Basic Concepts (1)

- Internet Service Provider (ISP)
 - Provider who connects an end user customer with the Internet in one or few geographic regions.
- National & Regional Provider (NP and RP)
 - Provider who connects two or more ISP networks across regions.
- Point-of-Presence (POP)
 - An access point where a customer can connect into an ISP network.

Concepts (POP, ISP, NP)

Basic Concepts (2)

- National Access Point (NAP)
 - The facility where various NP networks can interconnect.
 - Formerly these were organized as Federal Internet Exchange (FIX) & Commercial Internet Exchange (CIX). FIX/CIX model did not scale well.
 - It is physically a high-speed network switch or network to which a number of routers can be connected for the purpose of traffic exchange (example: FDDI or ATM switch).

NAP

Basic Concepts (3)

- Route Server
 - Route server exchanges routing information and policy with the service provider routers attached to the NAP.
 - It does not perform any traffic forwarding.
 - A group of servers facilitates interconnections between ISPs by gathering routing information from each ISP applying ISPs predefined set of rules, policies, and then redistributing the processed information to each ISP.
 - It saves routers of each individual ISPs to peer with all other routers, thus cutting down the number of peers from (n^2) to 1.
ISP-Customer Connectivity (1)

- ISP Bottleneck
 - Each ISP should have ample bandwidth to provide service to all its customers.

- Access Redundancy
 - ISP connected via multiple NAP will be more reliable than the one with one.

Demarcation Point
- A demarcation point is the point that differentiates a customer’s network from that of the provider.

Demarcation Models
- Customer provides router
- ISP provides CSU/DSU
- ISP router at customer site
- Customer provides everything
- Customer Network (CNS)
- ISP Network (ISP)
- Customer Provider (CP)
- ISP Provider (IP)
- Demarcation Point (DP)

Autonomous Systems

- Autonomous Systems
 - An autonomous system (AS) is a set of routers having a single routing policy, running under a single technical administration. Each AS has its own internal routing mechanism and policy. Each AS has a unique number registered at IANA.
Divide the Routing

- Interior Routing Protocol
 - The routing protocols that an AS use internally to route its packets are known as Interior Gateway Protocols or IGP.
 - Examples: RIP, OSPF

- Exterior Routing Protocol
 - The routing protocol that the AS use to exchange traffic between them is called Exterior Gateway Protocol or EGP.
 - Example: BGP

AS Connectivity

- Stab Autonomous System
 - An Autonomous System is called a stub, when it reaches networks outside its domain via a single exit point. These are also called single homed AS.
 - A Stab AS does not really have to learn Internet routes from its provider. All traffic can be default routed to provider.

Routing Alternatives for Stab AS

- Static, IGP, or EGP:

Multi-homed AS

- Multi-homed Non-transit AS
 - An AS is multi-homed if it has more than one exit point to the outside world. A non-transit router does not allow traffic of any source or destination that is outside the AS.
 - Like single homed routers, here also EGP is not required between AS1 and providers. However, it is recommended.

Multi-homed AS

- Multi-homed Non-transit AS
 - It will advertise only its own routes, not the ones learned from the other ASs.
 - Example: AS1 only advertises n1 and n2.

ISP1 and ISP2 still can force packets in AS1 by static route.
- AS1 can however, filter packets.
Multi-homed Transit AS

- Multi-homed Transit AS
 - A multi-homed transit router is connected to more than one provider. It allows traffic with origin and destination that does not belong to it.

- Some additional concepts:
 - Border Router: Routers those run EGP
 - IBGP: For transit traffic an AS runs an internal version of EGP, it is called Interior Border Gateway Protocol (IBGP).
 - Transit Router: Routers those run IBGP.
 - For handling transit traffic an AS creates ‘pipe’ between two border routers who are also transit routers.

Interoperation between Autonomous Systems
(Example: BGP4)
RFC 1771

Example of Operations

- Establish a Connection
- Exchange all Routing Updates

BGP4 Overview

- BGP4 is a path vector protocol which carry routing information between Autonomous Systems. Path vector comes from the fact that BGP routing information carries a sequence of AS numbers, indicating the path of a route.

- BGP uses TCP as its transport (port 179). Connected Routers are called peers.

- At the beginning all routing information is sent to peer, but after that it only advertises changes. In contrast to Link State or Vector distance protocols, incremental update tremendously saves Internet Traffic.

Example of Operations (contd..)

- Example Route Change Messaging
- Steady State After the Route Change
BGP4 Overview (2)

- Route:
 - a unit of information that pairs a destination with the attributes of a path to that destination.
- Routes are advertised between a pair of BGP speakers in UPDATE messages.
- Routes are stored in the Routing Information Bases (RIBs).

