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Abstract

Peer-to-peer (P2P) technology provides a scalable so-
lution in multimedia streaming. Many streaming applica-
tions, such as IPTV and video conferencing, have rigorous
constraints on end-to-end delays. Obtaining assurances on
meeting those delay constraints in dynamic and heteroge-
nous network environments is a challenge. In this paper,
we devise a streaming scheme which minimizes the maxi-
mum end-to-end streaming delay for a mesh-based overlay
network paradigm. We first formulate the minimum-delay
P2P streaming problem, called the MDPS problem, and
prove its NP-completeness. We then present a polynomial-
time approximation algorithm to this problem, and show that
the performance of our algorithm is bounded by a ratio of
O(
√

log n). Our simulation study reveals the effectiveness of
our algorithm, and shows a reasonable message overhead.

1. Introduction

In the recent decade, P2P networks have greatly en-
hanced content distribution on the Internet by enabling
efficient cooperation among end users [1]. Benefiting from
its significant scalability, there is an increasing demand on
applications of P2P live streaming, such as IPTV, VOIP, and
video conferencing [2]–[5]. In these classes of applications,
the delivery of real-time video content imposes rigorous
constraints on the end-to-end delay. Obtaining assurances
on meeting such delay constraints in highly dynamic and
heterogenous P2P network environments is a challenging
and open problem. This has negatively affected the extensive
commercial deployment of P2P systems. For example, IPTV
deployment from commercial service providers is far below
the industry expectation [1]. Motivated by this, in this paper,
we focus on minimizing end-to-end streaming delay in P2P
networks.

Minimizing streaming delays in P2P networks is an NP-
complete problem. This is due to heterogeneous bandwidth
requirements and network dynamics of P2P systems. Thus,
obtaining optimal solutions to this problem for large-scale
networks is intractable. In this paper, we propose an efficient
approximation algorithm for this problem, which provably

achieves a delay assurance by an approximation ratio of
O(
√

log n) where n represents the number of peers in the
network. Based on an analytical model, we then design an
adaptive distributed version of the algorithm, which can be
easily deployed in a fully dynamic network environment.

Previous work on P2P streaming can be broadly classified
into two classes: (1) multiple tree-based overlays, and (2)
mesh-based overlays [6]–[11]. Recent studies have shown
that the mesh-based approach consistently exhibits a superior
performance over the tree-based approach [7], [12]. The
tree-based P2P streaming approach organizes peers into
multiple diverse trees. After obtaining the description of a
Multiple Description Coded (MDC) content, it pushes each
description through separate trees [6], [7]. In contrast, the
mesh-based P2P streaming approach arranges peers into a
randomly connected mesh and employs swarming content
delivery [7]. The major advantages of mesh-based systems
are easy maintenance and inherent robustness in high-churn
P2P environments [10]. Motivated by these promising ad-
vantages, we study the minimum-delay problem under the
mesh-based model. Although our algorithm is developed
with a mesh paradigm, our study also indicates its readiness
to fit the multiple tree-based model after simple modifica-
tions. To reduce the complexity of the problem, our paper
focuses only on minimizing the communication delay. For
packet scheduling, there exists a vast array of solutions, such
as [11], [13], [14]. The mesh built from our algorithm can
adopt any of these scheduling algorithms to yield low-delay
streaming.

Existing heuristics on the problem of reducing P2P
streaming delay either provides no theoretical bound on the
worst-case performance or loosely estimate the bound with-
out a robust theoretical analysis [8], [9], [15]. The estimated
bound of previous algorithms [15], [16] is O(log n). In this
paper, we not only present an approximation algorithm with
a strong theoretical basis, but also reduce the approximation
factor to a ratio of O(

√
log n).

To the best of our knowledge, this paper represents the
first approximation algorithm that optimizes P2P streaming
delay and provides an upper bound. In summary, the paper
makes three important contributions: (1) We present an ef-
ficient provable approximation algorithm for the minimum-



delay P2P streaming problem with reasonable message over-
head; (2) We analyze the algorithm’s performance and derive
the algorithm’s approximation ratio, which is found to be the
lowest ratio when compared with past results; and (3) We
extend the algorithm to a practical distributed version that
is robust to high user churn. Our simulation results indicate
our algorithm can actively ensure the end-to-end streaming
delay in the worst-case scenario.

The rest of this paper is organized as follows. Section 2
describes an overview of past and related works. In Sec-
tion 3, we formulate the minimum-delay P2P streaming
problem and prove its NP-completeness. Section 4 presents
our proposed approximation algorithm and derive its per-
formance. We compare our algorithm against past works
through simulation-based experimental studies; these are
reported in Section 5. Section 6 concludes the paper.

2. Related Work

Most of the previous protocols for the P2P streaming
delay problem are based on tree-shaped overlays [5], [6],
[8], [17]. Tran et al. propose Zigzag in [17], an approach
to cluster peers into a hierarchy, called the administrative
organization, for easy management, and build the multicast
tree atop this hierarchy so as to reduce the delay. In [8],
Noh et al. propose an overlay consisting of multiple trees
with moderate out-degree to reduce end-to-end transmission
delays in P2P media streaming systems. In [6], Venkatara-
man et al. present Chunkyspread, which splits a stream
into distinct slices and transmits them over multiple trees
by a P2P multicast algorithm. However, such multiple-tree
overlay construction cannot be easily maintained [7]. In
addition, it is difficult to obtain the globally optimal delay
and coordinate among different trees [9]. Moreover, resource
utilization of multiple-tree approaches is generally speaking,
relatively low. For example, all leaf nodes do not contribute
any bandwidth or CPU cycles to the multicast trees [18].

