S-MIP : A Seamless Handoff Architecture for Mobile IP

Robert Hsieh, Zhe Guang Zhou, Aruna Seneviratne

Reviewed by Olufunke Olaleye

Objective

To reduce the MIP handoff latency by

§ reducing home network registration time through a hierarchical management structure

\$ minimizing the lengthy address resolution delay by address preconfiguration through fast-handoff mechanism

Introduction

§ Generally, when MN moves, it obtains a new IP address, all existing IP connections are terminated and it reconnect to the new network.

§ To avoid this, MIP introduces indirection at the IP layer, achieved by network agents.

- * Each MN is identified by static home network address from it's home network
- * MN updates home agent about it's current IP
- * Home agent intercept any packet for MN and tunnels them to MN

§ Causes of Handoff Latency

Time taken for a MN to {register its location with home agent

{configure a new network care of address

§ Solution proposed

- * hierarchical network management structure
- * preconfiguration

S-MIP : A Seamless Handoff Architecture B. S-MIP Network Architecture

S-MIP : A Seamless Handoff Architecture B. S-MIP Network Architecture(contd.)		
Types of HD messages		
	Movement Tracking	HD message (DE to AR)
	stochastic moving state	anticipation mode
If the MN{		AR's still maintain binding, in case of ping-ponging
	near the boundary between 2 network areas	multiple binding using more one CoA simultaneously
	linear	which AR, the MN handoff to

Advantages/ Disadvantages

 $\,{\$\,S}\,S\text{-MIP}$ eliminates the L3 disruption perceived by communication end-host.

§No packet loss at IP layer.

SThe need of re-ordering packet

SThe need of waiting for the Handoff Decision(HD) message

Critique

SThe paper is a good paper. SEliminates packet loss at L3.

SThe author did not give details of how location tracking was performed.

SThe symbols use in fig 7 handoff is confusing

 ${\mathbb S}$ The need for doubling buffering at the Access Routers so as not to activate the TCP congestion control mechanism

Questions

 $\,$ $\,$ $\,$ Explain why the old access router send duplicate fast binding Acknowledged and not just one .

 ${\mathbb S}$ What is the usefulness of adding Decision Engine to the S-MIP Network Architecture.

 $\ensuremath{\mathbb{S}}$ What is the reason behind sending a s-packet and f- packet.

\$ Explain what type of messages are contained in Handover Acknowledgement and what happens.

§ What could be the cause of edge packet loss.