
Page 1

Operating Systems Lecture 6

Os-slide#1

��������	
����
�

�

User
running

preempted

Kernel
running

Zombie Assleep
in memory

Ready
to run in
memory

Sleep,
swapped

Ready
to run

swapped

created
Return
to user

return

System call
interrupt

fork

Not enough
memoryEnough

Memory

Swap out

Swap in

wakeup wakeup

Swap out

sleepexitInterrupt,
interrupt return

Fig: 3.15 from OS design & Principles, Stalling1998

Operating Systems Lecture 6

Os-slide#2

���	
�����
�
�����������
• One Process can create another process:

�
the original process is called the parent

�
the new process is called child

�
the child is an identical copy of the parent (same code, same
data) but has a new process ID.

�
the parent can either wait for the child to complete or continue
execution in parallel with child.

• Useful function calls:
�

Fork()
» in child process, fork() returns 0.
» in parent process, fork() returns process ID of child.

�
Execv()

» Child can overwrite its remaining programs with a new one
and start a completely different program.

�
Wait(pid)

» Parent, if desired can wait until child completes.

Page 2

Operating Systems Lecture 6

Os-slide#3

������
������������	
�����
�
���
#include <sys/types.h>
#include <stdio.h>
int a=6; /*global (external) variable*/

int main(void)
{
int b: /*local variable*/
pid_t mypid, childpid; /*process ids*/
b=88;
prinf(“Before fork..\n”);

childpid=fork();
mypid=getpid();
if(childpid==0) /*chlid*/

a++; b++;
} else /*parent*/

wait(childpid);
printf(“After fork..\n”);
printf(“me=%d, mychild=%d, a=%d, b=%d\n”,mypid,childpid,a,b);
exit(0);
}

Aegis: fork
Before fork…
After fork..
mypid=101, mychild=0, a=7, b=89
After fork..
mypid=80, mychild=101,a=6,b=88

Operating Systems Lecture 6

Os-slide#4

�	�
���
��

•Long-term Scheduler
�

selects jobs from spooled
jobs and loads into memory.

�
Executes infrequently, mayne
only when process leaves
system

�
controls degree of
multiprogramming:

�
Goal: good mix of CPU and IO
bound processes

�
Does not really exist in
modern time sharing systems.

•Medium-term Scheduler
�

On time sharing system
does some of the task of
long term scheduler.

�
May swap processes in
and out of memory
temporarily

�
Goal: balance load for
better throughput

CPUdispatch
queueEnter Exit

Page 3

Operating Systems Lecture 6

Os-slide#5

����
��
����	�
���
��
• Executes frequently (about

10 times per second)

• Runs whenever:
�

Process switches from
running to blocked

�
Time slice runs out for a
process (timer interrupt)

�
Any other interrupt
occurs

�
Process is created or
terminated

CPUdispatch
queueEnter Exit

• Selects process from those
that are ready to execute,
allocates CPU to that process

• Goals:
�

minimize response time
�

maximize throughput
�

Efficient use of resources
�

minimize overhead (such as
context switching)

�
Fairness

Operating Systems Lecture 6

Os-slide#6

���

�
����
	����

Stopping one process and starting another is called
context switch:

�
sav ing all hardware registers (PC, SP etc) or any other process
state info in that the stopping process’ PCB.

�
Loading all the Hardware registers of the new process from the

new process’ PCB

It is an expensive operation:
�

A time sharing sys tem may do 100-1000 context switches per
second.

Page 4

Operating Systems Lecture 6

Os-slide#7

�
�
������

Concurrent Process

