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Abstract 

We present graph-theoretic analyses of three types of 
semantic networks: associative networks, WordNet, and 
Roget’s thesaurus. We show that they have a small-
world structure: they are sparse, exhibit short average 
path-lengths  between words as well as strong local 
clustering. In addition, the distributions of the number of 
connections follow power laws that suggests a hub 
structure similar to the WWW. We propose a network 
model that over time acquires new concepts and 
integrates them into the existing network. By 
preferentially attaching new concepts to well connected 
concepts and its neigbors, the model captures the small-
world characteristics of semantic networks and also 
exhibits power-law distributions in the number of 
connections. With age of acquisition norms for adults 
and children, we confirm the model’s prediction that 
concepts acquired early on are concepts with rich 
connectivity.      
 

Introduction 
Semantic networks are useful tools as representations 
for semantic knowledge and inference systems. 
Historically, semantic networks bring to mind the 
classic network theory of Collins and Quillian (1969) in 
which concepts are represented as hierarchies of  
interconnected nodes with nodes linked to certain 
attributes. 

In this research, the goal is to understand the large-
scale organization of semantic networks. By applying 
graph-theoretic analyses, the large scale structure of 
semantic networks can be specified by distributions 
over a few variables, such as the length of the shortest 
path between two words and the number of connections 
per word.  We show that these distributions display 
similar, nontrivial patterns for several semantic 
networks constructed by different means. We then 
argue that these regularities place strong constraints on 
the developmental principles by which connections 
between words are formed, and we propose a simple 
framework for modeling the acquisition and decay of 
semantic knowledge which is consistent with these 
constraints.  

In particular, we will show that the large-scale 
organization of semantic networks reveals a small-
world structure that is very similar to the structure of 

several other real-life networks such as the neural 
network of the worm C. elegans, the collaboration 
network of film actors and the WWW. In addition, we 
will propose a new network model that mimics the 
global organization of semantic networks. This network 
acquires new concepts over time and connects these 
concepts preferentially to existing concepts that are rich 
in connections to other concepts.  

Two predictions follow from the model. First, 
because new concepts are preferentially attached to rich 
concepts, the distribution of the connectivity follows a 
power law: some concepts have a connectivity that is 
orders of magnitude larger than the average concept. A 
related prediction is that semantic networks are scale-
free: as the learner adds new concepts to the network, 
the distribution of the connectivity remains a power law 
with the same shape. Second, because the model builds 
the representation of new concepts on older concepts, 
the order in which concepts are learned is important. 
The model predicts that concepts that are learned early 
in life should show higher connectivity and should be 
more resistant to  memory disorders. We will show how 
this growth model can predict effects related to age of 
acquisition and how it might be utilized in models for 
semantic memory disorders such as semantic dementia.    

 

Small-World Networks 
Interest in the small-world phenomenon started by 
classic experiments in real life social networks Stanley 
Milgram (1967) that suggested that any random pair of 
people are separated by an average of only six degrees. 
The finding that random pairs of nodes in a network are 
separated by very short path-lengths is well described 
by random graph theory by Erdös and Réyni (1960). In 
a random graph with n nodes, any pair of nodes is 
connected by an edge with probability p. When p is 
sufficiently high, the whole network becomes 
connected (i.e., there is a path from any node to any 
other node) and the average path-length grows 
logarithmically with n, the size of the network.  
 Watts and Strogatz (1998) investigated several 
networks such as the power grid,  the collaboration 
network of (international) film actors and the neural 
network of the worm C. Elegans. They showed that 
while random graphs describe very well the short path-



lengths found in these networks, random graphs lack 
the strong local clustering observed in these networks: 
the neighbors of a node are often also each other’s 
neighbors.  For each node i, they calculated the 
clustering coefficient, Ci by dividing the number of 
neighbors that were also each other’s neighbors by the 
total possible number of neighbors’ connections. They 
found that random graphs produce average clustering 
coefficients orders of magnitude lower than those 
observed for the film actor network, the power grid and 
the neural network of C. Elegans.   They proposed a 
model in which some of the connections in a lattice are 
randomly rewired. The local neighborhood of the lattice 
leads to high clustering while the long range random 
connections lead to very short average path-lengths. 

