
Page 1

Operating Systems Lecture 11

Os-slide#1

���������	�
���	����	����
• Address Binding

�
symbolic address -> relocatable address -> absolute address

�
Compile time, loadingtime vs. execution time.

• Dynamic Loading
�

Subroutine is linked during compilation but loaded during
execution.

• Dynamic Linking
�

Subroutine is linked during execution

• Overlays
�

Example: A Two Pass Compiler:
» Symbol Table 20K, Common Routines 30K, Overlay Driver

10 K, Pass 1 70 K, pass 2 80K

Operating Systems Lecture 11

Os-slide#2

����������
����������
���

Main()
{

int A[10];
int temp;
int b;
temp=A[0];
for (b=0;b<9;b++) {

a[b]=a[b+1]
}
a[9]=temp;

}

Instruction

0000

1200
1196
1192

1152

b

temp

A[10]

Page 2

Operating Systems Lecture 11

Os-slide#3

�������	����
• Logical vs. Physical Address Space

�
For compile time and load time binding: logical=physical

�
For execution time binding: logical /= physical

�
80x86 processors have 4 relocation registers

CPU Memory

1400

+

Logical
address

Physical
Address

MMU

28 ?

•Security by adding limit register

Operating Systems Lecture 11

Os-slide#4

�������	����

• Swapping
�

process roll-in and roll-out
�

backing store
�

cost factor: 100K process
backed on 1MBps backing
store?

�
MMU should know the exact
memory usage to save
(system calls)

�
What if there is pending I/O

P1

OS

P2

P3

Backing
store

P4, P0, P5..

Main Memory

Page 3

Operating Systems Lecture 11

Os-slide#5

���������������	

• OS Resident+User process
• OS Resident Placement

�
Top or low?

�
What if some part of OS
(drivers) are added or deleted?

• Partition among Processes
�

Allocation algorithms
» First-fit
» best-fit
» Worst-Fit

�
Problems

» External Fragmentation
» Internal Fragmentation

�
Relocation

OS 400K resident

Process Memory Time

P1 600K 10

P2 1000K 5

P3 300K 20

P4 700K 8

P5 500K 15

What if we use FCFS
and total memory is 2560K?

Operating Systems Lecture 11

Os-slide#6

��
�������

CPU

P d

f d

Physical Memory

•Number of Pages=2p

•Page size = 2d

•One Page Table /process
•Free Frame Table
•Fragmentation?
Issues:
•Big page vs. small page size
•Context Switch Time?

F
ra

m
es

Page Table

P

Page 4

Operating Systems Lecture 11

Os-slide#7

�������	�����	������
�������

• Hardware Register Based:
�

Keeps everything in high speed registers.
�

Context switch = load/unload the entire table.
�

Good for small table size (~256 entry).

• Memory Based:
�

Keeps everything in memory
�

Use a page-table-base-register (PTBS) to point in memory
�

Large tables can be kept.
�

Context switch = load the PTBS.
�

Memory reference= 2 memory access.

• Cache Mediated:

Operating Systems Lecture 11

Os-slide#8

���	������	���������������������
�������

CPU

P d

f d

Physical Memory

F
ra

m
es

Page
number

Frame
number

TLB

TLB miss

TLB Hit

• Hit Ratio =0.8
•Memory access time=100 ns
•Associative Search Time=20ns
•Avg access time = .8x120+.2x220=140ns

Page Table

P

Page 5

Operating Systems Lecture 11

Os-slide#9

�� ��������
�������

Page Table Size Computation:

Logical Address Space = 32 bits i.e. memory size =232 (it is typically 232 - 264)
If page size = 4K = 212

of entries in page table = 232/212 = 1 million entry = 220

Each entry = 4 bytes
Page Table size= 4 MB

Page offset 12 bitsPage number 20 bits

p1 p2 d

section page

Operating Systems Lecture 11

Os-slide#10

�������!�����
�	

Page offset 12 bitsPage number 20 bits

p1 p2 d

P1

P2

Physical MemoryPage Tables
Section Table

d

• Hit Ratio =0.98
•Memory access time=100 ns
•Associative Search Time=20ns
•Number of Levels 2 Avg access time = .98x120+.02x320=124 ns
•32-bit Motorola 68030 has 4 level paging. Avg access time?

Page 6

Operating Systems Lecture 11

Os-slide#11

�	!��������
�������

CPU

Pid: P d

f d

Physical MemorySystem Page Table

search

F
ra

m
es

Pid:P

•Space efficient if most of the
entries in process Page Table
is empty.

•Entries are sorted according
to physical address and thus
may need searching the
entire table.

•Hash Table implementation
can help.

