Operating Systems Lecture 11

Memory Management Concepts
Address Binding

4 symbolic address -> relocatable address -> absolute address
4 Compile time, loadingtime vs. execution time.
Dynamic Loading

4 Subroutine is linked during compilation but loaded during
execution.

Dynamic Linking
4 Subroutine is linked during execution
Overlays

4 Example: A Two Pass Compiler:

» Symbol Table 20K, Common Routines 30K, Overlay Driver
10 K, Pass 1 70 K, pass 2 80K

Os-slide#1
Operating Systems Lecture 11
Memory Image of a Program
0000
Main()
{
int A[10]; Instruction
int temp;
int b;
temp=A[0];
for (b=0;b<9;b++) {
a[b]=a[b+1] 1152
) ALL0] 1192
a[9]=temp;
} temp \[1|1196
b [C_____1]1200
Os-slide#2

Page 1

Operating Systems Lecture 11

More Concepts

e Logical vs. Physical Address Space
4 For compile time and load time binding: logical=physical
4 For execution time binding: logical /= physical
4 80x86 processors have 4 relocation registers

1400
Logical Physical
address Address
CpPU @ Memory
28 ?
MMU

*Security by adding limit register

Os-slide#3

Operating Systems Lecture 11

More Concepts

e Swapping
4 process roll-in and roll-out
4 backing store

4 cost factor: 100K process

backed on 1MBps backing
store? P1 P4, PO, P5..

4 MMU should know the exact

(0N Backing
store

memory usage to save
(system calls) 7
¢ What if there is pending I/O
P3

Main Memory

Os-slide#4

Page 2

Operating Systems Lecture 11

Memory Allocation
* OS Resident+User process
* OS Resident Placement os 400K resident
¢ Top or low? Process Memory Time
4 What if some part of OS
(drivers) are added or deleted? P1 600K 10
» Partition among Processes P2 1000K 5
4 Allocation algorithms P3 300K 20
» First-fit
» best-fit P4 700K 8
» Worst-Fit P5 500K 15
4 Problems _
» External Fragmentation What if we use FCFS

» Internal Fragmentation and total memory is 2560K?

4 Relocation

Os-slide#5

Operating Systems Lecture 11

Page Table

Frames

*Number of Pages=2P
*Page size = 2¢

*One Page Table /process
*Free Frame Table
*Fragmentation?

Issues:

*Big page vs. small page size Page Table

«Context Switch Time? Physical Memory

v

Os-slide#6

Page 3

Operating Systems Lecture 11

Implementation of Page Table

« Hardware Register Based:
4 Keeps everything in high speed registers.
4 Context switch = load/unload the entire table.
4 Good for small table size (~256 entry).
¢ Memory Based:
4 Keeps everything in memory
4 Use a page-table-base-register (PTBS) to point in memory
4 Large tables can be kept.
¢ Context switch =load the PTBS.
4 Memory reference= 2 memory access.

¢ Cache Mediated:

—>

Os-slide#7

Operating Systems Lecture 11

Translation-Look ahead Buffer Page Table

|_|_’|i| | Physical Memory
P

Page Frame
CPU number number
TLB Hit
1%
[}
£
4]
[
e =
TLB *
P
TLB miss
Page Table
* Hit Ratio =0.8
*Memory access time=100 ns
*Associative Search Time=20ns
*Avg access time = .8x120+.2x220=140ns
Os-slide#8

Page 4

Operating Systems Lecture 11

Size of Page Table

Page Table Size Computation:

Logical Address Space = 32 bits i.e. memory size =2% (it is typically 232 - 264)
If page size = 4K =212

of entries in page table = 2%2/212= 1 million entry = 220

Each entry = 4 bytes

Page Table size= 4 MB

Page number 20 bits Page offset 12 bits
| p || p2 d
— AN
section page
Os-slide#9
Operating Systems Lecture 11
Multilevel Paging (i
Page number 20 bits Page offset 12 bits
p1 || p2 d |
P2 "l
I~
bl
L+
T
i
P1
|
o 0
Section Table
Page Tables Physical Memory

« Hit Ratio =0.98

*Memory access time=100 ns

*Associative Search Time=20ns

*Number of Levels 2 Avg access time = .98x120+.02x320=124 ns .