Recently, the large-scale organization of the WWW 
has been analyzed with similar techniques.  Based on an 
estimate of the whole WWW containing 8 x 108 sites, it 
was shown that random sites on the WWW are on 
average only 19 clicks away from each other (Albert, 
Jeong, & Barabasi, 1999). It has also been shown that 
the WWW shows strong local clustering (Adamic, 
1999): a website typically refers to sites that also refer 
to each other.  

 Amaral, Scala, Barthélémy, and Stanley (2000) have 
distinguished between different classes of small-world 
networks by measuring the degree distribution of  
networks (the degree of a node is the number of 
neighbors a node has).  In one class of networks, such 
as C. Elegans and the collaboration network of 
filmactors, the degree distribution decays exponentially. 
This is well described by random graph theory and 
variants of the Watts and Strogatz model. In contrast, in 
the WWW, the distribution of number of hyperlinks 
from and toward a site follows a  power law (Barabási 
& Albert, 1999). In other words, a few sites refer to and 
are referred from a very large number of other sites. For 
the WWW, the probability of observing a degree k can 
be described by:  

γ−≈ kkP )(  

In Figure 1a, a power-law distribution shows a 
heavier tail than an exponential distribution. A power 
law can be more easily differentiated from an 
exponential distribution by plotting the distribution 
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Figure 1. (a) the tails of a power-law distribution (solid) 
and exponential distribution (dotted). (b) log-log plot. 

in log-log coordinates: in Figure 1b, only the power-law 
distribution follows a line in log-log coordinates. The 
parameter γ in the power-law distribution determines 
the slope of the line in log-log coordinates. 

 Barabási and Albert (1999) have argued that the 
finding of power laws in the degree distribution places 
strong constraints on the process that generates the 
underlying connectivity. They proposed a graph model 
based on two principles: 1) incremental growth and 2) 
preferential attachment. This leads to a scale-free 
distribution of degree, following a power law. 
Unfortunately, their model does not produce 
sufficiently strong clustering as observed in real-life 
networks with power-law degree distribitions, such as 
the WWW. In a later section, we will introduce a 
variant of the Barabási and Albert that does produce 
strong local clustering.  
 

Analyses of Semantic Networks 
We constructed semantic networks from three 

sources: free association, WordNet and Roget’s 
thesaurus. Although the processes underlying these 
sources of semantic knowledge might be different, we 
will show that the resulting semantic networks are 
similar in their large  scale organization. For simplicity, 
we will construct these networks as undirected graphs 
with all edges unlabeled and weighted equally.  

Associative Network. A large free association 
database involving more than 6000 participants was 
collected by Nelson, McEvoy, and Schreiber (1999). 
Over 5000 words served as cues (e.g. “cat”) for which 
participants had to write down the first word that came 
to mind (e.g. “dog”). The network was constructed by 
joining associatively related words by an edge. Figure 2 
shows a small part of the semantic network highlighting 
the shortest associative path from VOLCANO to ACHE. 

WordNet. Inspired by psycholinguistic theory, 
WordNet was developed by George Miller and 
colleagues (see Fellbaum, 1998). The network contains 
120,000+ word forms (single words and collocations) 
and 99,000+ word meanings. The basic links in the 
network are between word forms and word meanings. 
Word forms are connected to a single word meaning 
node if the word forms are synonymous. A word form 
is connected to multiple word meaning nodes if it is 
polysemous. Word forms can be connected to each 
other through  a variety of relations such as antonymy. 
Word meaning nodes are connected by relations such as 
hypernymy (MAPLE is a TREE) and meronymy (BIRD 
has a BEAK).   

Roget’s Thesaurus (1911 edition). Based on the life 
long work of Dr. Peter Mark Roget (1779-1869), the 
first system of verbal classification was developed. The 
1911 edition includes over 29,000 words classified in 



    
Figure 2. Part of the semantic network formed by free 
association. The shortest path from VOLCANO to 
ACHE is highlighted. 
 