Routing Information Base

- The Routing Information Base (RIB) within a BGP speaker consists of three distinct parts:
 - Adj-RIBs-In:
 - The Adj-RIBs-In store routing information that has been learned from inbound UPDATE messages.
 - Loc-RIB:
 - The Loc-RIB contains the local routing information that the BGP speaker has selected by applying its local policies to the routing information contained in its Adj-RIBs-In.
 - Adj-RIBs-Out:
 - The Adj-RIBs-Out store the information that the local BGP speaker has selected for advertisement to its peers. It is carried in the local BGP speaker's UPDATE messages and advertised to its peers.

BGP Message Types

- OPEN
 - A request to open a peer connection, when a router starts.
- UPDATE
 - Routing update includes all the necessary information that BGP used to build a loop free picture of the Internet.
- NOTIFICATION
 - Notification messages are exchanged to report errors.
- KEEPALIVE
 - These are short messages exchanged between peers to indicate that peers are reachable.

BGP Message Format

- Marker's are all 1s, unless authentication in place.
- Length ranges from 19-4096 bytes.

Open Message Format

- Version:
 - indicate the version number of BGP protocol, such as BGP1, 2 or 3. BGP peers agree on a version number which is highest common among them.
- My Autonomous System:
 - a 2-byte AS ID of the router.
- Hold Time:
 - maximum number of seconds that may elapse between two KEEPALIVE or UPDATE messages. If no such message arrives past the hold time the neighbor is considered dead. Otherwise the timer is restarted upon each receipt of KEEPALIVE or UPDATE.
 - The minimum of the hold time is effective when it differs between peers.
 - 0 hold time mean, never expire timer.
Open Message Fields (2)

- **BGP Identifier**:
 - An identifier indicating the sender's ID. Typically, the highest IP address of a router.

- **Optional Parameters**:
 - A set of optional triplets in the format `<Parameter Type, Parameter Length, Parameter Value>`.
 - Field lengths: 1 byte + 1 byte + variable.
 - Example: Authentication parameters.

- **Optional Parameters length**:
 - 1-byte unsigned integer in bytes.
 - 0 indicates no parameter present.

Update Message Format

- One **UPDATE** message advertises one route. It is described by several path attributes.

- **NLRI field** contains a set of destinations about which BGP is trying to inform its other BGP neighbors.

Unfeasible Routes Length (2 bytes)

Withdrawn Routes (variable)

Path Attributes (variable)

Network Layer Reachability Information (variable)

Update Message Fields (1)

- **Path Attribute Length**:
 - This 2-octets unsigned integer indicates the total length of the Path Attribute fields in octets. A value of 0 indicates that no reachability information is included.

- **Path Attributes**:
 - variable length sequence of path attributes is present in every UPDATE.
 - Each path attribute is a triplet `<attribute type, attribute length, attribute value>` of variable length.
 - Attribute Type is a two-octet field that consists of the Attribute Flags octet followed by the Attribute Type Code octet.

Quiz: If MASK is 100 bits. Then How many bytes will be prefix?

NLRI format

- Each Address is `<1 byte length, prefix (variable bytes)>`

- Each Prefix is padded to byte boundary

Below are some examples:

- 18, 192.213.134.0

- 18, 192.213.134.0, 01010000.01010010.11000000

Update Message Fields (2)

- **Path Attribute Length**:
 - This 2-octets unsigned integer indicates the total length of the Path Attribute fields in octets. A value of 0 indicates that no reachability information is included.

- **Path Attributes**:
 - variable length sequence of path attributes is present in every UPDATE.
 - Each path attribute is a triplet `<attribute type, attribute length, attribute value>` of variable length.
 - Attribute Type is a two-octet field that consists of the Attribute Flags octet followed by the Attribute Type Code octet.
Path Attribute: Flags
- Optional Flag – a
 - If or not the attribute is optional (1) or well-known i.e. must (0).
- Transitive Flag - b
 - Always 1 for well-known. For optional attributes if or not the attribute should be forward or kept local.
- Partial Flag - c
 - 1 the information is partial. For well-known attributes it must be 0.
- Extended Length Flag – d
 - If the attribute is larger than 255 bytes, 2 byte length field, instead of 1.
- Rest 4 bits are unused.