Operating Systems Lecture 11

Os-slide#12

���
����"��#$
���������
��	��

subroutine

Sqrt

stack

Symbol
table

Main
program

limit base
0
1
2
3
4

1000
400
400
1100
1000

Physical Memory

Segment Table

Page 7

Operating Systems Lecture 11

Os-slide#13

��
��	�������

CPU

s d

Physical Memory

Segment Table

S
eg

m
en

ts

limit base

+<

•Segment table mechanism is
almost like page tables, but
now the sizes are variable
and there is a limit.
•One single process may
have multiple segments

Trap

Operating Systems Lecture 11

Os-slide#14

%&�����$��'��������
�����
��	�����	
s d

Physical Memory

Segment Table

length PT base+

<

Trap

+

p d’

f d’f

d

Page table for segment S

STBR

S1 S2 D1 D2

8 10 6 10

Segment number Offset

Page 8

Operating Systems Lecture 11

Os-slide#15

S1

S2

d1

d2

S1 S2 D1 D2

8 10 6 10

Segment number Offset

%&�����$��'��������������	
������

Page Table for
Segment Table

Page of
Segment Table

Page Table
for Segment

Page of
Segment

Operating Systems Lecture 11

Os-slide#16

(���	����
�	

CPU

P d

f d

Physical Memory

F
ra

m
es

o
6
-
-
3

Page Table

P

A

E

B

A B

E C

a D

e b

d c

fi
i

A
B
C
D
E

a
b
c
d
e

f

Logical Address
Space

Disk
(Virtual Memory)

Valid-invalid bit

Page 9

Operating Systems Lecture 11

Os-slide#17

��������	�����(���	����
�	

Steps on Page fault:
• Service Page Fault Interrupts�

trap->save registers->determine victim ->..

• Write back the Victim�
wait in queue->device seek->begin transfer

• Read in the Page�
wait in queue->device seek->begin transfer

• Restart the Process�
wait for CPU perhaps allocated to others->restore registers, process table, page table..

Steps 1 and 4 = 1-100 microsec
Steps 2 and 3 = 25 milliseconds
What is the effective access time if hit ratio = p?

Operating Systems Lecture 11

Os-slide#18

��
��)�������	����
�������

Memory Access Sequence:

732 090 103 211 024 343 031 452 201 364 023 321 201 132 248 094 108 795 022 156

Page Access Sequence (assuming page size=100):

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 2

0

1

0

1

3

4

2

0

7

0

2

3

1

0

2

3

7

0

1

4

3

0

7

1

2

4

2

3

7

0

2

0

1

2

2

3

0

7

0

1

LRU Replacement Policy:

What if we have page sequence:

1,2,3,4,1,2,5,1,2,3,4,5

Number of Frames = 3, page faults?
Number of Frames = 4, page faults?
Belady’s Anamoly! � � � �

� �
� �
� �
� � � �
� � � �
� 	� 	

� � � �

 � � � � � �
� ���������� �� � � ���� � �� � � � � � � ���� � �

� ��
�
�
� ! !" "
#$ $ % %
& &' '!
$!$
& &� �() *() *

Page 10

Operating Systems Lecture 11

Os-slide#19

��
��)�������	����
��������*�	�+,

• Optimal Algorithm
�

victim=which will not be used for the longest period of time.

• LRU Algorithm
�

victim=least recently used
�

needs counter implementation

• LRU Approximation Algorithm
�

uses one reference bit. Initial value=0, set to1 when referenced.
�

victim=one whose reference bit=0.

• Additional Reference Bit Algorithm
�

8 bit right shifting counter
�

In each epoch set rightmost bit if referenced, and rightshift
�

victim=page with minimum byte

• Second Chance Algorithm
�

FIFO with reference bit
�

victim=First one in line with reference bit =0, if it 1 set it 0.

• Enhanced Second Chance Algorithm
�

uses reference bit + modify bit

•(0,0) neighter recently used
nor modified.

•(0,1) not recently user, but
modified.

•(1,0) recently used but clean,
but probably will be used
soon.

•(1,1) rcently used and
modified.

Operating Systems Lecture 11

Os-slide#20

-�����������

• Page Buffering:
�

Keep a pool of free frames helps delayed writeout.

• Frame Allocation:
�

Minimum required frames per process
�

Equal allocation vs. proportionate allocation
�

Global vs. local replacement

• Thrashing (too much page fault):
�

cause: too much multiprogramming.
�

Solution: monitor working set
�

Solution: monitor frequency of page fault

• Effect of Program Structure
• I/O Interlocking

What if we run the following
program on a ssytem with
page size 128 words?

Int A[128][128]

for j=0 to 127

for I=0 to 127

A[I][j]=0;

