Edge Cache Offloading and
Freshness-Sensitive Caching

Paper Review by David G. Watson

Overview

. Dynamic pages are no longer the exception but
rather the rule

. Different techniques have been used to improve
responsiveness and lessen server-side load

- Offload serving of static content to proxies so server
can concentrate on dynamic requests

- Distribute database web application servers so that the
server nearest the client handles requests

Evaluation of Edge
Caching/Offloading for
Dynamic Content Delivery

By Chun Yuan, Yu Chen, and Zheng Zhang of
Microsoft Research Asia

Related Work

. Server-side content caching
. Fragment caching at proxy or at CDN stations

- Fragments are static pieces of dynamic pages that can
be cached and reassembled

. Application offloading

- Presentation and Business Logic layers moved to edge
server

- Origin server only for back-end database

Work has been done in the following
areas

- Server-side content caching
- Fragment caching at proxy or at CDN stations
- Application offloading

. Presentation and Business Logic layers moved to edge
server

. Origin server only for back-end database

New Information in Paper

. This paper focuses on proxies near clients — these
are the edge servers

. First to examine tradeoffs for different
partitioning schemes

Evaluation of Edge Caching

. 4 Places offloading

can happen Clmem 2
I

- Client N A — —

- Proxy ‘,.—_:_ T

- Reverse Proxy |:"-'_—,M_ (=] _f:':rl__

_ Server s | [| [| [ooe | [

Edge Caching Continued

. Three important factors must be considered in
any offloading scheme
- Security
. What can we trust to be handled outside of our control?
- Complexity
. Is this too difficult to be practical?
- Performance

. Does this actually improve speed, or may it result in
slowdowns?

Experimental Setup

. Runs on Microsoft
NET

. Uses established
benchmark — the Web
Pet Shop

. Tried five ways of
arranging the
components

Offloading Schemes

. F, - Front end runs Pet Shop, back end runs DB
(No change from original setup)

. - Presentation tier at front-end, rest at
remoting
back-end

- F,, - Pet Shop runs at front end, accesses DB at
back-end
. F - Page assembly & fragment caching at

Pproxy

front-end, modified Pet Shop & DB at back-end

Experiment Results — Response Time

. All the methods tried -
were faster than no -
offloading £ =
=i =t
. Fdb was the fastest, im
: . T
with Fremoting very 1 g
il —+— Fproxy
comparable under 300 0
. o Ed w00 160 w0 260 300
connections omesions

Experiment Results — Server Load

. Aggregated server
loads shown

. With the offload i
configurations, front | =
end servers are M e
bottleneck B

. Again Fdb is the best, RN
followed by Fremoting

and Fproxy.

Conclusions

. If there is end-to-end security, offload all the way
up to the proxy

. If this is not the case, augment proxies with
fragment caching and page generation

Paper Strengths / Weaknesses

. Overall was quite a strong paper — excellent
information on tradeoffs of various schemes

. Methods suggested can involve significant re-
engineering if applications were not initially
designed to be distributed

. Security is a major consideration for any proxy-
side operations except for fragment caching and
page generation

Engineering and Hosting
Adaptive Freshness-Sensitive
Web Applications on Data
Centers

Wen-Syan Li, Oliver Po, Wang-Pin Hsiung, K.
Selcuk Candan, Divyakant Agrawal

Introduction & Related Work

. Much work has been done applying caching
solutions to web database applications

. All prior work has focused on static schemes for
assuring freshness, and has not looked at adaptive
methods

System Architecture

. Wide area database replication & web application
suite

- Distributed so that the whole server suite can be
closer to the users

- Results in better latency and less workload
. Terminology
- Origin Site: consists mainly of the master DB
- Datacenter: mirror DB, Web App. Server (WAS)

- Edge cache: located near users

Problem: Freshness

. Freshness is defined as how out-of-date is the
information received
- If latency from server to browser is 8 seconds, we
know the information is at least 8 seconds old
- We want the information received to be as fresh as we
can get it

- This is complicated, because we must synchronize out
mirror databases with the master DB at the datacenter