1000 semantic categories (ignoring various levels of 

classification). A bipartite graph was created by joining 
a word node and semantic category node by an edge if 
the word was part of the semantic category.  
The summary statistics for the three semantic networks 
are shown in Table 1. The following notation was used: 
n (number of nodes), <k> (average of k, the degree of a 
node), L (average path-length between word nodes), 
Lrandom (average path-length between nodes of random 
graph with same size and density), D (diameter: 
maximum path-length between words), C (average 
clustering- coefficient), Crandom (average clustering-
coefficient for random graph of same size of density), 
and γ (slope in power-law distribution). The three 
semantic networks were analyzed for the following five 
properties: 
 

Table 1. Summary statistics. 
 

Simulation of WA

Variable Type WA WordNet Roget α=1 α=2.5 α=4

n word 5,018 122,005 29,381 5,018 5,018 5,018
meaning - 99,642 1,000 - - -

<k> word 22.0 1.6 1.7 22.0 22.0 22.0
meaning - 4.0 49.6 - - -

L 3.04 10.56 5.60 2.98 2.90 2.86
L random 3.03 10.61 5.43 - - -

D 5 27 10 5 5 5

C 0.186 0.029 0.875 0.018 0.187 0.281
C random 0.004 0.000 0.613 - - -

γ 2.92 2.95 3.25 2.88 2.75 2.68

Note: WA=word association

 

Sparsity. All three semantic networks are sparse: on  
average, a node is connected to only a very small  
percentage of other nodes.  

Connectedness. Despite the sparsity, the network 
based on free association forms one large connected 
component: from any word, any other word can be 
reached by some associative path. For WordNet and 
Roget’s thesaurus, the largest connected components 
contained more than 99% of the words. The analyses 
were restricted to these components. 

Path-Lengths. All three networks displayed very short 
path-lengths relative to the sizes of the networks. For 
word association for example, average path-length is 
only 3 while the maximum path-length is only 5; at most 
5 associative steps separate any two words in the 5,000+ 
lexicon. The short path-lengths are well described by 
random graphs with equivalent size and density.  

Local Clustering. For all three networks, the clustering 
coefficient1 shows values  well above zero. For the 
associative network and WordNet, the clustering is 
orders of magnitude larger than can be expected from 
random graphs of equivalent size and density. 

Degree Distribution. The degree distributions for the 
word nodes are shown in Figure 3 with the best fitting 
power-law curves. Note that the power-law curve fits 
the tails of the observed degree distribitions well (the 
front end of the distribution for the association network 
was not used in the estimation of γ). Therefore, some 
words have a very large connectivity and they could be 
described as the “hubs” of the semantic network. In 
word association, these hubs are words such as GOOD, 
BAD, FOOD, LOVE, WORK, MONEY, and HOUSE.  

Growing Network Model 
We introduce a growing network model in which 

knowledge is represented as a semantic network: the 
nodes represent concepts while the links between nodes 
represent different relationships between concepts. The 
model is based on the following three principles: 

Growth: over time, the model acquires new concepts 
and links these concepts to existing concepts. 

Preferential attachment to highly connected concepts: 
new concepts preferentially attach to highly connected 
concepts while preserving local neighborhoods.  

                                                           
1 For each word node, a clustering coefficient Ci was 
calculated as the fraction of the number of neighbors of node i 
that were also each other’s neighbors and the total possible 
number of neighbors’ connections. Table 1 lists the average C 
over all word nodes where word nodes with only one 
neighbor were excluded to avoid artificial inflation of C. By 
definition, C=0 for a bipartite graph so for Roget’s thesaurus, 
C and Crandom were computed on a converted network in 
which words were joined by edges if they appeared in the 
same category.    
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Figure 3. The log-log degree distributions for the 
word nodes in the three semantic networks and the  
model. For the model, the degree distribution is 
shown for α=1 and α=4 (top line).  
 
