
1

Design Issues of the prTorrent File Sharing Protocol

Suman Deb Roy †Tyler Knierim ¤Shanieka Churchman Wenjun Zeng

Department of Computer Science
University of Missouri-Columbia

† Truman State University
¤ Lincoln University

Abstract-The absence of piece rarity in the BitTorrent
Unchoking Algorithm exposes it to various exploitations and
hinders optimized performances. prTorrent is a file sharing
protocol based on BitTorrent which considers rarity of pieces
swapped during unchoking for optimized performance within the
swarm. This paper discusses the philosophies, issues and
structure behind development of the prTorrent p2p protocol
from scratch. The protocol was developed in Java to promote
portability in simulation as well as emulation. We hope this work
is a guide to students and developers planning to build a p2p
simulator from the very base and alleviate design differences
between simulation and emulation.

I. INTRODUCTION

prTorrent [1] is a file sharing protocol based on BitTorrent
that uses piece rarity (PR) during unchoking in selecting the
best peers to trade pieces with. PR is dynamic and, unlike
availability, its value changes with the current swarm
conditions. This provides improved performance by reducing
exploitations and promoting a Nash Equilibrium within the
swarm. However, it also requires increased circumspection in
developing such a protocol.

Motivation
This work describes issues and structure in building a p2p

simulator and emulator using a single platform like Java. Most
simulators in the market are built upon various layered
platforms [4], which inhibit portability and make the design
cumbersome. Moreover, their design makes actual emulation
quite difficult to implement. In the next section, we discuss
critical ideas in developing a p2p protocol from scratch. The
simulator allows testing of Starvation and flash crowd
scenarios [2] in addition to normal performance measurements.

II. THE DESIGN

A. Basic Framework
prTorrent divides a p2p network into three domains of

influence: the piece, the peer and the swarm. For most p2p
systems the basic framework should consist of building the
piece, peer and connection entity classes (Fig. 1). We can then
build a main module to run all of the required entities for the
simulation. Global Availability measures the availability of a
particular piece across other swarms and is considered a
random number, since the simulator simulates a single swarm.
We embrace a bottom-up development approach.

B. Piece Class
We begin with the smallest domain of influence – the piece

class. Every piece has a piece number and availability attached

Figure 1. The basic framework

to it. Since availability is just one of the parameters in
realizing PR, note that two instances of the same piece have
the same availability, but might have different PRs. This is
fundamental to piece swapping in prTorrent.

C. Peer Class
The typical data members for the peer class includes the

amount of pieces the peer has, their download and upload
speeds, neighbor information and arrays for the set of pieces
and neighboring peers in the swarm. Completion Factor (CF)
judges how far a peer has proceeded towards its goal of
downloading all the pieces. CF ranges from 0-1. A very high
or very low value of CF means the peer becomes less choosy
during unchoking. Each peer has an array to store the upload
speed from their neighbors as well as the PR of the last piece
downloaded.

2

When deciding to download a piece, the peer should first
check with its neighboring peers on the piece’s availability. If
none of the neighbors have the piece, it should sort the other
peers in its list by their upload speeds. If however the piece is
available with neighbors, then the sorting should be done
based first on the PR of uploaded pieces in the previous round.
In either case, the formula (3) used for unchoking in [1]
should be used.

D. Connection Class
The connection class is perhaps the most different when

emulating than for the simulator. In either case however, a
point to point connection must be established between the two
peer clients. In the simulator this can be realized by a simple
reading from and writing to socket code. It is required to
generate a TCP connection handler that will manage sending
and receiving of the pieces. There should also be a data buffer
taking care of write/read lengths which can be detached as
applicable. The connection handler can be easily implemented
by treating one node as the server and another as the client.
Hence, all we need is a parent (belonging to class TCP Server),
a socket connection and a listener. Following this, modules
should be written to handle the received messages, reading
data from the connection and handling the message queue.
The message queue can be written by using a Runnable writer
[3] and a separate sendmessage function.

E. Client Class
The client is the prTorrent peer that we focus on. We

perform the client’s unchoking using prTorrent and test its
performance among a swarm of BitTorrent peers. This is
different from [1] where we simulated all peers following
prTorrent. This design feature enables our protocol to be
easily emulated in a true network scenario. This will also
facilitate testing the effects of an exploitation environment or
starvation on prTorrent peers. The upload bandwidth of the
client is taken as an input parameter before the simulation
begins.

F. Main Class
The main class simulates the swarm domain of influence.

As such it needs to decide the piece size and then divide the
input file size into necessary number of pieces. The main class
also performs the task of the tracker for the simulator purposes.
However, for the emulator, we would need a separate class to
interact with the tracker of the network. The main class should
contain a vector of peers present in the swarm and the pieces
that each of them hold. However, this is where our design
differs from most other simulators. We actually run two
layered simulations- one for all the peers except the prTorrent
client performing unchoking among themselves using various
other BitTorrent clients and one for the interaction of the
prTorrent client with these other peers. Therefore, for
emulation, we just need to remove the first simulation layer
and our protocol will be ready to connect to other peers on the
Internet.

III. THEORETICAL ANALYSIS
We are testing the simulator in situations similar to our

original tests for prTorrent. In terms of the Discount Parameter
(DP) Exploitation referred in [1], we found that we can
mathematically predict the minimum numbers of peers
required to remain fair in order to maintain a DP exploitation
scenario within the swarm. The minimal value can be reached
by realizing that uploading in p2p is a collective action. This
means that aims of the whole swarm together are best served
if every peer uploads, but it is not in the best private interest of
the individual peers. Hence, if the collective payoff for each
peer from uploading is p(n) and the payoff of a DP exploiter is
s(n), then the minimal ‘n’ peers required to avoid DP
exploitation is obtained when:

p(n+1) = s(n)
The Nash Equilibrium for fairness will be maintained as

long as p(n+1) is greater than s(n). The mathematical
formulation of this collective payoff in p2p is still an open
challenge.

Let us consider the DP (δ) = 1/ (1+ r), where r is rate of
decrease of the piece value with each successive transfer.
However, with DP exploitation, there is a probability ‘p’
attached to whether further interaction will occur or whether
the exploiter will defect. Hence, p δ = 1/ (1 + R), where R is
the effective rate of return on a future payoff. This value of ‘p’
is judged by the PR of the requested piece. It clearly shows
that if ‘p’ is less, cooperative behavior maintained by
BitTorrent Tit-for-Tat will disintegrate since:

R = 1 - p δ

 p δ

IV. CONCLUSION

The prTorrent p2p simulator was built with the perspective
of easing the transfer from simulators to emulators. We hope
this will provide guidance to new developers on the structured
development of a p2p network. It also contains theoretical
insights that prTorrent can estimate a Nash Equilibrium that
mitigates exploitation and promotes optimized performances.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 0649158.

Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] S. Deb Roy and W. Zeng, “prTorrent: On Establishment of Piece Rarity

in the BitTorrent Unchoking Algorithm”, In IEEE P2P’09, Sept 2009.
[2] K. Eger, T. Hobfield, A. Binzenhofer and G, Kunzmann, “Efficient

simulation of large-scale p2p networks: packet-level vs flow level
simulations”, In Proc. Of 2nd Workshop on Use of P2P, GRID and
agents for development of content networks.

[3] http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Runnable.html
[4] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman and D.

Chalmers, “The state of peer-to-peer simulators and simulations”,
Computer Communication Review, 37(2):95-98, 2007.

