Today's Topic

Internet Real-state
Who manages Internet & Its Organization.
History of Internet.

Applications & Services

The real story of the Internet excitement is however is the new genre of systems and applications developed on it.
The Internet offer access to data, graphics, sound, software, text, and people through a variety of services and tools for communication and data exchange:

- Hypertext (WWW)
- Remote login (telnet)
- File transfer (ftp)
- Electronic mail (e-mail)
- News (USENET or network news)
- Platform independent computing (Java)
- E-commerce, Digital Library, Online Banking
- Virtual University, Tele-medicine
There is no single body which manages the Internet.

It runs through a host of independent or loosely coupled coordinating organizations.

The organizations below play a major role in the organization, management and development of it:

- Internet Society (ISOC)
- Internet Architecture Board (IAB)
- Internet Engineering Task Force (IETF)
- Internet Engineering Steering Group (IESG)
- Internet Assigned Number Authority (IANA)
- W3C

Internet Society (ISOC)

A nonprofit, non-governmental professional-membership organization of individuals and organizations interested in the development of Internet. More specifically, this is the legal umbrella for other coordinating bodies (such as IAB, IANA) for global cooperation and coordination for the Internet and its internetworking technologies and applications.

Internet Architecture Board (IAB)

IAB is a technical advisory group of the Internet Society. Its responsibilities include oversight of IETF, editorship of the RFC document series, administration of Internet assigned numbers, and liaison of the Internet Society in liaison relationships with other organizations concerned with standards.

Internet Engineering Task Force (IETF)

Body to address and resolve technical and operational problems on the Internet and to develop Internet standards and protocols.

The membership of IETF is international and completely voluntary. Members consist of network designers, operators, vendors, researchers and other interested individuals.
Internet Assigned Numbers Authority (IANA):

Based at ICANN, IANA is in charge of all "unique parameters" on the Internet, including IP (Internet Protocol) addresses and manages the Root Domain Name Service.

Global Internet Assigned Numbers Authority

Americas and sub-Saharan Africa: The American Registry for Internet Numbers (ARIN)

Europe and North Africa: Réseaux IP Européens (RIPES) (http://www.ripe.net)

Asia and Australia: Asian-Pacific Network Information Center (APNIC) (http://www.apnic.net)

Global Village

World Connectivity in 1991

World Connectivity in 1995

World Connectivity, 1997
Global Village

As of January 1998, 205 countries had at least one connection to the Internet. Thus only 11 new countries joined the Internet in 1997. This is a diminished Internet spread rate, but it occurs for the simple reason that there aren’t many new countries to join.

Matrix Inc.

Global Village

The total number of non-English-speaking online users is nearly 100 million people in late-1999. The number of non-English speakers online will surpass the number of English speakers online worldwide and grow to two-thirds of the online world by 2005.

Global Reach Inc.

Internationalization

Think of this chart as a city of 100 M people, the city of those online who do not access the Internet in English. It is a city where 20% are Japanese, 14% are German, 12% Hispanic, etc.

Growth Rates

Growth of Internet Hosts

Growth of Internet Domains
Looking Back.. The History of the Internet

- ARPANET (Advanced Research Projects Agency Network)
- TCP/IP (Transmission Control Protocol/Internet Protocol)
- NSFNET (National Science Foundation Network)
- Desktop computers
- Network upgrades
- Web Technology

History of Internet
Looking Back.. The History of the Internet

- ARPANET (Advanced Research Projects Agency Network)
- TCP/IP (Transmission Control Protocol/Internet Protocol)
- NSFNET (National Science Foundation Network)
- Desktop computers
- Network upgrades
- Web Technology

1960’s

1969 - The Department of Defense Advanced Research Projects Agency creates an experimental network called ARPANET. This network provides a test-bed for emerging network technologies.

ARPANET originally connected four universities
- Node 1: UCLA (September)
- Node 2: SRI - Stanford Research Institute (October)
- Node 3: UCSB
- Node 4: University of Utah

1950’s

1957 USSR launches Sputnik, first artificial earth satellite. In response, US forms the Advanced Research Projects Agency (ARPA) within the Department of Defense (DoD) to establish US lead in science and technology applicable to the military.

1960’s (continued..)

Information Message Processors (IMP) (Honeywell 516 minicomputer with 12K of memory) developed by Bolt Beranek and Newman, Inc. (BBN) First node-to-node message sent between UCLA and SRI (October, 1969).

First Request for Comment (RFC): "Host Software" by Steve Cocker (April 9, 1969)

Michigan State and Wayne State University establish X.25-based Merit network for students, faculty, alumni.
1970’s

1971 ALOHAnet developed by Norman Abrahamson, University of Hawaii, heart of Ethernet and connected to the ARPANET in 1972.

1972 The National Center for Supercomputing Applications (NCSA) develops the telnet application for remote login, making it easier to connect to a remote computer.

1972 FTP (file transfer protocol) is introduced, standardizing the transfer of files between networked computers.

1972 Ray Tomlinson (BBN) writes basic email message send and read software (March). Larry Roberts writes first email utility to list, selectively read, file forward, and respond to messages (July)


1976 Elizabeth II, Queen of the United Kingdom sends out an e-mail (various Net folks have e-mailed dates ranging from 1971 to 1978)

UUCP (Unix-to-Unix Copy) developed at AT&T Bell Labs and distributed with UNIX one year later.

1980’s

1981 BITNET, the “Because It’s Time NETwork” Started as a cooperative network at the City University of New York, with the first connection to Yale.

CSNET (Computer Science NETwork) built by a collaboration of computer scientists and University of Delaware, Purdue University, University of Wisconsin, RAND Corporation and BBN through seed money granted by NSF to provide networking services (especially email) to university scientists with no access to ARPANET.

