
1

1

CS 4/55231
Internet Engineering

Kent State University
Dept. of Computer Science

LECT-2

2

Application
Architecture

LECT-2, S-3
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Class Mechanics

• Send email and get listed in class email list.
Use "IN2004S" in the email subject field.

• Project group formation at the end of this
class

LECT-2, S-4
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Topics to Cover
• Network/Socket Programming.
• Server Client Design.
• Internet Architecture

– LAN
– WAN
– SCALABILITY
– INTERNETWORK

• INTERDOMAIN ROUTING
– IGP, BGP
– BGP Experiment in Internet Engineering Lab (GROUPS OF 2)

• INTERNET SYSTEMS
– MAIL, FTP, DNS

• OPEN EMBEDDED INTERNET PROTOCOLS
– HTTP, FIREWALL, PROXY, CACHE

• ADVANCED TOPICS
– DIGITAL SIGNATURE, CERTIFICATES AND CERTIFICATE

SERVERS.

LECT-2, S-5
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Today’s Topic

How to Build a Network Application

We will build a
baby Server/Client today!

LECT-2, S-6
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Client Server Interaction

2

LECT-2, S-7
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Multiple Services on One Computer

LECT-2, S-8
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

CLIENT SEVER

Computer Computer

Request
Sent to Server

SEVER

Computer Computer
Client Exits

SEVER

Computer Computer

Server
Waits

CLIENT SEVER

Computer Computer

Response
Sent to Client

LECT-2, S-9
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

CLIENT SEVER

Computer Computer

Request
Sent to Server

Client
Exits

Server
Waits

Response
Sent to Client

LECT-2, S-10
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Application Platform

Network Protocols
(TCP/IP/UDP)

Operating System Services

API (TLI/Socket)

Network-based
Applications

11

API to Network

LECT-2, S-12
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Network APIs

• Transport Layer Interface (TLI) was developed in
mid 1980s by AT&T with release 3 of system V
UNIX. Later it became a part of Sun systems. Now
this is available everywhere.

• Socket API is the original API developed by
Berkeley UNIX group in late 70’s and early 80s.
Available on BSD UNIX Systems.

• WinSock is the API version provided for Microsoft
Windows.

3

LECT-2, S-13
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

What is Socket API?
• Socket Application Program Interface can be used to

access a network protocol stack from any
programming language.

• Socket API has been inspired by Unix open-read-
write-close file access paradigm (original is Multics).

• However, accessing network is substantially more
complex than file access.

LECT-2, S-14
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Sockets & Files

• An integer called file descriptor is returned, when a
file is opened.

• In the same way a socket descriptor is returned when
a socket is opened.

• A file descriptors binds to a file when it is open.

• But, a socket can be created without binding to a
specific destination. Applications can choose when to
bind

– Datagram binds each time when it sends, therefore same
socket can be used to send to many.

– TCP binds once, and it remains, thus avoids repeated
binding.

LECT-2, S-15
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Socket Creation & Closing

• Unix uses fork() and execv() to create and spawn new
program. Child always inherits all parent sockets. UNIX
maintains a count of owners.

• A process can close a socket by close(socket)

• descriptor=socket(pfamily, type, protocol)

– pfamily =PF_INET| PF_APPLETALK | PF_UNIX| PF_PUP
– type=SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, etc.
– protocol=subtype of protocol family if any. Can be obtained by

getprotobyname(), getprotobynumber() etc.

LECT-2, S-16
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Specifying a Local Address

• Initially a socket is created without any association to a
local or remote address.

• For TCP/IP it means no protocol port number.
• Some application may not care (clients generally). Some

do (all servers). The call:

• bind(socket, localaddress, addrlen)
– socket is the socket descriptor returned by socket()
– localaddress is a complex structure with several fields, and may

vary for protocols.
– For TCP/IP it contains both the port number and the IP address

of the host is in it.
– addrlen is the length of the address.