Preferential attachment to concepts high in utility2: 

concepts vary in their utility and connections to high 
utility concepts should be preferred. We will assume 
that high frequency words have higher utility than low 
frequency words. 

We start with a fully connected network of M nodes. 
At each timestep, a new node with M links is added to 
the network. The new node is attached to the network 
by a combination of degree of connectivity, utility, and 
local neighborhood structure. Let ki and ui be the degree 
and utility of node i respectively. The probability of 
attaching the first link of the new node to node i is:  

( ) ( ) ( )∑=
j

jjii kukuiP  

This process favors choosing highly connected nodes 
and let x be the node chosen according to this process.  
The new node is then attached to M-1 other nodes, 
preferentially to the local neighborhood of x motivated by 
the assumption that a new concept should be related to 
other concepts that are themselves semantically related. 
Let L(i,j) be the path-length from i to j. We first calculate li 
which is inversely related to the path-length of i to x: 

( )αxiL
i el ,−=  

                                                           
2 In Bianconi and Barabási (submitted), a similar fitness 
variable was introduced so that late acquired nodes can 
compete successfully with earlier acquired nodes when they 
have sufficiently high fitness.   

The parameter α is a scale parameter. The probability of 
attaching each of the M-1 remaining links to node i is: 

( ) ( ) ( )∑=
j

jjii luluiP  

The process of adding nodes to the network stops when 
the desired number of nodes, n is reached. Because of 
the second linkage process, strong local clustering in 
the network can be obtained depending on the value of 
α. In Figure 4, the difference is illustrated between the 
Barabási and Albert (1999) model that incorporates 
only the first linkage process and our model. 

We applied this model toward predicting the large-
scale organization of the semantic network based on 
free association. We set n=5018 and M=11 so that the 
network would end up with the same size and density as 
the associative network. This leaves us with a single 
free parameter α. In order to check how much the 
results depend on α, three different values were 
explored: 1, 2.5, and 4. The utility variable was used to 
simulate differences in word frequency. For each new 
node, with probability 1/3, u was set to 1, 2, or 4. This 
arbitrarily divided the nodes into three levels of utility. 
The results of the model are shown in Table 1 and 
Figure 3. The network produced by the model is 
characterized by short path-lengths, and a power-law 
degree distribution similar to that observed in 
associative networks. These characteristics were 
relatively uninfluenced by different values of α. As 
expected, the parameter α did influence the amount of 
local clustering: with α=2.5, the amount of clustering in 
the model and the associative network was very similar.  
 

Age of acquisition and Connectivity 
An interesting prediction of the model is that 

concepts that are learned early in the network acquire 
more connections over time than concepts learned late. 
This prediction follows directly from the principles of 
incremental growth and preferential attachment.  Also, 
utility should interact with this effect. Concepts with 
high utility (e.g., high word frequency) should be better 
able to compete for links than concepts with low utility.  
This prediction is shown in Figure 5 for the simulation 
reported in the last section. The degree is shown for 
words with different utilities acquired at different times: 
early acquired words and words with higher utility end 
up with higher connectivity. Also, differences in utility 
are more pronounced for words that are acquired early 
in the model. The prediction of the model was tested by 
consulting age of acquisition norms. Gilhooly and 
Logie (1980) and Bird, Franklin, and Howard (in press) 
collected ratings in which adults estimated the age at 
which they thought they first learned the word. We 
combined the ratings from these two databases. More 



   
 

Figure 4. (a) the Barabási and Albert model with M=2, 
n=150 (b) our network model with M=2, n=150, α=2. 
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Figure 5. Degree of words as a function of the 
time of acquisition and the utility in the model.  

 
objective norms are available from Morrison, Chappell, 
and Ellis (1997). In a cross-sectional study, they estimated 
the age at which 75% of children could successfully 
name the object depicted by a picture. In Figure 6, the 
relation is shown for the age of acquisition and the 
degree of words for different word frequencies. For 
both the adult rating norms and the picture naming norms, 
early acquired words have more dense connections than 
late acquired words according to each of the three 
semantic networks. Also, high frequency words show 
higher connectivities than low frequency words.  