Recently, an increasing number of studies have focused
on mesh-based P2P live streaming [9], [11], [16], [19].
In [9], Ren et al. propose a heuristic to reduce the delay on
mesh topology, where peers select their parents based on the
metric of link capacity divided by the communication delay.
In this algorithm, peers located at the edge of mesh may
only download the data without contributing its bandwidth
resource, which may lead to low bandwidth utilization in
the network. Thus, when the total uploading capacity is
close to the downloading capacity among peer nodes, some
peers may not be able to receive a live streaming. Besides,
the heuristic does not provide performance guarantees on
the end-to-end streaming delay, which is critical in delay-
sensitive applications, such as video conferencing. In [19],
Wu et al. present a distributed algorithm for obtaining the
optimal average streaming delay. They apply several tech-
niques in linear programming, such as Lagrangian relaxation

and the subgradient algorithm. To reduce the computational
complexity, they strictly limit the potential connections for
each peer, which may restrict its practical applications.
In their experimental results, we can observe significant
time costs for achieving a near-optimal result. For a large-
scale network, the convergence of the algorithm cannot be
guaranteed, which may significantly increase the P2P start-
up delay. Moreover, to exchange computational data between
peers, considerable message overhead may be incurred in the
network.

Minimum-delay P2P streaming has some similarity with
the minimum-delay multicast tree problem (MDMT prob-
lem) [20], [21] and degree-bounded minimum-diameter tree
problem (DBMDT problem) [22], [23]. Our algorithm is in-
spired by the clustering method first proposed by Könemann
et al. [22]. However, previous approximation algorithms
on MDMT and DBMDT generally assume a constant and
equivalent degree on all the nodes and consider a single-
commodity flow for each receiver. These assumptions are not
appropriate for P2P streaming, where peers have heteroge-
neous and dynamic bandwidth capacities, i.e., heterogeneous
degrees on the nodes, and they need to aggregate the multiple
flows for a smooth playback. Toward that end, the clustering
in our algorithm will generate a subgraph which is not
simply a tree. Besides, the proofs on DBMDT theorems
in [22] highly depend on the equality of node degree, which
will cause the major proofs in their work do not hold in our
case. Moreover, the DBMDT problem in [22] is bounded
by a bidirectional degree, which does not distinguish out-
degree and in-degree. For example, when calculating the
aggregated cluster degree, their method, if used in our
paradigm, will depend on both in and out degrees; however,
only the out-degree should be counted in this scenario. All
those differences make our problem more challenging than
MDMT and DBMDT. In particular, DBMDT is a special
case of the MDPS problem, in which every node has uniform
outlink capacity and an inlink capacity of 1.

3. Problem Formulation

In this section, we formally state the minimum-delay
P2P streaming problem (MDPS problem) and show that the
problem is NP-complete.

3.1. Minimum-Delay P2P Streaming Problem

We model an overlay network as a directed graph G =
(V,E), where V is the set of vertices representing peer
nodes, and E is the set of overlay edges representing directed
overlay links. Let n represent the number of peers in the
network, i.e. n = |V |. Each overlay link (i, j) ∈ E
is associated with a communication delay d(i,j). In the
rest of this paper, we define the length of edge (i, j) as
d(i,j), ∀(i, j) ∈ E . We assume that G is symmetric, i.e.,



d(i,j) = d(j,i), ∀i, j ∈ V , and the delays associated with G
form a metric, i.e., G satisfies the triangle inequality. For
every peer i ∈ V , we define an upload capacity of Oi

units/second and a download capacity of Ii units/second.
For ease of presentation, we define unit as the minimum
package size in P2P streaming, which varies in different
applications [4], [24].

We consider a peer-to-peer streaming session to originate
from a single source node S to a set of receivers R, where
V = {S} ∪ R. Peers may receive the streaming data from
the source node directly or indirectly from multiple P2P
paths. Suppose S streams data at a constant streaming rate
of s units/second. We denote fij as the rate at which peer i
streams to peer j. If peer j receives the aggregated stream
at s units/second from its parents, we call peer j as fully
served [9]. Mathematically, the fully served requirement of
peer j can be expressed as

∑
i:i∈Lj

fij = s, where Lj is the
set of parents of peer j. We assume that a fully served peer
can smoothly play back the streaming content at its original
rate of s units/second [9].

We call the stream from the source to one receiver j
as the P2P unicast flow to j. A P2P unicast flow U may
consist of streams from multiple P2P paths, called fractional
flows [19]. Each fractional flow p ∈ U has the arrival latency
tp from the source to receiver, where tp =

∑
(i,j)∈p d(i,j).

The latency of the unicast flow U can be defined as the max-
imum latency among its fractional flows, i.e., maxp∈U tp.
To stream multimedia content to multiple receivers, we can
envision multiple unicast flows from the source to receivers.
Thus, the maximum delay in P2P streaming is defined as
the maximum latency of all unicast flows.

