

Class Mechanics

- Internet Engineering (Fall 2007)
- Internet Technology (addressing, routing, management)
- HTTP 1.1
- Information Sharing (document session)
- Network Programming
- Web Server and Web Browser Design
- Transoceanic Cache and Internet Performance
- Peer-to-Peer Networking (Spring 2007)
- Architecture of major P2P systems
- Theory complex network
- Distributed Hashing
- Search \& Routing in P2P
- Event Routing
- Security \& Scalability

Class Mechanics

- DO NOT Email be the Home Works

LECT-6, S-4

FORWARDING

Packet Switching

- All machines are not connected directly
- Limiting Reasons:
- Number of Nodes.
- Length of Links.

Packet Switch

- Packet switch is a device which connects links logically. Upon receiving a packet from one link, it generates a new packet (perhaps with some logical modification of the original one) and transmits it towards its final destination.

Advantages of Switching

- Nodes can be connected using simple point-to-point links.
- Although a single switch has fixed number of input and output, but large networks can be built using may interconnected switches.
- Adding new host to a network by connecting it to the switch does not mean that the hosts already connected will get worse performance.

Source Route based Forwarding

- Each packet contains enough information to find its path.
- The source knows the entire path.
- The source of the packet lists all the output port numbers along the path in the packet header.
- Each switch looks into the packet header and forwards it to the designated output port.

Example of Source Routing

COMPUTER COMMUNICATION NETWORK

LECT-6, S-13

What to do with the Header?

Rotate
Truncate
Pointer

LECT-6, S-14

Advantages and Disadvantages

Virtual Circuit Switching

- This is a connection-oriented model.
- The first step is to set up a virtual connection from the source to host.
- Once the connection is established, all switch on the way can determine the destination of a packet by looking at the small identifier of the packet.

Quiz

- 203: Explain True or False. In the source based routing Maximum diameter of the network will determine the packet size.

Quiz

- 201: If the identifier of packet from host A in last example was 7 , not 5 where it will be routed?

Advantages of VC

- More thing can be done while setting up connections:
- There is really a route..
- Every body on the way can allocate buffer for a connection.
- A QOS can be ensured.
- In X.25:
- buffers are allocated.
- Sliding-widow protocol is run between each pair of nodes along the VC.
- The circuit is rejected by a given node if not enough buffer is available.

Datagram Forwarding

- In this model, there is no need to setup a connection.
- Each packet contains just enough information to get to the destination (what is it?)
- Each switch decides how to forward it towards the destination.

Characteristics of Datagram Forwarding

- No round trip delay.
- But large tables.
- While sending, no way of knowing if the connection is there.
- Failure of one switch may not have any effect on communication.
- Every packet must carry the destination address. The over head is higher than connection-oriented model.
- No obvious way of setting up QOS.

Routing Algorithms

Routing

- How do the nodes, or switches finds out about the network topology?
- Forwarding vs. Routing:
- Forwarding consists of talking a packet, looking at its header or destination address, consulting a table, and sending the packet in the direction determined by the table.
- Routing is the process by which the tables are built, and is a topic to which people can devote an entire career.
- The basic objective is to find the lowest cost path between two nodes in the network.
- Generally networks are large and dynamic. Thus static approaches do not work.

Quiz

- 202: Datagram forwarding vs. Virtual Circuit, which one will you use for short communication (say only 10 byte communication). Explain why?

LECT-6, S-27

Computing Shortest Path (Dijkstra's Algorithm)

$\mathrm{W}[\mathrm{i}][\mathrm{j}]=$ link cost between node i and j. /*Collected from link states.*/
$\mathrm{S}[\mathrm{i}]=$ all nodes except source; $/ * \mathrm{~A}$ list of target nodes*/
$\mathrm{R}[\mathrm{i}]=$ source for all connected nodes otherwise $\mathrm{R}[\mathrm{i}]=$ zero. /*Next hops*/ $\mathrm{D}[\mathrm{i}]=\mathrm{W}[$ source $][\mathrm{i}]$ for connected nodes otherwise $\mathrm{D}[\mathrm{i}]=$ infinity.
while(set S is not empty) $\{$
choose a node u from S which is closest to source; if ($\mathrm{D}[\mathrm{u}]==$ infinity $)$ no path in S, exit; delete u from S;
for each v such that $W[u][v]$ is an edge $\{$ if (v is still in S) \{
$\mathrm{c}=\mathrm{D}[\mathrm{u}]+\mathrm{W}[\mathrm{u}][\mathrm{v}] ;$
if $(\mathrm{c}<\mathrm{D}[\mathrm{v}])$ \{
$\mathrm{R}[\mathrm{v}]=\mathrm{R}[\mathrm{u}]$;
$\mathrm{D}[\mathrm{v}]=\mathrm{c}$;
\}\}\}\}

LECT-6, S-28