LECT-2, S-17
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Address Structures
• Barkley code defines a generic sockaddr structure to

represent address of a connection end-point.
struct sockaddr {

u_char sa_len; /*total length of the address*/
u_char sa_family; /*family of address*/
char sa_data[14]; /*the address itself*/

};

• Example: TCP/IP defines its own exact sockaddr_in:
struct sockaddr_in {

u_char sin_len; /*same as sa_len*/
u_char sin_family; /*same as sa_family*/
u_short_sin_port; /*protocol port number */
struct in_addr sin_addr /*4 bytes IP address of the host*/
char sin_zero[8]; /*not used 6+8=14*/

};

• Generally server calls bind to specify a server port
number at which it will accept connection.

• A server on a multi-homed host can write down
INADDR_ANY instead of the IP address to say it will accept
the connection in any of the computers IP addresses.

Who
supplies
which
part?

LECT-2, S-18
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Listening for Connection

• listen creates a buffer for the pending
connection requests from the remote clients.

• Listen(socket, queuelength)

– socket is the descriptor that has been created and is
bound to a local address.

– queuelength specifies how many request can wait
while server is busy with one.

– OS maintains a separate request queue for each
socket. It the queue is full, OS refuses new requests.

4

LECT-2, S-19
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Waiting for Accepting a Connection

• After a server executes socket-bind-listen, it can go to
sleep by calling accept. The Operating System will
wake up the server when there is a request in the
request queue.

• newsock=accept(socket, &addr, &addrlen)
– socket is on which it was waiting,
– addr is a pointer to a structure of type sockaddr, in which

the address of the client will be returned by the OS.
Addrlen is length of this address.

– newsock is a new socket created by system which has its
destination pre-connected to the client.

• The server can keep on communicating with the requesting client
with the new socket, and close it when done. Meanwhile, the
original socket remains intact to accept request from other
clients. LECT-2, S-20

IN2004S, javed@kent.edu
Javed I. Khan@2004

INTERNET
ENGINEERING

Connecting to a Destination Address

• Initially a socket is created without any destination
address. An client application program must call
connect to establish connection.

• connect(socket, destaddr, destaddrlen)

LECT-2, S-21
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Sending Data

• writev(socket, iovector, vectorlen)
– iovector is an array of addresses and their

lengths. The system gathers all the data.

• send(socket, message, length, flags)
– flags allows to invoke special TCP features such as

“URGENT” message, “do not use local routing table” etc.

• sendto(socket, message, length, flags, daddr,
daddrlen)

• sendmsg(socket,messagestruct,flags)

• write(socket, buffer, bytelength)
32 bit pointer to message block

32 bit message block length

32 bit pointer to message block

32 bit message block length

…….

pointer to socketaddr

Size of socketaddr

Pointer to IOVEC list

Length of IOVEC list

Pointer to Access Rights List.

Lengths of Acess Rights list

LECT-2, S-22
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Receiving Data

• read(descriptor, buffer, length)

• readv(descriptor, iovector, vectorlen)

• recv(socket, buffer, length, flags)

• recvfrom(socket,buffer,length,flags,fromaddr,addrlen)

• recvmsg(socket,messagestruct,flags)

LECT-2, S-23
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Obtaining Local & Peer Address

• getpeername(socket, &destaddr,&addlen)

• getsockname(socket, &localaddr,&addlen)

Obtaining & Setting Socket Options

• Getsockopt(socket,level,optionid,&optionval,&length)

• Setsockopt(socket,level,optionid,optionval,length)

• Example options are timeout parameters, allocated
buffer space etc.

LECT-2, S-24
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Handling Multiple Request

• nready=select(ndesc, &indesc, &outdesc,&execdesc,timeout)
– a call to select will allow server to wait till one of the descriptor is

ready.
– ndesc=number of descriptors. System checks descriptors from 0 to

ndesc-1. There are 3 bit masks to wait on a selected subset.
– Indesc, outdesc and exedesc are bit masks that identifies input,

output, and exception event in which sockets to check.
– Timeout says how long to wait. 0 means wait indefinitely.
– It returns the number of ready descriptors and also updates the

masks to reflect which of the selected sockets are ready.
– To use an application must create multiple sockets and then call

select(). Once, a socket becomes ready OS wakes the process.