These results are potentially important to explain 
results in the literature because age of acquisition 
effects performance in a variety of tasks.  It might be 
that the differences in the density of connectivity might 
provide greater explanatory power in describing effects 
of age of acquisition than age of acquisition itself. For 
example, early acquired words show short naming 
latencies (e.g., Carroll & White, 1973). While it has 
been suggested that age-of-acquisition effects mainly 
the speech output system (Lambon Ralph, Graham 
Ellis, & Hodges, 1998; Ellis & Lambon Ralph, in 
press), it has been shown that AoA also effects non- 
phonological tasks involving face recognition and 
semantic tasks such as word association and semantic 
categorization (e.g., Brysbaert, Van Wijnedaele, De 
Deyne, 2000). One factor that might explain this effect 
is the connectivity difference between words with 
different ages of acquisition. This simple explanation 
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Figure 6. The relation between degree and age of 

acquisition as measured by adult ratings (left panels) 
and the average age at which children can name 
pictures (right panels). Right panels include standard 
error bars around the means.  

 
can be contrasted with connectionist accounts for age of 
acquisition effects. Ellis and Lambon Ralph (in press) 
have shown how a connectionist model can produce an 
advantage for early learned words. The model was 
trained to develop a distributed representation for the 
input patterns and was initially only trained on patterns  
corresponding to early learned words. As training 
progressed, they started interleaving new patterns with 
the old patterns already in the training set. They found 
that the early trained items induced a distributed 
representation that later trained items could not easily 
change. In this explanation, age of acquisition effects 
occur because the model loses the ability to encode new 
patterns effectively over time. We would like to 
propose that one component to the naming latency 
advantage for early acquired words could be that early 
acquired words are more central in an underlying  
semantic network where we can define centrality by the 
amount of connectivity. Another way to measure  



centrality is by the computing the eigenvector of the 
adjacency matrix with the largest eigenvalue. Words with 
high eigenvector centrality would be words that are highly 
connected to other words that are highly connected. The 
eigenvector centrality has been used to find for example 
authoritative websites on the WWW by the search engine 
Google (Brin & Lawrence, 1998) and to measure 
conceptual coherence (Sloman, Love, & Ahn, 1998). 

Another example where the relation between age of 
acquisition and centrality can be used to understand the 
effects of age of acquisition is semantic dementia. 
Patients with sematic dementia show a loss of 
conceptual knowledge while still retaining good short-
term and episodic memory (e.g., Lambon Ralph, 
Graham, Ellis, & Hodges, 1998). As the disorder 
progresses, naming of common objects becomes 
increasingly less accurate. The results also suggest that 
early learned objects are more resistant to the naming 
deficit than later learned objects. In the connectionist 
model of Ellis and Lambon Ralph, early acquired 
patterns are better represented in the distributed 
representation so that lesions to the network tend to 
disrupt the representation of later acquired patterns  
more than early acquired patterns. Our model suggests 
an alternative explanation based on the underlying 
connectivity in a semantic network. Since early 
acquired concepts are more central in the semantic 
network (i.e., they are more highly connected), diffuse 
damage to the connections would tend to disrupt the 
representation for late acquired concepts more than for 
early acquired concepts.   
 

Discussion 
We found that three semantic networks constructed 

by different means are sparse, exhibit very short 
average path-lengths and strong local clustering. As in 
the WWW, the number of neighbors follows a power 
law, suggesting a hub-like structure for knowledge 
organization. Similar power-law distributions were 
observed in a growing network model in which 
concepts are incrementally added and integrated into 
the existing network. The model’s prediction that early 
acquired concepts end up with more rich connectivity 
was at least partially confirmed with age of acquisition 
norms. While the model suggests a causal direction in 
which any concept can end up with rich connectivity as 
long as it is learned early, an alternative is that concepts 
that have the potential for rich connectivity are exactly 
the concepts that are learned at an early age. We are 
currently investigating how to distinguish between 
these causal and non-causal interpretations of the 
relation between age of acquisition and connectivity.    
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