«32-bit Motorola 68030 has 4 level paging. Avg access time? Os-slide#10

Page 5

Operating Systems Lecture 11
Inverted Page Table
L e
CPU f d
search 2
£
&
— Pid:P
*Space efficient if most of the
entries in process Page Table
is empty.
*Entries are sorted according System Page Table ;
to physical address and thus 4 g Physmal Memory
may need searching the
entire table.
*Hash Table implementation
can help. Os-slide#11
Operating Systems Lecture 11
Program View:
Memory Segments
stack Ilm't base
subroutine 0 1000
Symbol 1 400
¥ab\e 2 400
3 |1100
4 11000
Sqrt
Main
program Segment Table

Physical Memory

Os-slide#12

Page 6

Operating Systems Lecture 11

Segment Table

—t_|imit | Dase
CPU
Segment Table
2
@
4 £
g
] < &
v
*Segment table mechanism is Trap
almost like page tables, but
now the sizes are variable Physical Memory

and there is a limit.
*One single process may
have multiple segments

Os-slide#13

Operating Systems Lecture 11

Example: MULTICS Pages Segmentation

d

-
g

Segment Table

e |_length IPT base
Trap

p | o |
f ‘——'| f d’

Physical Memory

Page table for segment S

Segment number | Offset
st [s2 |[br [b2
8 10 6 10

Os-slide#14

Page 7

Operating Systems Lecture 11

Example: MULTICS Addressing Scheme

i

{ Page Table

for Segment
Page Table for I
Segment Table 1 1
Page of
Segment
Page of |
Segment Table 5
Segment number | Offset {

S1 | | S2 | | D1 | | D2
8 10 6 10
Os-slide#15
Operating Systems Lecture 11

Demand Paging

CPU
[]
A []
A
: La] [o] []
C E
: = L]][]
E
: : La] [«][]
: o
c i
: ol L[]
e 3
f Page Table Physical Memory Disk
Logical Address (Virtual Memory)
Space Valid-invalid bit

Os-slide#16

Page 8

Performance of Demand Paging

Operating Systems Lecture 11

Steps on Page fault:
* Service Page Fault Interrupts

¢ trap->save registers->determine victim ->..
* Write back the Victim

4 wait in queue->device seek->begin transfer
¢ Read in the Page

4 wait in queue->device seek->begin transfer

* Restart the Process
4 wait for CPU perhaps allocated to others->restore registers, process table, page table..

Steps 1 and 4 = 1-100 microsec
Steps 2 and 3 = 25 milliseconds
What is the effective access time if hit ratio = p?

Os-slide#17
Operating Systems Lecture 11
Page Replacement Algorithms
Memory Access Sequence:
732 090 103 211 024 343 031 452 201 364 023 321 201 132 248 094 108 795 022 156
Page Access Sequence (assuming page size=100):
7 o 1 2 o 3 O 4 2 3 0 3 2 1 2 0 1 7 0 1
LRU Replacement Policy:
2] [2] [4] [4] [4] [0 o] [o]
Lo o] o] [&] [&] [&] [2] [2] [1] [o] [0
L L[] [[2] [o] [o] [o] [3] [3
What if we have page sequence: g“
Eﬂ
1,2,34,1,251,2,3,45 i ~—
= ——
Number of Frames = 3, page faults? L
Number of Frames = 4, page faults? i 4
Belady's Anamoly! g1 [—
(]
1 2 3 4 5 6 1
number of Irames Os-slide#18

Page 9

Operating Systems Lecture 11

Page Replacement Algorithms (cont.)

e Optimal Algorithm
4 victim=which will not be used for the longest period of time.
* LRU Algorithm
4 victim=least recently used
4 needs counter implementation
* LRU Approximation Algorithm
4 uses one reference bit. Initial value=0, set tol when referenced.
¢ victim=one whose reference bit=0.

» Additional Reference Bit Algorithm

4 8 bit right shifting counter +(0,0) nei_g_hter recently used
4 In each epoch set rightmost bit if referenced, and rightshift nor modified.
¢ victim=page with minimum byte +(0,1) not recently user, but

modified.

* Second Chance Algorithm

4 FIFO with reference bit »(1,0) recently used but clean,

but probably will be used

4 victim=First one in line with reference bit =0, if it 1 set it 0. soon.
» Enhanced Second Chance Algorithm +(1,1) rcently used and
¢ uses reference bit + modify bit C——> | modified.
Os-slide#19
Operating Systems Lecture 11
e Page Buffering:
4 Keep a pool of free frames helps delayed writeout.
e Frame Allocation:
4 Minimum required frames per process
4 Equal allocation vs. proportionate allocation
4 Global vs. local replacement
e Thrashing (too much page fault):
4 cause: too much multiprogramming. What if we run the following
K : . program on a ssytem with
4 Solution: monitor working set page size 128 words?
4 Solution: monitor frequency of page fault
« Effect of Program Structure =~ c———> |' A8[128
A for j=0 to 127
* 1/O Interlocking for 120 to 127
ALITL]=0;
Os-slide#20

Page 10

