
1

Edge Cache Offloading and
Freshness-Sensitive Caching

Paper Review by David G. Watson

September 23, 2003

Overview

� Dynamic pages are no longer the exception but
rather the rule

� Different techniques have been used to improve
responsiveness and lessen server-side load

– Offload serving of static content to proxies so server
can concentrate on dynamic requests

– Distribute database web application servers so that the
server nearest the client handles requests

Evaluation of Edge
Caching/Offloading for

Dynamic Content Delivery

By Chun Yuan, Yu Chen, and Zheng Zhang of
Microsoft Research Asia

Related Work

� Server-side content caching

� Fragment caching at proxy or at CDN stations
– Fragments are static pieces of dynamic pages that can

be cached and reassembled

� Application offloading

– Presentation and Business Logic layers moved to edge
server

– Origin server only for back-end database

Work has been done in the following
areas

– Server-side content caching

– Fragment caching at proxy or at CDN stations

– Application offloading
� Presentation and Business Logic layers moved to edge

server

� Origin server only for back-end database

New Information in Paper

� This paper focuses on proxies near clients – these
are the edge servers

� First to examine tradeoffs for different
partitioning schemes

2

Evaluation of Edge Caching

� 4 Places offloading
can happen

– Client

– Proxy

– Reverse Proxy

– Server

Edge Caching Continued

� Three important factors must be considered in
any offloading scheme

– Security
� What can we trust to be handled outside of our control?

– Complexity
� Is this too difficult to be practical?

– Performance
� Does this actually improve speed, or may it result in

slowdowns?

Experimental Setup

� Runs on Microsoft
.NET

� Uses established
benchmark – the Web
Pet Shop

� Tried five ways of
arranging the
components

B: Browser
A: Page Assembling and Fragment Caching
G: Fragment Generation
P: Presentation
L': Bus iness Logic except Data Access Layer
DA: Data Access Layer
L: Business Logic
DB: Database
Cloud: Wide Area Network

Offloading Schemes

� F0 - Front end runs Pet Shop, back end runs DB
(No change from original setup)

� Fremoting - Presentation tier at front-end, rest at
back-end

� Fdb - Pet Shop runs at front end, accesses DB at
back-end

� Fproxy - Page assembly & fragment caching at
front-end, modified Pet Shop & DB at back-end

Experiment Results – Response Time

� All the methods tried
were faster than no
offloading

� Fdb was the fastest,
with Fremoting very
comparable under 300
connections

Experiment Results – Server Load

� Aggregated server
loads shown

� With the offload
configurations, front
end servers are
bottleneck

� Again Fdb is the best,
followed by Fremoting
and Fproxy.

3

Conclusions

� If there is end-to-end security, offload all the way
up to the proxy

� If this is not the case, augment proxies with
fragment caching and page generation

Paper Strengths / Weaknesses

� Overall was quite a strong paper – excellent
information on tradeoffs of various schemes

� Methods suggested can involve significant re-
engineering if applications were not initially
designed to be distributed

� Security is a major consideration for any proxy-
side operations except for fragment caching and
page generation

Engineering and Hosting
Adaptive Freshness-Sensitive

Web Applications on Data
Centers

Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K.
Selcuk Candan, Divyakant Agrawal

Introduction & Related Work

� Much work has been done applying caching
solutions to web database applications

� All prior work has focused on static schemes for
assuring freshness, and has not looked at adaptive
methods

System Architecture

� Wide area database replication & web application
suite

– Distributed so that the whole server suite can be
closer to the users

– Results in better latency and less workload

� Terminology

– Origin Site: consists mainly of the master DB

– Datacenter: mirror DB, Web App. Server (WAS)

– Edge cache: located near users

Problem: Freshness

� Freshness is defined as how out-of-date is the
information received

– If latency from server to browser is 8 seconds, we
know the information is at least 8 seconds old

– We want the information received to be as fresh as we
can get it

– This is complicated, because we must synchronize out
mirror databases with the master DB at the datacenter

4

Proposed New Architecture

� Two new software components added to suite
– Sniffer installed at Web App Server (WAS) and

master DB
� At WAS, creates mappings between URLS and query

statements issued for requested pages

� At master DB, Tracks DB content changes

– Invalidator installed at DB mirrors
� Propagates content change log from master to mirrors

� Performs invalidations checks for caches based on DB
changelog, URL/query mapping, content in mirror DB

CachePortal System

System Parameters

Invalidation and Synchronization are interleaved.
Invalidation Time: time required to process invalidation checks on all page in edge caches

Synchronization time: time required to propagate database updates from master DB log to DB caches

Freshness in current systems

Freshness with New System Determination of Query Types

� One example query type might be 'SELECT
firstname, lastname FROM people WHERE
idnumber=$var'

– An instance of query might be 'SELECT firstname,
lastname FROM people WHERE idnumber=234'

� Invalidator tracks query types that have been
invalidated by examining DB change log

5

Adaptive Caching

� We want our response time to be close to the
invalidation cycle, so system is at equilibrium

� We do this by adjusting the number of cached
query types

– If response time is too high, increase number of
cached types

– If response time is too low (relative to invalidation
cycle), reduce number of cached types

Experimental Setup

� 2 heterogenous networks

– Negligible local latency

– 250 ms latency between the two

� Server Setup
– All machines PIII 700MHz, 1 GB RAM, RedHat 7.2

Experimental Setup

� Server Software

– WAS: BEA WebLogic 7.0

– DBMS: Oracle 9i
� 7 tables, 1M rows, 600 row updates per table per minute

– Cache: Modified version of Squid
� 1M cached pages of 1000 query types, 1000 instances of

each

� 20% of queries non-cacheable due to security,
authentication, dynamic content, etc.

Experiment Results

� Number of cached
query types affects
which pages are
served by caches

� This in turn affects
response time

Results continued More Experiment Results

� Here we see effects of adaptive freshness-sensitive system

� System adjusts number of cached query types until it reaches an equilibrium point as the number of updates changes

6

Results Continued
Advantages

� Under heavy loads, freshness-driven adaptive
caching support content freshness up to 20x better
than without it

� Freshness 7x better than datacenter-hosted
applications with dynamic content caching

� Provides faster response times and better
scalability

Advantages / Disadvantages

� On the positive side, there were many
experiments performed that tested performance in
many different situations

� On the negative side, no clear side-by-side
comparisons of the various alternatives

� Actually engineering the solutions looks to be
very complex

Comparison of Papers

� Caching/Offloading paper had excellent
information, but security issues may pose
difficulties

� Freshness-sensitivity paper introduces innovative
new technique, which can improve functioning of
co-located web database apps, but it is difficult to
know how the adaptive caching will actually
work – few details were given on how it was
implemented