Proposed New Architecture

. Two new software components added to suite
- Sniffer installed at Web App Server (WAS) and
master DB
. At WAS, creates mappings between URLS and query
statements issued for requested pages
. At master DB, Tracks DB content changes
- Invalidator installed at DB mirrors
. Propagates content change log from master to mirrors

. Performs invalidations checks for caches based on DB
changelog, URL/query mapping, content in mirror DB

System Parameters
& B (E (= (=

| [,

(=]

Towalidarion Sy

Invelidation Time
7

~
Invalidation Cycle

~
Elapsed Tie Synchronization Cycle

Invalidation and Synchronization are interleaved.
Invalidation Time: time required to process invalidation checks on all page inedge caches
Synchronization time: time required to propagate database updates from master DB log to DB caches

Freshness in current systems

wwsured freshess <.
freshness assured

Time

Freshness with New System

e Tee

(0 igher esponse time ot th orighn Web ste (8 Soshnose asoirod tho now oquilibeium

Determination of Query Types

. One example query type might be 'SELECT
firstname, lastname FROM people WHERE
idnumber=$var'

- An instance of query might be 'SELECT firstname,
lastname FROM people WHERE idnumber=234'

. Invalidator tracks query types that have been
invalidated by examining DB change log

Adaptive Caching

. We want our response time to be close to the
invalidation cycle, so system is at equilibrium
. We do this by adjusting the number of cached
query types
- If response time is too high, increase number of
cached types

- If response time is too low (relative to invalidation
cycle), reduce number of cached types

Experimental Setup

. 2 heterogenous networks
- Negligible local latency
- 250 ms latency between the two
. Server Setup
- All machines PIII 700MHz, 1 GB RAM, RedHat 7.2

Experimental Setup

. Server Software
- WAS: BEA WebLogic 7.0
- DBMS: Oracle 9i
. 7 tables, 1M rows, 600 row updates per table per minute
- Cache: Modified version of Squid
. 1M cached pages of 1000 query types, 1000 instances of
each
« 20% of queries non-cacheable due to security,
authentication, dynamic content, etc.

Experiment Results

. Number of cached
query types affects o

which pages are

g
_~Sarved by Edge
i

served by caches

. This in turn affects

response time .

0 200 400 600
Number of Cached Query Types.

Results continued

Response Time and Invalidation Cycle
(600 updates per min., 105 requests per sec.)

mRespanse Time at Edge Cache

& 11 @invaidation Cycle

| a5

Time (sec)

More Experiment Results

faptive Oynamic Cor

g - bl -
£ = % i
ol o poaach| ao preespregneneaprertenss
/ -
\ - / - 5 - fll i S
‘. \‘_ / \ / _ o
| \m / \ Paad

o -

W
Elapsed Time (min)

Here we see effects of adaptive freshness-sensitive system

System adjusts number of cached query types until it reaches an equilibrium point as the number of updates changes

Results Continued

Assured Content Freshness for Various Web Site Configurations and Settings

—+— Corfiguration with dynarnic content caching solution - Configuration with adaptive dynamic content caching
—&— System configuration without dynamic contert caching

600 updstesn | [1k uotesnin e 11 uodatesirin
05 reasec 0reqrec | [105reqimec | |30 reaker 05 regnin 340 recymin 340 reqjsec 340reqsec
peiay =500 ms | | detey = s00ms - - ety = 500ms | |detay = 500ms | [deloy = 200ms | |detny = 1500 ma

Max (Response Time, Invalidation Cycle) (sec)
&

Elapsed Time (min)

Advantages

. Under heavy loads, freshness-driven adaptive
caching support content freshness up to 20x better
than without it

. Freshness 7x better than datacenter-hosted
applications with dynamic content caching

. Provides faster response times and better
scalability

Advantages / Disadvantages

. On the positive side, there were many
experiments performed that tested performance in
many different situations

. On the negative side, no clear side-by-side
comparisons of the various alternatives

. Actually engineering the solutions looks to be
very complex

Comparison of Papers

. Caching/Offloading paper had excellent
information, but security issues may pose
difficulties

Freshness-sensitivity paper introduces innovative
new technique, which can improve functioning of
co-located web database apps, but it is difficult to
know how the adaptive caching will actually
work — few details were given on how it was
implemented