Path Attribute: Type Codes
- 1-ORIGIN (well-known, mandatory)
- 2-AS_path (well-known, mandatory)
- 3-NEXT_HOP (well-known, mandatory)
- 4-MULTI_EXIT_DISC (optional, non-transitory)
- 5-LOCAL_PREF (well-known, discretionary)
- 6-ATOMIC_AGGREGATE (well-known, discretionary)
- 7-AGGREGATOR (optional, transitive)
- 8-COMMUNITY (optional, transitive)
- 9-ORIGINATOR_ID
- 10-Cluster List
- 11-Destination Preference
- 12-Advertiser
- 13-rcld_path

Path Attribute: ORIGIN
- ORIGIN is a well-known mandatory attribute that defines the origin of the path information.
- The data octet can assume the following values:
 - 0 IGP - NLRI is interior to the originating AS
 - 1 EGP - NLRI learned via EGP
 - 2 INCOMPLETE - NLRI learned by some other means
- The ORIGIN attribute shall be generated by the autonomous system that originates the associated routing information.
- It shall be included in the UPDATE messages of all BGP speakers that choose to propagate this information to other BGP speakers.

Path Attribute: AS_PATH
- AS_PATH is a well-known mandatory attribute that is composed of a sequence of AS path segments.
- Each AS path segment is a triplet:
 - Type AS_SEQUENCE, path segment length, path segment value.
- The path segment type is a 1-octet long field with values:
 - 1 AS_SET: unordered set of ASs or
 - 2 AS_SEQUENCE: ordered set of ASs a route in the UPDATE message has traversed
- The path segment length is a 1-octet long field containing the number of ASs in the path segment value field.
- The path segment value field contains one or more AS numbers, each encoded as a 2-octets long field.

Path Attribute: AS_PATH (cont..)
- When a BGP speaker propagates a route which it has learned from another BGP speaker’s UPDATE message, it shall modify the route’s AS_PATH attribute based on the location of the BGP speaker to which the route will be sent:
 - When a given BGP speaker advertises the route to another BGP speaker located in its own autonomous system, the advertising speaker shall not modify the AS_PATH attribute associated with the route.
 - When a given BGP speaker advertises the route to a BGP speaker located in a neighboring autonomous system, then the advertising speaker shall update the AS_PATH attribute as follows:

Path Attribute: AS_PATH (cont..)
- If the first path segment of the AS_PATH is:
 - Type AS_SEQUENCE, the local system shall prepend its own AS number as the last element of the sequence (put it in the leftmost position).
 - Type AS_SET, the local system shall prepend a new path segment of type AS_SEQUENCE to the AS_PATH, including its own AS number in that segment.
Path Attribute: AS_PATH (cont.)

- When a BGP speaker originates a route then:
 - a) the originating speaker shall include its own AS number in the AS_PATH attribute of all UPDATE messages sent to BGP speakers located in neighboring autonomous systems. (In this case, the AS number of the originating speaker’s autonomous system will be the only entry in the AS_PATH attribute).
 - b) the originating speaker shall include an empty AS_PATH attribute in all UPDATE messages sent to BGP speakers located in its own autonomous system. (An empty AS_PATH attribute is one whose length field contains the value zero).

Path Attribute: NEXT_HOP (cont.)

- Do not spread hearsay!
 - A BGP speaker can advertise any external border router as the next hop, provided that the IP address of this border router was learned from one of the BGP speaker’s peers, and the interface associated with the IP address of this border router shares a common subnet with the local and remote BGP speakers.
- Do not try selling it back to the original seller!
 - A BGP speaker must never advertise an address of a peer to that peer for a route that the speaker is originating.
- Pass on original story to all in your group!
 - When a BGP speaker advertises the route to a BGP speaker located in its own autonomous system, the advertising speaker shall not modify the NEXT_HOP attribute associated with the route.

Path Attribute: MULTI_EXIT_DISC (MED)

- Used to hint another AS which of the entry ways to prefer when there are multiple router choices.
- This information is never propagated (non-transitive).
Path Attribute: LOCAL_PREF
- It is a well-known discretionary attribute, a four-octet non-negative integer.
- Used by a BGP speaker to inform other BGP speakers in its own AS of the originating speaker's preference for an advertised route.
- A BGP speaker shall calculate the degree of preference for each external route and include the degree of preference when advertising a route to its internal peers. The higher degree of preference should be preferred.
- A BGP speaker shall not include this attribute in UPDATE messages that it sends to BGP speakers located in a neighboring AS.

Path Attribute: ATOMIC_AGGREGATE
- ATOMIC_AGGREGATE is a well-known discretionary attribute of length 0.
- Generally used to indicate any loss of information while aggregation has been performed.
- Used by a BGP speaker to inform other BGP speakers that the local system selected a less specific route without selecting a more specific route which is included in it.
- If a BGP speaker, when presented with a set of overlapping routes from one of its peers selects the less specific route without selecting the more specific one, then the local system shall attach the ATOMIC_AGGREGATE attribute to the route when propagating it to other BGP speakers.

