
1

26

Client
Extension Mechanisms

(helpers & plugins)

LECT-13, S-27
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Plug- Ins

• A plug-in is a separate code module that behaves
as though it is part of the Browser.

• You use plug-ins that extend Browser with a wide
range of interactive and multimedia capabilities,
and that handle one or more data (MIME) types.

LECT-13, S-28
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Demo

Few Examples

LECT-13, S-29
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Design Goals
• To extend the capabilities of Browser by providing

inline viewers for types of data not supported by
Communicator itself.

• provide an API that is as simple and concise as
possible, making it relatively easy to leverage
existing native code libraries or convert existing
applications to take advantage of the web.

• Plug-ins can use the Java Runtime Interface (JRI)
to access Java. Communication with JavaScript,
takes place through a LiveConnect connection.

LECT-13, S-30
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Plug- Ins: Design Goals

• With the Plug-in API, you can create dynamically
loaded plug-ins that can:
– register one or more MIME types

– draw into a part of a Communicator window
– receive keyboard and mouse events
– obtain data from the network using URLs
– post data to URLs
– add hyperlinks or hotspots to link to new URLs
– draw into sections on an HTML page

– see the plugins: about:plugins
LECT-13, S-31

IN2004S, javed@kent.edu
Javed I. Khan@2004

INTERNET
ENGINEERING

Models for Extension

MM server

HTTP serverHTTP client

Helper

G2 Plugin G1 Plugin

2

LECT-13, S-32
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

When to Design a Plugin?
• Plug-ins offer solutions to development needs like these:

– tying existing C++ code Browser platform
– writing performance-sensitive code
– taking advantage of specific operating system capabilities
– integrating native or legacy code bases into Internet/intranet

applications
– using native methods to export low-level functionality that

Java does not provide

• Because plug-ins are platform-specific, you must port them
to every operating system and processor platform upon which
you want to deploy your plug-in.

• Plug-ins are supported in both Netscape Clients and Servers.

LECT-13, S-33
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Plug- Ins and Helper Apps
• Before Netscape first presented plug-ins in Navigator 2.0,

in the first quarter of 1996, users could extend the
Navigator with helper applications.

• A Helper application is:
– a separate, free-standing application started from the Browser.
– Like a plug-in, the browser starts a helper application when it

encounters a MIME type that is mapped to it.
– Unlike a plug-in, a helper application runs separately from the

browser in its own application space and does not interact with
the browser or the web.

– A Browser always searches for a registered plug-in first. If there
are no matches for the MIME type, it looks for a helper.

LECT-13, S-34
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Execution Model
• When Communicator starts, it checks for plug-in modules:

– in the plugins directory (Windows)
– Plug-ins folder (Mac OS) in the same folder or directory as the

Communicator application.
– On Unix, Communicator checks the path set in the

environment variable NPX_PLUGIN_PATH.

• When the user opens a page that contains embedded data of a
media type that invokes a plug-in, Communicator responds
with the following sequence of actions:
– check for a plug-in with a matching MIME type
– load the plug-in code into memory
– initialize the plug-in
– create a new instance of the plug-in

LECT-13, S-35
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Execution Model (contd.)
• Communicator can load multiple instances of the same plug-

in on a single page, or in several open windows at the same
time.

• When the user leaves the page or closes the window, the
plug-in instance is deleted.

• When the last instance of a plug-in is deleted, the plug-in
code is unloaded from memory.

• A plug-in consumes no resources other than disk space when
it is not loaded.

LECT-13, S-36
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Plug-in Architecture

• The Plug-in Application Programming Interface (API) is made
up of two groups of functions and a set of shared data structures.

– Plug-in methods are functions that you implement in the plug-in;
Communicator calls these functions. The names of all plug-in
functions begin with NPP_, for example, NPP_New.

– Netscape methods are functions implemented by Communicator;
the plug-in calls these functions. The names of all Netscape
functions begin with NPN_, for example, NPN_Write.

• Data structures are plug-in-specific types defined for use in the
Plug-in API. The names of structures begin with NP, for
example, NPWindow.