We now define the problem formally:
Definition 1: Minimum-Delay P2P Streaming Problem

(MDPS problem): Given the constraints that are previously
mentioned, the MDPS problem is to devise a streaming
scheme which minimizes the maximum end-to-end stream-
ing delay with each receiver fully served.

To help obtain greater insights about the MDPS problem,
we formulate the problem in the integer linear programming
framework, as follows:

min t (1)

subject to
∑

(i,j)

d(i,j)x
r
ijm ≤ t,∀(i, j) ∈ E, ∀r ∈ R, ∀m (2)

xr
ijm ∈ {0, 1},∀(i, j) ∈ E, ∀r ∈ R, ∀m (3)

xr
ijm ≥ fr

ijm/s,∀(i, j) ∈ E, ∀r ∈ R, ∀m (4)

s ≥ fr
ijm ≥ 0,∀(i, j) ∈ E, ∀r ∈ R, ∀m (5)

fr
ijm − fr

jim = br
im,∀(i, j) ∈ E, ∀r ∈ R, ∀m (6)

s∑
m=1

∑

r:r∈R

fr
ijm ≤ yij , ∀(i, j) ∈ E (7)

∑

j:(i,j)∈E

yij ≤ Oi, ∀i ∈ V (8)

∑

j:(j,i)∈E

yji ≤ Ii, ∀i ∈ V (9)

0 < m ≤ s, (10)

where

br
im





≥ 0 if i = S,

≤ 0 if i = r,

= 0 otherwise,

(11)

∑
m

br
im =





s if i = S,

−s if i = r,

0 otherwise.

(12)

In this integer programming (IP) expression, t denotes
the streaming delay of the fractional flow; xr

ijm is set to 1
only if there is a connection between peer i and j on the
mth fractional flow to receiver r; fr

ijm represents the mth

fractional flow rate on link (i, j) to receiver r; and yij is
the aggregated flow rate on link (i, j).

The exact solution to this problem is optimal, but is
computationally intractable to determine, and not practical in
real applications. We will now show the NP-completeness of
this problem, which motivates us to develop a near-optimal
approximation algorithm.

Lemma 1: If the instance of MDPS problem has a solu-
tion, then the sum of the upload capacities, including source
and receivers, must be no less than the sum of fully served
streaming rates at all receivers, i.e.,

∑

i∈V

Oi ≥ (|V | − 1)× s. (13)

Proof: Suppose we have a feasible streaming scheme
described by the graph A = (V, Ef ), where Ef ⊂ E
represents the P2P connections among V . We can envision
that each peer v ∈ V consists of two conceptual nodes
vin and vout, where vin represents the download behavior,
and vout represents the upload behavior. Thus, A can be
envisioned as a bipartite graph A′ = (Vin, Vout, Ef ), where
Vin is the set of all vin and Vout is the set of all vout. Now,
the flow out of Vout should be equal to the flow into Vin, i.e.,
(|V | − 1)× s. Since the flow out of Vout cannot exceed its
total upload capacities, we have

∑
i∈V Oi ≥ (|V | − 1)× s.

The lemma follows.
According to Lemma 1, it is reasonable to assume that the

preliminary condition in Equation (13) holds. In addition, we
presume that the download capacity Ii ≥ s,∀i ∈ V for a
smooth playback at receivers.



3.2. Hardness

Theorem 1: The minimum-delay P2P streaming problem
is NP-complete.

Proof: We first show that the MDPS problem can
be reduced from the Freeze-Tag Problem (FTP), which is
well known to be an NP-hard problem [25], [26]. Given a
complete graph G′ = (V ′, E′) in metric space, FTP can be
described by a set of robots V ′, among which one robot S′

is initially awake and all the others R′ are asleep. The robot
which is awake will select B′ sleeping robots and awaken
them. Once awaken, each new robot is available to assist
in rousing another set of B′ robots. There exists a latency
between each pair of robots. Thus, a solution to the FTP can
be described by a wake-up tree T which is a directed B′-ary
tree rooted at S′, spanning all robots R′. The objective is to
minimize the makespan of T , i.e., the time t′ when the last
robot awakens [25].

Let the formulation of G in MDPS be identical to G′ in
FTP, and let the streaming rate be s = 1 units/second. For
all nodes V in G, we set their upload capacities to be B′

units/second. In this case, every node will have exactly one
parent and can stream up to B′ children. As we can observe,
the resulting topology becomes a B′-ary spanning tree T ,
and the maximum end-to-end streaming delay of t is the
latency of the last peer in T . Therefore, the optimal solution
to the MDPS problem can also solve the FTP problem
optimally. In other words, the FTP will have a tree T in
G′ with minimum delay of min t′ if and only if the same
T in G provides the minimum-delay spanning tree and the
resulting min-max delay of MDPS equals min t′. Since FTP
can be reduced to the MDPS problem, the MDPS problem
is NP-hard. Also, we can clearly see MDPS is in NP since it
is easy to check whether a streaming scheme has a delay of
t and follows the streaming constraints listed in Equations
(8), (9), (12). Thus, we complete the proof.

