Routing Protocols

Distance Vector Routing

- Initially A believes B is one hop away and D is unreachable.
- A sends its believes to its direct neighbors.
- B learns from A that it can reach E at a cost of 2 by going through A. B modifies its record.
- In the next cycle B passes on this information to C. For C the cost to go to E via B is 3 .
- By now C has found a way to go to E via A at the cost of 2 . So C rejects the path through B.

	A	B	C	D	E	F	G
A	0	1	1	X	1	1	X
B	1	0	1	X	X	X	X
C	1	1	0	1	X	X	X
D	X	X	1	0	X	X	1
E	1	X	X	X	0	X	X
F	1	X	X	X	X	0	1
G	X	X	X	1	X	1	0

LECT-6, S-31

Final Vector Routing

	A	B	C	D	E	F	G
A	0	1	1	X	1	1	X
B	1	0	1	X	X	X	X
C	1	1	0	1	X	X	X
D	X	X	1	0	X	X	1
E	1	X	X	X	0	X	X
F	1	X	X	X	X	0	1
G	X	X	X	1	X	1	0

	A	B	C	D	E	F	G
A	0	1	1	2	1	1	2
B	1	0	1	2	2	2	3
C	1	1	0	1	2	2	2
D	2	2	1	0	3	2	1
E	1	2	2	3	0	2	3
F	1	2	2	2	2	0	1
G	2	3	2	1	3	1	0

Routing Table at node B

- Besides the cost every node also keeps track of the next hop.

LECT-6, S-32

Per-Node Perspective

- As far as one is concerned:
- Each node maintains a table with three columns.
- Destination, Cost, Next Hop.
- Each node periodically sends update with a list of pairs:
- Destination, Cost.
- Whenever, a node receives an update from a neighbor that includes a route that is better than one of its current route, it changes the route in its forwarding table.
- A Node sends update:
- periodically (in few seconds or in several minutes).
- Triggered update, when a node changes its routing table entry.

Quiz

Quiz: 205: A graph has 20 nodes and a speaker node has 3 immediate neighbors. In Distance Vector Protocol this speaker node will send information about how many nodes?

Example of Update

- F knows [G=1], and A knows [G=2 via F]
- F detects that its link to G has failed.
- F advertises $[\mathrm{G}=\mathrm{x}]$
- A updates $[\mathrm{G}=\mathrm{x}]$
- C advertises [G=2]
- A notes [G=3 via C]
- F notes [G=4 via A$]$

Finally the network stabilizes.

Problem!

- A knows [$\mathrm{E}=1$], and B knows $[\mathrm{E}=2$ via A$]$
- A detects that its link to E has failed.
- A advertises [$\mathrm{E}=\mathrm{x}$]
- But B and C advertises $[E=2]$, based on who is fast..
- $\quad B$ hears $[E=2]$, updates $[E=3$ via $C]$, and advertizes to A
- A thinks $[\mathrm{E}=4$ via $\mathrm{B}!]$ and advertises to C
- $\quad \mathrm{C}$ thinks $[\mathrm{E}=5$ via $\mathrm{A}!]$

The cycle will continue until the distance is too large!

LECT-6, S-36

Count to Infinity Problem (Propagation of good news)

$$
A-B-C-D-E
$$

A	B	C	D	E	
	inf.	inf.	inf.	inf.	initial state
	1	inf.	inf.	inf.	after exchange 1
	1	2	inf.	inf.	after exchange 2
	1	2	3	inf.	after exchange 3
	1	2	3	4	after exchange 4

Suppose initially A to B link was down so every body knows distance to A is infinity. Now the link comes up. Gooddnews proparatesfostfew steps.

Count to Infinity Problem (propagation of bad news!)

$$
A-B-C-D-E
$$

A	B	C	D	E	
	1	2	3	4	initial state
	3	2	3	4	after exchange 1
	3	4	3	4	after exchange 2
	5	4	5	4	after exchange 3
	5	6	5	6	after exchange 4
	Inf.	Inf.	Inf.	Inf.	In many steps

Suppose initially A to B was up. So every body knows distanc to A. Now the link is down. But every body gets wrong

Split-Horizon Technique

- Initially A and B both has distance to $\mathfrak{D}=2$.
- Now D to C disconnects.
- Using split-horizon both A and B tells C that they cannot reach D.
- C concludes it cannot reach D and reports that to A and B .
- But B says to A that it can reach to D by Hop 3. So A concludes it has a path to D with 4 hop via B!
- This is however count-to-infinity problem!

Link State Routing

- The problem with distance vector routing was the nodes were advertising paths which they were not sure about!
- They were advertising only to their neighbors.
- In link state, nodes advertise only the information about which they are sure.
- But they advertise to everyone.

Reliable Advertising

- Update packet link-state packet (LSP) contains
- the ID of the creator node.
- The list of directly connected neighbors.
- A sequence number
- a time to live (TTL).
- The first two items are for routing calculation.
- Sequence number is used to determine the most up-to-date information.
- TTL is used to make sure, LSP do not circulate for ever.

Link State Packet Buffer

			SEND FLAG				ACK FLAG		
SOURCE	SEQ	AGE	A	C	F	A	C	F	DATA
A	21	60	0	1	1	1	0	0	
F	21	60	1	1	0	0	0	1	
E	21	59	0	1	0	1	0	1	
C	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

Network Layer

- There are other network layer issues such as congestion control and quality of service.
- We will return to them later.