Path Attribute: ATOMIC_AGGREGATE (...)
- A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute shall not remove the attribute from the route when propagating it to other speakers.
- A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute shall not make any NLRI of that route more specific when advertising this route to other BGP speakers.
- A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute needs to be cognizant of the fact that the actual path to destinations, as specified in the NLRI of the route, while having the loop-free property, may traverse ASs that are not listed in the AS_PATH attribute.

Path Attribute: AGGREGATOR
- AGGREGATOR is an optional transitive attribute of length 6.
- The attribute contains the last AS number that formed the aggregate route (encoded as 2 octets), followed by the IP address of the BGP speaker that formed the aggregate route (encoded as 4 octets).

Notification Message Format
- 3-UPDATE Message Error subcodes:
 1 - Malformed Attribute List.
 2 - Unrecognized Well-known Attribute.
 3 - Missing Well-known Attribute.
 4 - Attribute Flags Error.
 5 - Attribute Length Error.
 6 - Invalid ORIGIN Attribute.
 7 - AS Routing Loop.
 8 - Invalid NEXT_HOP Attribute.
 9 - Optional Attribute Error.
 10 - Invalid Network Field.
 11 - Malformed AS_PATH.

Keep Alive Message Format
- There is no message body, just 19 bytes BGP message is sent by the BGP speakers.
- Typically it is sent at 1/3rd of the hold-time interval to ensure proper operation.
Overview of Operations

- **Connection Opening:**
 - Two systems form a TCP connection between them.
 - Exchange messages to open and confirm the connection parameters.
 - The initial data is the entire BGP routing table.
- **Steady State Operation:**
 - BGP does not require periodic refresh. BGP speaker must retain the current version of the entire BGP routing tables of all of its peers for the duration of the connection.
 - Updates are sent when routing tables changes.
 - KeepAlive messages are sent periodically to ensure the liveness of the connection.

Who can be BGP host?

- The hosts executing the Border Gateway Protocol need not be routers.
- A non-routing host could exchange routing information with routers via EGP or even an interior routing protocol.
- That non-routing host could then use BGP to exchange routing information with a border router in another Autonomous System.

Building Peer Sessions

- During connection establishment by OPEN message they check AS numbers to determine who is EBGP peer and who is IGBP peer.
- Internal BGP peers have to be “logically” directly connected, i.e. they should have IP connectivity.
- External BGP peers must be physically connected. It drops any UPDATE if it is not.
 - Exception CISCO EGP Multihop.

Authentication

- BGP message header allows authentication.
- It is used so that hackers can not pose as peer and inject wrong routing information.
- It used MD5. It involves a combination of password and key mechanism.
BGP Continuity Inside an AS

- To avoid creating routing loops inside an AS, BGP does not advertise to internal BGP peers routes that are learned via other IBGP peers.
- Thus, every BGP routers within an AS should be fully connected.

Synchronization of multiple BGP Speakers in an AS

- If a particular AS has multiple BGP speakers and is providing transit service for other ASs, then care must be taken to ensure a consistent view of routing within the AS by the interior routing protocol.
 - Let the BGP speakers arrive at an agreement as to which border routers will serve as entry points for particular destinations outside the AS using a common set of policies.
 - This information is communicated to the AS’s internal routers, possibly via the interior routing protocol.
 - Care must be taken to ensure that the interior routers have all been updated with transit information before the BGP speakers announce to other ASs that transit service is being provided.

Source of Routing Update (1/3)

- Dynamic Injection of Routes
 - Purely dynamic [redistribute]
 - Routes that arrive in the local routing table via IGP such as RIP, IGRP, OSPF, EIGRP, ISIS are all automatically forwarded.
 - If an AS is running multiple of the IGP then it can use “protocol distance” to tell which route to accept when there competing route information.
 - Not a very good approach. Privacy as can be compromised.

Source of Routing Update (2/3)

- Semi-Dynamic Injection of Routes
 - A list is maintained which indicated routes for which network can be advertised. [use network command]
 - If the routes that arrive in the local routing table are in this list only then these are forwarded.
 - List is typically size limited.
Source of Routing Update (3/3)

- Static Injection of Routes
 - Administrator manually defines the static routes in the routing table then use either network or redistribute technique to propagate them.
 - The routes never disappear from routing table.
 - Increases routing stability.
 - But needed expensive admin time.

Putting it All together

Example

192.213.1.0/24