4. Approximation Algorithm

4.1. Overview of Techniques

Given the NP-complete nature of the MDPS problem, our
goal is to design an efficient polynomial-time approximate
solution with a provable performance bound. Our work
builds on by Könemann et al. [22] and we extend a number
of their concepts, including clustering and filtering. First, we
partition the peers V into different clusters according to the
regional aggregated streaming capacities. Then, we filter the
peers by keeping one representative peer for each cluster,
whose streaming capacity is virtualized by the aggregated
streaming capacities of the entire cluster. As a result, we
form a backbone using the representative nodes. Since the
backbone nodes are virtual representatives of clusters, in
the next step, we expand the mesh connections from the

representative nodes into clusters, which constitutes a final
streaming mesh for the overlay network.

To simplify the complexity of the problem, we assume that
at least half of the nodes have upload capacities Oi ≥ 2s
units/second. Besides, we assume there exists no free-riders,
i.e., min(Oi) > 1 unit/second, ∀i ∈ V . For the case
of Oi = 1 unit/second, this reduces the problem to the
traditional traveling salesman path problem (TSP), which has
been extensively studied in the past [27], [28]. Therefore, we
will not focus on this scenario in the paper.

In the rest of this section, we discuss the details of our
algorithm and derive its performance bound.

4.2. Centralized Approximation Algorithm

4.2.1. Streaming Backbone Construction. The first step of
our algorithm is to construct the virtual streaming backbone.
We call it “virtual”, because the links on the backbone
represent the aggregated inter-cluster streams instead of the
actual flows to the representative nodes. Towards that end,
we define a metric C(V ′), called the residual streaming
capacity for a group of peers V ′ ⊆ V as:

C(V ′) =
∑

i∈V ′
Oi − (|V ′| − 1)× s. (14)

The residual streaming capacity represents the con-
tributable bandwidth that a group of peers can supply other
groups after satisfying its own streaming demands. Next, we
define a threshold γ. The set of peers that are enclosed within
the γ radius from peer vi ∈ V is denoted as Eγ(vi, V ). In
addition, we say that vi γ-covers the peers in Eγ(vi, V ) [22].

A parameter t′ is chosen, which can be viewed as a
“guess” on the optimal P2P streaming delay. A reason-
able value of t′ should be initialized in the range of
[maxv∈V d(S,v), |R| · maxv∈V d(S,v)]. For the given value
of t′, we set γ = t′/

√
log n. We begin the clustering

process from the source node by defining the first cluster
U1 = E3γ(S, W 3γ

1 ) and the first representative node as
u1 = S, where W 3γ

1 = V , represents the initially un-
clustered nodes. For ease of notation, we call the set of
peers that are at least γ distance away from existing i − 1
representatives u1, · · · , ui−1 as W γ

i , where W γ
i = V \⋃

1≤j≤i−1 Eγ(uj , V ). We then select a representative node
ui ∈ W γ

i that γ-covers the peers with the highest residual
streaming capacity in W 3γ

i , i.e.:

ui = argmaxv∈W γ
i
C(Eγ(v, W 3γ

i )). (15)

Now, we have Ui = E3γ(ui,W
3γ
i ) ∪ Eγ(ui, W

γ
i ). The

iteration stops once all the peers in V are 3γ-covered by the
existing representatives. Suppose we have k clusters. Then,
W 3γ

k+1 = ∅ and W 3γ
i 6= ∅,∀1 ≤ i ≤ k.

Without loss of generality, we reorder the clusters
U1, · · · , Uk so that the residual streaming capacities of the
clusters except that of U1 are sorted in a non-increasing



order, i.e., C(Ui) ≥ C(Uj), ∀1 < i < j ≤ k. By virtualizing
the upload capacity of the representative ui as C(Ui), we
can construct the global streaming mesh of low latency
for the backbone representatives. Algorithm 1 describes this
procedure. It will be rerun with different values of t′ chosen
by binary search to achieve the approximated minimum
delay.

Corollary 1: Any peer that is 2γ-covered by ui must be
in the cluster of Uj with 1 ≤ j ≤ i ≤ k.

Algorithm 1 APX-MDPS(G,n, s, t′, {Oi}, {Ii}): Central-
ized approximation algorithm APX-MDPS for the MDPS
problem

1: γ = t′/
√

log n
2: W 3γ

1 = V
3: U1 = E3γ(S,W 3γ

1 )
4: u1 = S
5: i = 2
6: while W 3γ

i 6= 0 do
7: ui = argmaxv∈W γ

i
C(Eγ(v, W 3γ

i ))
8: Ui = E3γ(ui,W

3γ
i ) ∪ Eγ(ui,W

γ
i )

9: i = i + 1
10: end while
11: Reorder U2, · · · , Uk so that C(Ui) ≥ C(Uj),∀2 ≤ i <

j ≤ k
12: Construct the backbone mesh by Algorithm 2
13: Construct the regional mesh by Algorithm 3
14: Construct the final mesh by Algorithm 4

Algorithm 2 APX-BACKBONE({Ui}, {ui}): Backbone
mesh construction algorithm for the MDPS problem

1: for i = 2 to k do
2: repeat
3: j = min1≤n≤k{n : Un has remaining bandwidth}
4: Connect ui to uj

5: until Ui is fully served
6: end for

4.2.2. Regional Streaming Mesh Construction. In this
section, we show the steps of creating the regional streaming
topology for each cluster. Given a set of clusters, we can
identify two types among them by measuring C(Ui) ≥ 0
or C(Ui) < 0. For the cluster with non-negative residual
streaming capacities, a mesh spanning the peers of Ui can
be constructed by Algorithm 3. For the other type of cluster
with negative residual streaming capacities, we can deduce
from Lemma 1 that the upload capacities

∑
v∈Ui

Ov inside
the cluster cannot satisfy its internal streaming requirement
(|Ui| − 1) × s and thus need extra streaming connections
from external clusters. In such clusters, we will first satisfy
the internal peers with the highest upload capacities so that

they can timely serve other internal peers. In that way, only
the peers with the lowest upload capacities will be left for
external connections. Algorithm 3 also describes the method
to construct the streaming topology for such clusters.