5

LECT-2, S-25
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING• gethostname(name,length)

• sethostname(name,length) *

Obtaining & Setting Hostnames

• getdomainname(name, length) *

• setdomainname(name,length)

Obtaining & Setting Domain Names

LECT-2, S-26
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

• Localshort=ntohs(netshort)

• Locallong=ntohl(netlong)

• Netshort=htons(localshort)

• Netlong=htonl(locallong)

Network Byte Order

LECT-2, S-27
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

IP Address Manipulation

• Address=inet_network(string)
– address is a 32 bit IP address in network byte order.
– string is an ASCII stirng with IP in dotted decimal notation
– inet_network returns o for host part.

• Str=inet_ntoa(internetaddr)
• Internetaddr=inet_makeaddr(net,local)

• Net=inet_netof(internetaddr)

• Local=inet_lnaof(internetaddr)

String to 32 bit network byteordered address
• 255.255.255.0 vs. xffff ffff
• Address=inet_addr(string)

LECT-2, S-28
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Accessing Domain Name System

• Each computer now also have a symbolic
domain name.

– Such as www.kent.edu or
shimana.facnet.mcs.kent.edu

• A set of designated computers (knows as
DNS servers) scattered across the internet
maintains the mapping of DNS to the actual
IP.

• Translation from domain name to IP address
or the opposite, requires communication with
these servers.

LECT-2, S-29
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Accessing Domain Name System

• res_mkquery(op,dname,class,type,
data, datalen,newrr, buffer,buflen)

• res-send(buffer,buflen,answer,anslen)

• dn_expand(msg,eom,compressed,full,fullen)

• dn_comp(full,compressed,cmprlen,prevptr,lastptr)

• ptr=gethostbyname(namestr)

• res_init()

• ptr=gethostbyaddr(add,len,type)

Initialize DNS comm.

Form Query.

Send Query.

Conversion
between ASCII
name and
compressed
domain name
format.

Takes a domain name
and returns a structure
with information about
the domain.

LECT-2, S-30
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Obtaining Information about
Network Services

• WHOIS a special server service, which allows a client
in one machine to obtain information about user who
has account in server machine. It runs on Port 43.

• Ptr=getservebyrname(name, proto)

• Name is the address of a desired service, and proto is usually
TCP or UDP. It returns a structure which contains name of
the service, a list of aliases, protocol identifier for this
service, and an integer protocol port number.

• Ptr=getservbyport(port,proto)

6

LECT-2, S-31
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Obtaining information about
Network & Protocol

• Ptr=getnetbyname(namestr)

• Each protocol has official name, number and
registered aliases. These routines can be used to
obtain complete information from name or port
number of it.

• Ptr=getprotobyname(name)

• Ptr=getprotobynumber(number)

• Ptr=getnetbyaddr(netaddr, addrtype) Namestr is the name of
the network in ASCII, ptr
is a data structure which
contain 32 bit IP address
and other information
about the net.

LECT-2, S-32
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

An Example Service
• A client connect to a server, and waits for output.
• Server returns the count of the times it has been

contacted by any client.
• Upon receiving the data the client prints it to screen.

• Command line arguments:
– client <hostname> <portname>
– server <portnumber>
– hostname and portnumbers are optional.
– Default host is localhost
– Default port is 5193.

• Output on client machine:
– This server has been contacted 10 times.

LECT-2, S-33
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

LECT-2, S-34
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

server.c

Click Here

http://www.animasters.com/menu/vrml/estuary/estuaryintro.html

LECT-2, S-35
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

client.c

Click Here

http://www.animasters.com/menu/vrml/estuary/estuaryintro.html
LECT-2, S-36

IN2004S, javed@kent.edu
Javed I. Khan@2004

INTERNET
ENGINEERING

More References

• UNIX Network Programming, Volume 2, Second Edition:
Interprocess Communications, Prentice Hall, 1999.

• UNIX Network Programming, Volume 1, Second Edition:
Networking APIs: Sockets and XTI, Prentice Hall, 1998.

• More example programs & source codes
– http://www.kohala.com/start/unpv12e.html