1983 Name server developed at Univ of Wisconsin, no longer requiring users to know the exact path to other systems.

Internet Activities Board (IAB) established, replacing ICCB

Berkeley releases 4.2BSD incorporating TCP/IP.

EARN (European Academic and Research Network) established. Very similar to the way BITNET works with a gateway funded by IBM. FidoNet developed by Tom Jennings.

1984 Domain Name System (DNS) introduced. Number of hosts breaks 1,000

JUNET (Japan Unix Network) established using UUCP.

1980’s Continued...

• In 1982 and 1983, the first desktop computers began to appear. Many are equipped with an operating system called Berkeley UNIX, which includes networking software. This allows for relatively easy connection to the Internet using telnet.

• The personal computer revolution continues through the eighties, making access to computer resources and networked information increasingly available to the general public.
1980’s Continued...

1985-86: The National Science Foundation (NSF) connects the nation’s six super-computing centers together. This network is called the NSFNET, or NSFNET backbone.

To expand access to the Internet, the NSF supported the development of regional networks, which were then connected to the NSFNET backbone. In addition, the NSF supported institutions, such as universities, in their efforts to connect to the regional networks.

Here is a diagram of the NSF backbone, as it appeared in 1993.

1987: The NSF awards a grant to Merit Network, Inc. to operate and manage future development of the NSFNET backbone. Merit Network, Inc. collaborates with IBM and MCI to research and develop faster networking technologies.

1988 2 November - Internet worm burrows through the Net, affecting ~6,000 of the 60,000 hosts on the Internet.

1989: The backbone network is upgraded to “T1” from 56Kbps which means that it is able to transmit data at speeds of 1.5 million bits of data per second, or about 50 pages of text per second.

1990’s

1990: The ARPANET is dissolved.

1991: Gopher is developed at the University of Minnesota. Gopher provides a hierarchical, menu-based method for providing and locating information on the Internet. This tool makes using the Internet much easier.

1992: Internet Society (ISOC) is chartered

Number of hosts breaks 1,000,000

1993: The European Laboratory for Particle Physics in Switzerland (CERN) releases the World Wide Web (WWW), developed by Tim Berners-Lee. The WWW uses hypertext transfer protocol (HTTP) and hypertext links, changing the way information can be organized, presented and accessed on the Internet.

1993-1994: The graphical web browsers Mosaic and Netscape Navigator are introduced and spread through the Internet community. Due to their intuitive nature and graphical interface, these browsers make the WWW and the Internet more appealing to the general public.

1995: The NSFNET backbone is replaced by a new network architecture, called vBNS (very high speed backbone network system) that utilizes Network Service Providers, regional networks and Network Access Points (NAPs).

1995

1995: RealAudio, an audio streaming technology, lets the Net hear in near real-time

1995 Radio HK, the first commercial 24 hr., Internet-only radio station starts broadcasting

1995 NSF establishes the very high speed Backbone Network Service (vBNS) linking super-computing centers: NCAR, NCSA, SDSC, CTC, PSC

Technologies of the Year: WWW, Search engines

Emerging Technologies: Mobile code (JAVA, JAVAscript), Virtual environments (VRML), Collaborative tools

1996

ISP Meltdown: AOL (19 hours), Netcom (13 hours), AT&T WorldNet (28 hours - email only)

New Yorks’ Public Access Networks Corp (PANIX) is shut down after repeated SYN attacks by a cracker using methods outlined in a hacker magazine (2600)

 Various US Government sites are hacked into and their content changed, including CIA, Department of Justice, Air Force

MCI upgrades Internet backbone adding ~13,000 ports, bringing the effective speed from 155Mbps to 622Mbps.

Technologies of the Year: Search engines, JAVA, Internet Phone
1997

2000th RFC: "Internet Official Protocol Standards"

The American Registry for Internet Numbers (ARIN) is established to handle administration and registration of IP numbers to the geographical areas currently handled by Network Solutions (InterNIC), starting March 1998.

Longest hostname registered with InterNIC: CHALLENGER.MED.SYNAPSE.UAH.

Technologies of the Year: Push, Multicasting


1998

Electronic postal stamps become a reality, with the US Postal Service allowing stamps to be purchased and downloaded for printing from the Web

Network Solutions registers its 2 millionth domain on 4 May.

San Francisco sites without off-city mirrors go offline as the city blacks out on 8 December.

Technologies of the Year: E-Commerce, E-Auctions, Portals

Emerging Technologies: E-Trade, XML.

1999

Internet access becomes available to the Saudi Arabian (.sa) public in January. Somalia gets its first ISP - Olympic Computer (Sep). .ps is registered to Palestine (11 Oct)

MCI/Worldcom, the vBNS provider for NSF, begins upgrading the US backbone to 2.5Gb/s

First Internet Bank of Indiana, the first full-service bank available only on the Net, opens on 22 February

MCI/Worldcom launches vBNS+, a commercialized version of vBNS

RFC 2550 Proposes the solution of Y10K and Beyond

First Internet Bank of Indiana, the first full-service bank available only on the Net, opens on 22 February

MCI/Worldcom launches vBNS+, a commercialized version of vBNS

RFC 2550 Proposes the solution of Y10K and Beyond

Technologies of the Year: E-Trade, Online Banking, MP3


2000-2003

• 2000: The US timekeeper (USNO) and a few other time services around the world report the new year as 19100 on 1 January.

• 2001: .biz .museum begun to resolve

• 2002: .name .coop .aero begin to resolve

• 2003: TeraGrid Computing