Algorithm 3 APX-CLUSTER({Ui}, {ui}): Regional mesh
construction algorithm for the MDPS problem

1: for i = 1 to k do
2: for j = 1 to |Ui| do
3: repeat
4: if j is the peer with largest uploading capacity

then
5: Hold j for an uplink connection from other

cluster
6: else
7: x = argmaxv∈Ui & v has remaining bandwidthC({v})
8: if x is fully served then
9: Connect j to peer x

10: else
11: Hold j for external connection
12: end if
13: end if
14: until peer j is fully served or on hold
15: end for
16: end for

4.2.3. Complete Streaming Mesh Construction. To com-
plete the final mesh construction, we replace virtual links
between representatives to real inter-cluster connections by
Algorithm 4. We then do a binary search over t′ to obtain
the minimum-delay streaming topology. An outline of the
algorithm is described in Algorithm 4. Figure 1 illustrates a
cluster-based streaming mesh from the source to receivers.

Algorithm 4 APX-COMPLETE(G, {Ui}, {ui}): Complete
mesh construction algorithm for the MDPS problem

1: for i = 1 to k do
2: Connect each peer that is held for external connec-

tions to the closest available peer in the virtually
linked parent cluster.

3: end for

4.2.4. Performance Bound. Assume t′ is the optimum
value. After binary search, it can be approximated within
a factor of 2. We now analyze the performance bound of
the approximation algorithm, i.e., the approximation factor.

We start from a simple scenario with a streaming rate
of s = 1 unit/second. In this case, the resulting streaming
topology can be expected as a tree structure denoted as
T , because each peer will only receive stream from one
parent. Let T ∗ be the optimal tree with the minimum
streaming delay, denoted by T ∗ = (V, E∗) and E∗ ⊂ E.
Now we partition T ∗ into clusters {U∗

1 , · · · , U∗
q }, which



are represented by {u∗1, · · · , u∗q}, respectively. We define
two functions: PATH(i, j), which returns true only if there
exists a directed path from i to j in T ∗ denoted as 〈i, j〉,
and HEIGHT(i), which returns the height of node i in tree
T ∗ rooted at S. Let T ∗B be the backbone after partitioning
T ∗.

Our method to partition T ∗ is summarized as follows:

1) Let u∗1 = S and U∗
1 be the set of descendants that is

γ-covered by S, i.e., U∗
1 = {u : u ∈ V , PATH(S, u) =

TRUE, and d(S,u) ≤ γ}.
2) Let W ∗ be the uncovered peers where W ∗ = V \U∗

1 ;
3) Select the lowest uncovered node as the next rep-

resentative u∗i , i.e., u∗i = argminu∈W∗HEIGHT(u)
and U∗

i = {u : u ∈ W and PATH(u∗i , u) =
TRUE and d(S,u) ≤ γ};

4) Remove U∗
i from W ∗, i.e., W ∗ = W ∗ \ U∗

i ;
5) Repeat from Step 3 until all the nodes are covered.

Suppose we have q clusters from T ∗ after the above
steps. Without loss of generality, we then reorder the clusters
U∗

1 , · · · , U∗
q so that the residual streaming capacities of

them except U1 are sorted in a non-increasing order, i.e.,
C(U∗

i ) ≥ C(U∗
j ), ∀1 < i < j ≤ q. Moreover, we denote

TB as the backbone constructed from G by Algorithm 1.

Lemma 2: Suppose U∗
i and Uj intersects, i.e., U∗

i ∩Uj 6=
∅. Then, there must exist a cluster Um covering at least
one u ∈ U∗

i \ Uj and satisfying C(Um) ≥ C(U∗
i ), where

1 ≤ m ≤ k.

Proof: If any peer w in U∗
i ∩Uj is within the γ radius

of uj , i.e., d(w,uj) ≤ γ, then every peer u ∈ U∗
i \ Uj will

be 2γ-covered by uj . According to Corollary 1, there must
exist some cluster Um covering u , where 1 ≤ m ≤ j.
Since uj γ-covers the peers in U∗

i ∩ Uj , it is easy to see
that C(Uj) ≥ C(U∗

i ). Then we have C(Um) ≥ C(Uj) ≥
C(U∗

i ).
If γ ≤ d(w,uj) ≤ 2γ, then there must exist a cluster

Um, which is the first cluster that covers at least one peer
∈ U∗

i with C(Um) ≥ C(U∗
i ); otherwise, U∗

i will form a
cluster itself. Peer u ∈ U∗

i \ Uj may have two possibilities:
(1) d(u,uj) ≤ 2γ, or (2) 2γ < d(u,uj) ≤ 3γ. In the
case of d(u,uj) ≤ 2γ, there must exist some cluster Un

covering u with 1 ≤ n < j according to Corollary 1. Since
Um should have C(Um) ≥ C(Un) > C(Uj), we deduce
Um 6= Uj . In the other case of 2γ < d(u,uj) ≤ 3γ, the
cluster Um that covers u must be within the γ radius of u
and C(Um) ≥ C(U∗

i ); otherwise, U∗
i itself will be more

qualified as a cluster than Um.

