Operating Systems

Lecture 6
Unix Process States
Return
to user preempted }.. created
‘ Not enough
memory

torunin
memory

Swap in

wakeup

Assleep
in memory

Sleep,
swapped

Swap out

Fig: 3.15 from OS design & Principles, Stalling1998

Os-slide#1
Operating Systems Lecture 6
Process Creation in Unix
¢ One Process can create another process:
4 the original process is called the parent
4 the new process is called child
4 the child is an identical copy of the parent (same code, same
data) but has a new process ID.
4 the parent can either wait for the child to complete or continue
execution in parallel with child.
e Useful function calls:

¢ Fork()

» in child process, fork() returns 0.

» in parent process, fork() returns process ID of child.
4 Execv()

» Child can overwrite its remaining programs with a new one

and start a completely different program.

¢ Wait(pid)

» Parent, if desired can wait until child completes.

Os-slide#2

Page 1

Operating Systems Lecture 6

Example of Unix Process Creation

#include <sys/types.h>

#include <stdio.h>

int a=6; [*global (external) variable*/ Aegis: fork

int main(void) Before fork...

intb: ~ 'local variable*/ After fork..

s:is_é.mypld,chlldpld; [process ids*/ mypid=101, mychild=0, a=7, b=89

prinf(“Before fork.\n”); After fork..

childpid=fork(); mypid=80, mychild=101,a=6,b=88

mypid=getpid();

if(childpid==0) /*chlid*/
a++; b++;

} else /*parent*/
wait(childpid);

printf(“After fork..\n");

printf(“me=%d, mychild=%d, a=%d, b=%d\n",mypid,childpid,a,b);

exit(0);
}
Os-slide#3
Operating Systems Lecture 6
queue .
Enter | | | | dispatch
«Long-term Scheduler I

4 selects jobs from spooled .
jobs and loads into memory. *Medium-term Scheduler

4 Executes infrequently, mayne 4 On time sharing system
only when process leaves does some of the task of
system long term scheduler.

4 controls degree of ¢ Ma ;

: - y swap processes in

multllprogram'mlng. and out of memory

4 Goal: good mix of CPU and 10 temporarily
bound processes ¢ Goal: bal load f

4 Does not really exist in oal: batance load for
modern time sharing systems. better throughput

Os-slide#4

Page 2

Operating Systems Lecture 6

Short-Term Scheduler

» Executes frequently (about » Selects process from those
10 times per second) that are ready to execute,
allocates CPU to that process

* Runs whenever:

4 Process switches from * Goals:
running to blocked 4 minimize response time
4 Timesliceruns out for a 4 maximize throughput
process (timer interrupt) # Efficient use of resources
4 Any other interrupt 4 minimize overhead (such as
occurs context switching)
4 Processis created or ¢ Fairness
terminated
queue .
Enter | | | | dispatch
Os-slide#5
Operating Systems Lecture 6

Context Switching

Stopping one process and starting another is called
context switch:

4 saving all hardware registers (PC, SP etc) or any other process
state info in that the stopping process’ PCB.

4 Loading all the Hardware registers of the new process from the
new process’ PCB

It is an expensive operation:

4 A time sharing system may do 100-1000 context switches per
second.

Os-slide#6

Page 3

Operating Systems Lecture 6

Next Class

Concurrent Process

Os-slide#7

Page 4

