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Fig: 3.15 from OS design & Principles, Stalling1998
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• One Process can create another process:

�
the original process is called the parent

�
the new process is called child

�
the child is an identical copy of the parent (same code, same 
data) but has a new process ID.

�
the parent can either wait for the child to complete or continue
execution in parallel with child.

• Useful function calls:
�

Fork() 
» in child process, fork() returns 0.
» in parent process, fork() returns process ID of child.

�
Execv()

» Child can overwrite its remaining programs with a new one 
and start a completely different program.

�
Wait(pid)

» Parent, if desired can wait until child completes. 
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#include <sys/types.h>
#include <stdio.h>
int a=6; /*global (external) variable*/

int main(void)
{
int b: /*local variable*/
pid_t mypid, childpid; /*process ids*/
b=88;
prinf(“Before fork..\n”);

childpid=fork();
mypid=getpid();
if(childpid==0) /*chlid*/

a++; b++;
} else /*parent*/

wait(childpid);
printf(“After fork..\n”);
printf(“me=%d, mychild=%d, a=%d, b=%d\n”,mypid,childpid,a,b);
exit(0);
}

Aegis: fork
Before fork…
After fork..
mypid=101, mychild=0, a=7, b=89
After fork..
mypid=80, mychild=101,a=6,b=88
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•Long-term Scheduler
�

selects jobs from spooled 
jobs and loads into memory.

�
Executes infrequently, mayne
only when process leaves 
system

�
controls degree of 
multiprogramming:

�
Goal: good mix of CPU and IO 
bound processes

�
Does not really exist in 
modern time sharing systems.

•Medium-term Scheduler
�

On time sharing system 
does some of the task of 
long term scheduler.

�
May swap processes in 
and out of memory 
temporarily

�
Goal: balance load for 
better throughput

CPUdispatch
queueEnter Exit
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• Executes frequently  (about 

10 times per second)

• Runs whenever:
�

Process switches from 
running to blocked

�
Time slice runs out for a 
process (timer interrupt)

�
Any other interrupt 
occurs

�
Process is created or 
terminated

CPUdispatch
queueEnter Exit

• Selects process from those 
that are ready to execute, 
allocates CPU to that process

• Goals:
�

minimize response time
�

maximize throughput
�

Efficient use of resources
�

minimize overhead (such as 
context switching)

�
Fairness
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Stopping one process and starting another is called 
context switch:

�
sav ing all hardware registers (PC, SP etc) or any other process 
state info in that the stopping process’ PCB.

�
Loading all the Hardware registers of the new process from the 

new process’ PCB

It is an expensive operation:
�

A time sharing sys tem may do 100-1000 context switches per 
second.
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Concurrent Process