If d(w,uj) > 2γ, then peer u ∈ U∗
i \ Uj must be within

the γ radius of some um and C(Um) ≥ C(U∗
i ); otherwise,

U∗
i will form a cluster itself. Thus, in all cases, the lemma

follows.

Lemma 3: Compare the residual capacities of TB and T ∗B .

Figure 1: Cluster-based streaming mesh.

We have:
j∑

i=1

C(U∗
i ) ≤

j∑

i=1

C(Ui), ∀1 ≤ j ≤ q. (16)

Proof: We use induction to prove this claim. For j = 1,
it is obvious that C(U∗

1 ) ≤ C(U1). Now, we assume that the
claim also holds for j = x. When j = x+1, we have a new
cluster U∗

x+1. If
⋃

1≤i≤x Ui contains no peer in U∗
x+1, i.e.,

U∗
x+1 ∩

⋃
1≤i≤x Ui = ∅, then we should have C(Ux+1) ≥

C(U∗
x+1) because Algorithm 1 always selects Ux+1 with

the largest residual streaming capacity from the uncovered
peers. If

⋃
1≤i≤x Ui contains several peers in U∗

x+1, then we
have U∗

x+1 ∩
⋃

1≤i≤x Ui 6= ∅.
For the sake of contradiction, we assume that∑x+1
i=1 C(U∗

i ) >
∑x+1

i=1 C(Ui). If there is any cluster
U∗

n with n ≤ x satisfying U∗
n ∩

⋃
1≤i≤x Ui = ∅, then

C(Ux+1) ≥ C(U∗
n) ≥ C(U∗

x+1). Thus, to make the assump-
tion correct, we have U∗

n ∩
⋃

1≤i≤x Ui 6= ∅, ∀1 ≤ n ≤ x.
Therefore, according to Lemma 2, we must have a Um

covering at least one peer in U∗
n \

⋃
1≤i≤x Ui and satisfying

C(Um) ≥ C(U∗
n) with x < m ≤ k. Consequently, we

should have C(Ux+1) ≥ C(Um) ≥ C(U∗
n) ≥ C(U∗

x+1).
Then,

∑x+1
i=1 C(U∗

i ) ≤ ∑x+1
i=1 C(Ui), which contradicts the

assumption. The lemma follows.
Since the sum of the residual capacities is bounded by∑
i∈V Oi − (n− 1)× s, we can easily deduce Corollary 2

from Lemma 3:
Corollary 2: The number of clusters in T is less than that

in T ∗, i.e., k ≤ q.
Lemma 4: Let HI denote the height of a tree I . We have

HTB
≤ HT∗

B
.

Proof: TB is constructed as a balanced tree. Combining
this fact with Lemma 3, which represents a higher out-degree
in TB than that in T ∗B , we can observe that HTB ≤ HT∗

B
.



We call the edge connecting different clusters as the
backbone edge and the edge inside the cluster as the cluster
edge.

Lemma 5: Any root-to-leaf path in TB has at most
O(
√

log n) backbone edges.
Proof: It follows from Lemma 4 that HTB ≤ HT∗

B
.

From the construction method of T ∗B , we know that any
root-to-leaf path in T ∗B has a length, i.e., latency, which is
at least γ · HT∗

B
. Since T ∗B has a latency which is at most

OPT, it follows that:

HTB
≤ HT∗

B
≤ OPT

γ
=

OPT
t′/
√

log n
= O(

√
log n). (17)

Lemma 6: Any root-to-leaf path in T has at most
O(log n) cluster edges.

Proof: Without loss of generality, we can envision TB

is constructed in a breadth-first and left-to-right order, which
means representatives on the same height are arranged from
left to right in a non-increasing order of their residual
streaming capacities. In another word, if ui is on the left
of uj on the same height in TB where 0 ≤ i, j ≤ k, we
have C(Ui) ≥ C(Uj). Moreover, if ui has a lower height in
TB than uj where 0 ≤ i, j ≤ k, we have C(Ui) ≥ C(Uj).

Denote T (U) as the tree that is constructed inside the
cluster U . Let Y be the rightmost root-to-leaf path in TB ,
denoted as Y = 〈u1, uy1 , · · · , uyb

〉, i.e., Y is formed from
root to leaf by representatives u1, uy1 , · · · , uyb

. For any
root-to-leaf path X , where X = 〈u1, ux1 , · · · , uxa〉, we
denote the number of cluster edges in X as ζX . Since TB is
constructed as a balanced tree, we can deduct b ≤ a ≤ b+1.

Because Y is the rightmost root-to-leaf path in TB , it
follows that

ζX = HU1 +
a∑

i=1

HT (Uxi
)

= HU1 + HUx1
+

a∑

i=2

HT (Uxi
)

≤ HU1 + HUx1
+

b∑

i=1

HT (Uyi
).