LECT-13, S-37
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Plug-in Architecture

NPP

NPN

Data Structures (NP)

Plugin Browser

3

LECT-13, S-38
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Extensible Software Architecture

Level-0

Level 1

R1

Level-2

R2 m>n
Ln controls Lifecycle
Interface Extension
Lm gets access to Ln resources
Lm gets access to Ln functions

LECT-13, S-39
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Operations

• How to begin and End Plugins
• Drawing and Event Handling
• Streaming
• Accessing URLs
• Sharing Memory Space Efficiently
• Some Utilities

LECT-13, S-40
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Initialization

• A set of methods used by the Browser provide
the basic processes of initialization, instance
creation and destruction, and shutdown.

• Initialization:
– Communicator calls the Plug-in API function NPP_Initialize

when the plug-in code is first loaded.

• Instance Creation:
– Communicator calls the Plug-in API function NPP_New when

the instance is created.

LECT-13, S-41
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Destruction

• Instance Destruction:
– The plug-in instance is deleted when the user leaves the

instance page or closes the instance window;
– Communicator calls the function NPP_Destroy to tell the

plug-in that the instance is being deleted.

• Shutdown:
– When the last instance of a plug-in is deleted, the plug-in

code is unloaded from memory and Communicator calls the
function NPP_Shutdown.

– After shut-down Plug-ins should consume no resources
other than disk space.

LECT-13, S-42
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Handling Memory
• Plug-ins share memory space with the Browser, they

can take advantage of any customized memory-
allocation scheme the Browser has. It can call the
following Browser functions:

– NPN_MemAlloc method to allocate memory from
Netscape Communicator.

– NPN_MemFree method to free memory allocated with
NPN_MemAlloc.

– NPN_MemFlush method to free memory (Mac OS only)
before calling memory-intensive Mac Toolbox calls.

• In addition, the plug-in usually has the option of
using its own memory functions.

LECT-13, S-43
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

..

Drawing and Event Handling
• When it comes to determining the way a plug-in appears in a web

page, you (the plug-in designer) and the web page author have many
options.

• The content provider determines its ‘display mode’:
– embedded in a web page and visible.
– embedded in a web page but hidden.
– or displayed in its own separate page.

• Plug-in developer determine whether a plug-in is windowed or
windowless:
– A windowed plug-in
– A windowless plug-in

• When a plug-in is loaded, it is drawn into a target area. This target is either the windowed plug-in's
native window, or the drawable of a windowless plug-in

• The NPWindow structure represents either the native window or a drawable. This structure
contains information about coordinate position, size, the state of the plug-in (windowed or
windowless), and some platform-specific information

Checkout the
HTML markers
EMBED, & OBJECT
tags.

4

LECT-13, S-44
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Windowed Plug-in

• A windowed plug-in draws into its own native
window (or portion of a native window) on a web
page.

• A windowed plug-in is opaque, hiding the part of the
page beneath its display window, and can be invoked
in the top HTML layer of a page.

• This type of plug-in determines when it draws itself.

LECT-13, S-45
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Windowless Plug-in

• A windowless plug-in does not require a native window.
• It is drawn in a target called a drawable, which

corresponds to either the Communicator window or an
off-screen bitmap.

• A drawable can be defined in several ways, depending on
the platform.

• Windowless plug-ins can be opaque or transparent.
• A windowless plug-in draws itself only in response to a

paint message from Communicator.

• NOTE: Whether a plug-in is windowed or windowless is not
meaningful if it is invoked with the HIDDEN attribute.

LECT-13, S-46
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Drawing in Windowless Plugin

• Before drawing itself on the page, the plug-in must
provide information about itself, set the window or
other target in which it draws, arrange for redrawing,
and handle events.

• A windowless plug-in can call the following Browser
methods to draw itself:

– NPN_ForceRedraw: Force a paint message for windowless
plug-ins.

– NPN_InvalidateRect: Invalidate an area in a windowless
plug-in before repainting or refreshing.

– NPN_InvalidateRegion: Invalidate an area in a windowless
plug-in before repainting or refreshing.

LECT-13, S-47
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Drawing and Event Handling

• Communicator calls these Plug-in methods:
– NPP_SetWindow: Set the window in which a plug-in draws.
– NPP_HandleEvent: Deliver a platform-specific event. The plug-

in must return true if it has handled the event and false if it has
not.

– NPP_Print: Request a platform-specific print operation.
– NPP_GetValue: Query the plug-in for information.
– NPP_SetValue: Set Communicator information.

• The plug-in can call these Netscape methods:
– NPN_GetValue: Get Communicator information.
– NPN_SetValue: Set plug-in Communicator information.

