EXTENDING LAN
winning the distance limitation

EXTENDING LAN
• Why LANs are distance limited?
 – Signal loss at physical level
 – Coordination at logical level
• Engineers have developed a variety of ways to extend LAN connectivity.
• Most extension mechanisms use standard interface hardware and insert additional hardware components that can extend signals at longer distances.
• Fiber optic extensions, repeaters, bridges or switches and hubs can be used for extending LANs.

Fiber Modems
• The simplest LAN extension mechanism uses optical fibers and a pair of fiber modems extend the connection between a computer and a transceiver. Fibers have low delayed and high bandwidth.

Repeaters
• Repeaters connects a pair of cables and is an analog device.
• Its main job is to repeats every signal that it hears on one side to the other.
Extended Ethernet LAN with Repeaters

Repeaters repeat everything, collision, noise, even thunderstorm!

Bridges
- Bridges also connect two networks, but they understand frame format.
- Has a separate HW address.
- Can talk to each other.
- Listens to both the networks in promiscuous mode and can copy every frame it receives intact to the other network.
- Thus two LANs can work as one LAN.
- Computers would not know on which segment they are in.

Bridges

- Bridges can also perform frame filtering:
 - It looks into hardware address in the frames.
 - Relays the frames only if it is for a computer in other segment.

Bridging Between Buildings

- Each site has a bridge. Why?

Cycle of Bridges

- How to avoid Cycles (DST): Parallelism
- How computers should be distributed at two segments?
WAN

how to win the limit on the number of computers?

Problem of Scale: WANs

- The techniques shown in last few slides show how the distance limitation of LANs be extended.
- But, they do not solve the problem of Scale. What if we have too many computers scattered across long distances, at different places?
- Solution:
 - Packet Switches
 - Moves packet from one network to another.
 - Not only one or two but, many switches creates a network of networks.
 - Distributed routing.

Switching

Computers can communicate in parallel. But costly. Thus a combination of Switch & Hub is used.

Packet Switching

- One side connects to computers, other side connects to other packet switches.

Back Bone WANs with Packet Switches

- Computers now talk in parallel.
- Switches does store and forward.

Visit to ABILANE Switch

- ABILANE
 - ABILANE WEATHERMAP
 - ROUTER TRAFFIC STATS
- OTHER INTERNET BACKBONES
Physical Addressing in a WAN

- Each address is divided into two parts: switch address and computer address.
- Each switch maintains a list of next-hop-address for each destination.

Example of Next Hop Forwarding

Forwarding Table of Switch#2

Further Scalable WAN

- Scalable Network
 - Interior and
 - Exterior Packet Switches
- Scalable Address Table
 - Universality
 - Each should know the path to any computer.
 - Optimality
 - The path should be optimum too.

Routing in a WAN

Size of address Table?

Default Routing

How to Determine Best Path?

- Dijkstra’s shortest vector algorithm is used.
- How to collect routing information needed for Dijkstra’s algorithm?
 - Distance Vector Algorithm
 - Link State Algorithm.
 - Refresh these up!
Connectionless vs. Connection-oriented Switching

- A packet can explicitly carry the destination address. However, if lots of packets are going to the same destination, they can carry a small label:
 - Cost of Address field
 - Example:
 - ID: 17 used
 - Channel identifier used only by the destination switch

Example WAN Technologies

- Frame Relay
 - Suitable for long distance LAN bridging
 - Supports up to 96 frames on 1.5 Mbps or 56Kbps.
- SMDS (switched multi-megabit data service)
 - Designed to carry data
 - Higher bandwidth than FR
- ATM
 - Most promising in WAN
 - Ensures quality of service
 - Available in 155 Mbps/622 Mbps

Example WAN Technologies -2

- ARPANET
 - A defense initiative started in 1960s.
 - Legacy of Internet. Based on 156Kbps leased serial lines.
- X.25
 - Developed by ITU, popular in Europe
 - Used for remote terminal placement of computers.
 - Not suitable for computer-to-computer communication.
- ISDN
 - Objective: data networking on voice system
 - 64 Kbps data/16 Kbps control channel.

Computing Shortest Path (Dijkstra’s Algorithm)

W[i][j]=link cost between node i and j
S[]=all nodes except source
R[i]=source for all connected nodes otherwise zero
D[i]=W[source][i] for nodes connected from src otherwise infinity.
while (set S is not empty) {
 choose u from S closest to source;
 if (D[u]==infinity) no path in S, exit;
 delete u from S;
 for each v such that W[u][v] is an edge {
 if (v is still in S) {
 c=D[u]+W[u][v];
 if (c < D[v]) {
 R[v]=R[u];
 D[v]=c;
 }
 }
 }
}
Distributed Vector Distance Routing Table Computation

Given a local routing table with weight and an incoming message:

Repeat forever {
 wait for next message from N;
 for each entry in the message {
 if V is destination and D is cost;
 edit distance to N + D;
 if V is a new destination
 add a new entry, for V with next-hop = N and D = c;
 if V is there and next-hop is also N
 replace local D with c;
 if V is there but next-hop is not N but D > c
 replace next-hop = N and local D = c;
 }
}

Link-State Routing

- Step-1: Every Switch broadcasts the status of links attached to it in regular interval.
- Step-2: Each Switch collects the incoming messages and builds its own network graph.
- Step-3: In parallel, they independently compute the best path.