Recall the previous assumption that min(Oi) ≥ 2, ∀i ∈
V . For the case of b ≤ 1, it is easy to deduct ζX ≤
3 log2 n = O(log n). Otherwise, we can carry out

ζX ≤ HU1 + HUx1
+

b∑

i=1

log2 (C (Uyi)− 1)

= HU1 + HUx1
+ log2

(
b∏

i=1

(C (Uyi)− 1)

)
. (18)

In addition, the number of the clusters, i.e. k, is bounded
by n. Thus, we can deduct

n ≥ k ≥1 + C (U1) + C (U1) · C (Uy1) +

· · ·+ C (U1) ·
b−1∏

i=1

C (Uyi
)

= 1 + C (U1) ·

1 +

b−1∑

i=1

i∏

j=1

C (Uyi
)


 .

Thus, we have

C (U1) ·
b−1∏

i=1

C (Uyi
) ≤ n. (19)

Replacing Equation (19) into (18), we have

ζX ≤ HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)

= HU1 + HUx1
+ log2

(
C (U1) ·

b−1∏

i=1

C (Uyi)

)

+ log2 (C (Uyb
) /C (U1))

≤ HU1 + HUx1
+ log2 n + log2 (C (Uyb

) /C (U1))

≤ 4 log2 n

= O(log n). (20)

Thus, the lemma follows.
Theorem 2: Let OPT be the minimum P2P streaming

delay from the source host S to receivers R in T . The
streaming delay of the solution produced by Algorithm
APX-MDPS is at most O(

√
log n) · OPT.

Proof: It follows from Lemma 5 that any root-to-leaf
path has at most a latency of O(

√
log n) ·OPT arising from

the backbone edges on the path. In addition, short edges in T
have a latency that is no more than 6γ = 6t′/

√
log n. From

Lemma 6, we know that any root-to-leaf path has at most a
latency of 6γ ·O(log n) = O(

√
log n)·OPT caused by cluster

edges on the path. T is constructed from the backbone edges
and the cluster edges. The theorem follows.

Now, let us look at the problem when s > 1 units/second.
Theorem 3: Let OPT be the minimum P2P streaming

delay from the source host S to receivers R in G. The
streaming delay of the solution that Algorithm APX-MDPS
returns is at most O(

√
log n) · OPT.

Proof: When s > 1 unit/second, the final streaming
topology will be a mesh, which can be envisioned as
a combination of multiple trees constructed by fractional
streams. To prove the previous bound also holds here, we
first normalize all flow rates and capacities by s. Then, the
correctness of Lemmas 1-5 is obvious. For Lemma 6, we
start justifying its correctness from Equation (18). Recall
the assumption that at least half of the nodes have Oi ≥ 2s.
Because of the balanced topology in connection, we can



prove that any node whose Oi < 2s will always lay on the
bottom in its cluster. (Due to space limitations, we do not
provide detailed proof of this claim.) As a result, we can
carry out

ζX ≤ HU1 + HUx1
+

b∑

i=1

log2

(
C (Uyi)×

2s

min(Oi)
− 1

)

≤ HU1 + HUx1
+

b∑

i=1

log2

(
C (Uyi

)× 2s

min(Oi)

)

= HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)
+ b · log2

2s

min(Oi)

= HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)
+ log2 n× log2 s.

(21)

Similar to the deduction of Equation (20), we have

ζX ≤ (4 + log2 s) · log2 n

= O(log n). (22)

Thus, the theorem follows.

4.3. Distributed Algorithm

The centralized algorithm described in Section 4.2 ap-
proximately solves the minimum-delay P2P streaming prob-
lem. In a practical setting, however, we may not have
a central server that can provide a global computation
resource which is implicitly assumed by the algorithm. Thus,
to increase the scalability and reliability, we extend our
algorithm to a distributed version, which can be well adopted
and improved as a practical P2P protocol. For the ease of
presentation, we assume that all the representatives have
sufficient resources to coordinate the peers. In the actual
deployment, we define a cluster leader to take charge, which
is the peer with the most computing and bandwidth resources
in the cluster.

4.3.1. Peer Join. In order to join the clusters, a newly ar-
rived peer i will first contact a rendezvous point (RP), which
caches a list of existing representative peers. The rendezvous
point then sends back a random list of representatives that
are approximately nearby the newcomer and the updated
parameter of γ. Peer i will then check the latency and the
residual streaming capacity with each representative uj . If
there exists an uj within γ latency of i, peer i will send
a request to join the closest cluster; otherwise, peer i will
tentatively join the closest cluster, but meanwhile measure
the feasibility to build a new cluster.

In the attempt to organize a new cluster, peer i will
contact a set of nearby representatives and will retrieve a
list of peers that are between γ and 3γ-away from each
representative uj . Next, peer i will pick the peers within its
γ radius and activate the new clustering process on these
peers. In the process, they start exchanging the latency and
capacity information with each other and find the center peer,
i.e., the representative, which has the maximum residual
streaming capacities for the attempted new cluster. If the
residual streaming capacity of the candidate cluster is less
than the existing cluster within 3γ radius of j, the new
clustering process will be terminated; otherwise, the new
representative will request peers within its γ latency to join
the new cluster.

Finally, the new representative will request peers within its
γ latency to join the new cluster. After a peer joins a cluster,
its representative will allocate the parents and children for it.
Once the new peer receives this information, it will initiate
the stream with those parents and children directly.

