm{n}-2 \ldots . .2$. (use the recursion condition).
- Complexity: $\mathrm{O}(\mathrm{nc})$.

