
Page 1

Operating Systems Lecture 5

Os-slide#1

�������

• What is a Process?

• Process States and Life Cycle

• Process Scheduling

Operating Systems Lecture 5

Os-slide#2

��	
����	��������

• A process is a program in execution
• A process is not the same as “ program”

�
A program is a passive text of executable codes resides in disk.

�
A process is an active entity ripe for execution (must have a
program counter, stack and data section).

�
Multiple people can run the same program, each running a copy of
the same program text, but each is a distinct process.

• Type (HP Unix):
%ps shows all my processed with little detail
%ps -fl more detail
%ps -efl all processed with full detail

• User and OS processes
�

jobs (batch system), tasks (time shared system), process (generic)

Page 2

Operating Systems Lecture 5

Os-slide#3

�������������
��������
• The process must have (at least):

�
ID

�
Code of the program

�
Program’s static data

�
Program’s dynamic data

�
Content of Program Coun ter (PC)

�
Content of Stack Pointer (SP)

�
Content of Program Status Word (PSW)

�
Content of general purpose registers

�
CPU scheduling information

�
Memory management info (memory limits etc.)

�
Accoun ting information

�
I/O status information

����������������		

��	��	��		��

Process Control Block

Operating Systems Lecture 5

Os-slide#4

������������	
�����������	
���

• Reasons for process creation:
�

New batch job
�

user starts a program
�

OS creates process to provide a service
�

Program starts another process

• Reasons for process termination:
Normal completion Exceed time limit I/O failure
Memory unavailable Bounds violation
Protection error Arithmetic error
Privileged instruction Invalid instruction
Human intervention Parent termination
Parent request

Page 3

Operating Systems Lecture 5

Os-slide#5

�������������
���

• Conceptual model of
Processes executing:

• Actual interleaved execution
of the 4 processes:

Process
A

Process
B

Process
C

Process
D

Process A

Process D
Process B

Process A
Process B
Process D
Process A
Process C
Process D
Process C

time

Operating Systems Lecture 5

Os-slide#6

��������
	
���������������

• A Process is either “ runn ing” or “ not runn ing”

Not
runn ing runn ing

New process
Entry Exit

dispatch

pause

CPUdispatch
queueEnter Exit

•State Diagram

•Queuing Diagram

Page 4

Operating Systems Lecture 5

Os-slide#7

���������	�
���� ��

• Some reasons why a process that might
otherwise be running needs to wait:

�
Wait for user to type the next key

�
Wait for output to appear on the screen

�
program tried to read a file

�
Netscape tried to follow a link (URL)

• OS Must distinguish between:
�

Processes that are ready to run, and waiting for the time slice.
�

Processes that are waiting for something to happen.

Operating Systems Lecture 5

Os-slide#8

!�"���
	
���������������
• States:

�
New

�
Running

�
Ready

�
Waiting

�
Terminated

New

Ready

Waiting

Running

Terminated

admitted

Scheduler dispatch

interruptEvent done Event wait

exit

Page 5

Operating Systems Lecture 5

Os-slide#9

�����������
����#���$

• For Every process OS
maintains a data structure
that represents the
process and its states

• Process ID
�

State
�

User IP owner
�

PC, SP, PSW and other registers
�

memory management info
�

list of open files
�

IO states
�

CPU scheduling (priority)

pointer state

Process number

Program counter

registers

Memory limites

List of open files

Operating Systems Lecture 5

Os-slide#10

Page 6

Operating Systems Lecture 5

Os-slide#11

%�	�&�'�����	���(
����)�(�*�"����'�����

head

tail

head

tail register

PCB7

register

PCB2

head

tail

head

tail

head

tail

register

PCB3

register

PCB1

register

PCB5

Ready
queue

tape 1
queue

Disk
queue

Terminal
queue

Tape 2
queue

Operating Systems Lecture 5

Os-slide#12

������������������

Ready queue

IO queue IO request

Time expired

Fork a child

Wait for interruptInterrupt
occurs

I/O

Child
executes

Child
terminates

CPU

Job queue

Page 7

Operating Systems Lecture 5

Os-slide#13

+��
���	����

• Operation on processes
• Cooperating processes
• Process Communication
• Threads