4.3.2. Peer Departure. The departures and failures of peers
may lead to interrupted playback at the remaining receivers.
If any peer departs from the cluster, it will inform its
representative and request re-allocating the bandwidth for
its downstream peers. To handle this problem of failure,
each peer will buffer for a short period when streaming and
always keep an eye for the back-up peers during streaming.
If failure does happen, the downstream peer will utilize those
time of buffering to connect to the backup peers tentatively
and then request a stream re-allocation to the representative.
If it is the representative that fails or leaves, the affected
peers will use the buffering time to activate a new round of
clustering within γ radius.

4.3.3. Stream Coordination and Dynamic Adaptation.
The topology maintenance and stream allocation are mostly
coordinated by the representatives. They will assign a new
peer to connect to the peer with the most capacity in its list.
If the residual streaming capacity is non-negative, they will
always maintain an intra-cluster streaming by utilizing the
idle bandwidth. If the residual streaming capacity is negative,
they will coordinate with the rendezvous point and inform
the unserved peers to stream from the cluster with the most
residual capacity. When a new cluster is established, the
same steps are followed to import a complete stream to the
cluster. If the γ needs to be tuned or optimized, the clustering
process will be initiated by the rendezvous point and run in
the background without interrupting the existing streams. All
connections are updated until the background computation
is completed.

In a distributed environment, peers may join and leave
randomly. Thus, peers with high bandwidth resources may
arrive late and as a result, connect far from the source. Clus-
ter representative and rendezvous point will be responsible
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Figure 2: Average end-to-end latency

for monitoring this scenario at the cluster level and backbone
level, respectively. Once they detect this scenario, they
initiate new rounds of stream allocation in the background
and update the connections until they reserve the bandwidth.

5. Simulation Study

In this section, we describe the results of our simulation
study. We simulate a live streaming session of 300 Kbps
from a source with 10 Mbps upload capacity. From previous
studies, we know that network bandwidth exhibits rich
diversity [9], [24]. Based on this, we set the upload capacity
among peers as shown in Table 1. In this simulation study,
we compare our algorithm with two other recently pro-
posed algorithms: a heuristic approach [9] and a LP-based
approach [19]. The heuristic in [9] is the first algorithm
that focuses on reducing the maximum end-to-end delay on
mesh streaming, where peers select their parents based on
the metric of link capacity divided by the communication
delay [9]. The LP-based approach in [19] applies several
linear programming techniques to obtain an optimal aver-
age delay, such as Lagrangian relaxation and subgradient
algorithm. Please note, to reduce computational costs, [19]
restricts the potential connections for each peer. This actually
lowers down the performance compared with real LP-based
solution. However, for the easy of presentation, we still call
it LP-based solution in the rest of this paper.

To evaluate the algorithm performance, we define four
metrics, including average end-to-end delay, maximum end-
to-end delay, and message overhead.

The average end-to-end delay is defined as the average

Upload Capacity Percentage of Peers
200 Kbps 30%
1.0 Mbps 50%
2.0 Mbps 15%
10.0 Mbps 5%

Table 1: Upload Capacity Distribution
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Figure 3: Maximum end-to-end latency
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Figure 4: Message overhead

latency from the source to all receivers. Figure 2 illustrates
the results from our simulation experiments. It shows that the
LP-based approach generally achieves a lower average delay
than the other two approaches. This is reasonable, since
the LP-based approach is designed to minimize the average
delay. It is also interesting to observe that the heuristic algo-
rithm exhibits lower average delay than the approximation
algorithm when the network size is relatively small. When
the network size approaches 700 nodes, the approximation
algorithm yields an average latency that is close to that of
the heuristic approach. This indicates that the approximation
algorithm has a smaller growth rate with respect to increase
in network size, implying that the algorithm is scalable for
large network sizes.

We also measure the maximum delay, which is the worst-
case end-to-end delay observed in the simulation exper-
iments. Note that this is our primary design objective.
Figure 3 shows the maximum delay of the algorithms. It is
apparent that the worst-case performance of our algorithm
is close to that of the LP-based solution and outperforms
the heuristic. This low worst-case delay indicates that our
algorithm ensures good streaming performance with an
approximation bound.

Figure 4 shows the message overhead of the algorithms,



measured in number of packets, during mesh construction
and maintenance. Although a minimum delay is desirable,
a large message overhead will challenge practical deploy-
ment of the underlying algorithm. As we can observe, the
LP-based solution generates a huge number of overhead
packets during mesh construction. In addition, its overhead
significantly increases with the network size. This is mainly
resulting from the computational message exchange. In
contrast, the heuristic and the approximation algorithm both
have much less message overhead and slow growth rate,
as the network size increases. The major overhead of our
algorithm occurs in clustering. From the simulation results,
we observe that this overhead is slightly higher than that of
the heuristic algorithm.

Thus, our simulation results reveal the effectiveness of
our algorithm, in terms of ensuring a worse-case delay with
high scalability.

6. Conclusion

In this paper, we focus on building delay-minimized
overlay streaming mesh. We formulated the minimum-delay
P2P streaming problem and presented two solutions for
it: a centralized approximation algorithm and a distributed
version. We show that our algorithms have a guaranteed per-
formance bound. The distributed version has been extended
to adopt to network churn and improve resource utilization.
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