LECT-13, S-48
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

URLs

• Uniform resource locator (URL) protocols provide a
means for locating and accessing resources that are
available on the Internet and on intranets.

• Plug-ins can request and receive the data associated
with URLs of any type that the browser can handle,
including HTTP, FTP, news, mailto, and gopher.

• Get URL
• Post URL

LECT-13, S-49
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Getting URLs
• To retrieve a URL and display it on a specified target

page, plugins can use the following functions:

• NPN_GetURL:
– The plug-in uses the function to ask Communicator to

display data retrieved from a URL in a specified target
window or frame, or deliver it to the plug-in instance in a
new stream. This is the way that plug-ins provide
hyperlinks to other documents or retrieve data from the
network.

– NPN_GetURL is typically asynchronous: it returns
immediately and only later handles the request, such as
displaying the URL or creating the stream for the instance
and writing the data.

5

LECT-13, S-50
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Get URLs (contd..)
– If the target parameter is set to null, the application creates

a new stream and delivers the data to the plug-in instance,
through calls to NPP_NewStream, NPP_WriteReady and
NPP_Write, and NPP_DestroyStream.

• NPN_GetURLNotify:
– If Communicator cannot locate the URL and retrieve the

data, it does not create a stream for the instance; in this
case, the plug-in may want to receive instant
notification of the result.

• NPP_URLNotify
– Communicator Notifies the instance of the completion of a

URL request made by NPN_GetURLNotify or
NPN_PostURLNotify

LECT-13, S-51
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Post URLs

• The plug-in calls NPN_PostURL to post data from a file or buffer
to a URL. This function is the counterpart of NPN_GetURL.

• NPN_PostURL writes data from a file or buffer to the URL and
either displays the server response in the target window or delivers
it to the plug-in.

• For HTTP URLs only, Communicator resolves this method as the
HTTP server method POST, which transmits data to the server.

• The result from the server can also be sent to a particular
Communicator window or frame for display, or delivered to the
plug-in instance in a new stream. Plug-ins can use this capability to
post form data to CGI scripts using HTTP or upload files to a
remote server using FTP.

LECT-13, S-52
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Streams
• Streams are objects that represent URLs and the data

they contain, or data sent by a plug-in without an
associated URL.

• Although a single stream is associated with one specific
instance of a plug-in, a plug-in can have more than one
stream object per instance.

• Streams can be either:
– produced by the Browser and consumed by a plug-in instance
– produced by an instance and consumed the Browser.

• Each stream has an associated MIME type identifying
the format of the data in the stream.

LECT-13, S-53
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Streams into Plugins
• Streams produced by Communicator can be either:

– automatically sent to a plug-in
– requested by the plug-in.

• Communicator calls the Plug-in methods:
– NPP_NewStream to create
– NPP_WriteReady to find out how much data the plug-in can

handle
– NPP_Write push data into the stream
– NPP_DestroyStream to delete it.

LECT-13, S-54
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Modes of Streams
• The plug-in instance selects a transmission mode for streams

produced by Communicator.
• Stream data can be pushed by the Browser, pulled by the

plug-in, or saved to a local file and passed to the plug-in.

– Normal mode: Communicator uses the NPP_Write method to
"push" stream data to the instance incrementally as it is available.

– Random-access mode: The plug-in calls the NPN_RequestRead
method to "pull” stream data. This mode is more expensive, because
the entire stream must be downloaded to a temporary file before use
unless the stream comes from a local file or an HTTP server that
supports the proposed byte-range extension.

– File mode: Communicator saves the entire stream to a local file and
passes the file path to the plug-in instance through the
NPP_StreamAsFile method.

LECT-13, S-55
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Streams from Plugin to Browser

• Streams sent by the plug-in to Communicator are like
normal-mode streams produced by Communicator, but
in reverse.

• In normal-mode streams, Communicator calls the plug-
in to tell it when a stream is created and to push more
data. In contrast, for streams produced by the plug-in,
the plug-in calls the Plug-in API methods :

– NPN_NewStream to create a stream
– NPN_Write to push data into it
– NPN_DestroyStream to delete it.

6

LECT-13, S-56
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Demo Explained

Few Examples

examples

LECT-13, S-57
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Interested in Learning More?

• The advance class (IAD) deals with
exciting schemes and infrastructure
now in design to provision universal
content services network (CSN) based
on new internet appliances such as
active proxies.

• Good for Research Topics & Projects

