
Operating Systems, Spring 2006

CS 5/43201
Department of Math and Computer Science

Kent State University
Project#1: Due Date: _______

Objective: In this project we will learn about threads, how concurrent threads can be started, and
how such threads can cooperate, communicate and synchronize. In this first project we will be a
user process in Nachos and explore how it can help us in managing concurrent cooperating
threads.

Assignment: In the problems 1-4 you should write a function called ThreadTest() (and replace
the initial one given in threadtest.cc), which takes no argument. This function is called by Nachos
automatically for you from main.cc. In function ThreadTest(), fork two new threads named Mary
and Anna. The Mary and Anna should look like below:

int letter = 0;
while(1)
{

printf(“Mary gets paper, pen, envelop, stamp for letter # %d \n”, letter);
printf(“Mary write letter # %d \n”, letter);
printf(“Mary seals envelop # %d \n”, letter);
printf(“Mary mails to Anna # %d \n”, letter);

 /*PLACE#1*/
letter++;

}

Anna should look like this:

int letter=0;
While (1)
{
 printf(“Anna receives Mary’s mail # %d in her mailbox\n”, letter);
 printf(“Anna opens and reads the letter # %d\n”, letter);
 printf(“Anna thinks about Mary# %d\n”, letter);
 /*PLACE#1*/

letter++;
}

The two threads will represent two entities.

0. (200 points) In the file pa1.cc, write a function ThreadTest, which forks a Mary and a Anna

thread as described above. At the end of the loop in both the routines (as marked as
PLACE#1 comment in the programs) insert the line “currentThread->Yield()”.

Copy the file pa1.cc over the file threadtest.cc, compile and run Nachos. Then answer the
following questions in the files proj1.txt:

 . What happens when it runs? It is desirable that before a particular letter can be received

by Anna, it must be mailed by Mary. Does the output correspond to the desirable
solution? Include a few line of output and explain what is happening.

 . Now let Nachos insert random yields, by calling it with “-rs” command line option as
described above. Is the production/consumption is synchronized now? Explain what is
happening including few lines of output.

0. (200 points) In the file pa2.cc, write a new function threadtest() which creates a new

semaphore named s with an initial value of 1, and then forks the Mary and Anna threads as
described. Now place the semaphore in the right place so that the desired solution can be
achieved (Each letter should be mailed by Mary before it is received by Anna).

Copy the file pa2.cc over the file threadtest.cc, compile and run Nachos. Now in the files
proj1.txt answer the following question:

 . What happens when the program runs? Include a few line of output and explain the

behavior.

 . Now, let Nachos insert the random Yields. What happens now? Include few lines of
output and explain the behavior. (hint: how to insert random yield has been explained in
the handout “Project Nachos”)

 . Now try inserting your own Yields in several places. Can you make things worse? Explain

what is happening including few lines of output.

d. If Mary decides, she will write a new letter only if Anna reads the earlier one, will the
above one semaphore solution work? Explain your answer (Hint: you may want to do some
experimentation like b and c).

0. (200 points) Let us assume that Anna’s mailbox can hold only 3 letters. As a result, US post-
office will not receive any mail from Mary if it finds that Anna’s mailbox is full. Modify pa2.cc
into pa3.cc so that that Mary will wait if Anna’s mailbox is full. Now, let Nachos insert the
random Yields. In file proj1.txt include few lines of output from several such runs and explain
the behavior.

For the next assignment read the implementation of semaphores in synch.cc file. Backup the file
synch.cc on synch.bak, and then modify the synch.cc into synch1.cc:

0. (200 points) Implement the condition variables directly using interrupt enable and disable to

provide atomicity in the file synch1.cc

d. Complete the null functions condition::Condition, condition::~condition, condition::Wait
and condition::Signal functions. Copy the file synch1.cc on synch.cc, recompile and run.

d. Write a new file pa4.cc to synchronize the operations of the Mary and Anna threads of

problem #2 (one letter at a time) using the condition variables approach.

 . Now test the system by let Nachos insert the random Yields. What happens now? In file
proj1.txt include few lines of output from several such runs and explain the behavior.

0. (200 points) In this assignment we will implement a barbershop. A Barbershop has a waiting

room with 4 chairs and 2 barbers with two barbers-chairs. If there is no customers to be
served, the barbers go to sleep in the barber’s chair. If a customer enters the barbershop and
all chairs are occupied, then the customer leaves the shop. If the barber is busy, but chairs
are available, then the customer sits in one of the free chairs. If the barber is as sleep, the
customer wakes him up. Below are the two routine which describes the actions of the barbers
and that of the customers:

#define CHAIRS 4
int waiting=0 /* number of customers waiting */
void barber (void)
{
while (1) {

 waiting = waiting –1; /*invite a customer*/
 cut_hair();
}
}

void customer(void)
{
if (waiting< CHAIRS) { /*If there is no free chair then just leave*/
waiting=waiting+1; /*occupy a chair and increment count of a chair*/
get_haircut();
}
}

cut_hair()
{
int pid;
pid=getpid();
printf(“ #d Cutting Hair\n”I,pid);
}

get_haircut()
{
int pid;
pid=getpid();
printf(“ #d Getting Haircut\n”, pid);
}

a. You can simulate the Barbers shop in your computer by forking-off two barber processes and

N number of customer processes. Write/complete a new pa5.cc program with the parent, the
above two routines, and any other routines to simulate the barbershop with 2 barbers and 15
customers. Test the system with random yield of Nachos. Include some output line to explain
the operation of the system and add it to proj1.txt.

b. However, the above simple routines will not work properly. Because although they describe

individual entities, but there is no co-ordination between the customers and the barbers.
Customers do not know if any of the barbers is free. Conversely, the barbers also don’t know
if there is a customer waiting. As a result the barbers may end up cutting air when there is no
customer. A customer may end up sitting on an already occupied barber’s chair. Modify the
codes with semaphore(s) so that none of these happens (Hint: you can use two semaphores,
which keeps track of the free barber and number of waiting customers).

c. Besides the above, there is yet another problem. There is the possibility that, when there is

only one chair empty, accidentally two of the customers may simultaneously find one empty
chair. In such a case they will both try to sit on the 4th chair (without knowing that there are
others who are trying to sit on the same chair). It may result in an embarrassing situation.
Use semaphore(s) to avoid such situation. One solution is to make sure that two customer
processes should not be allowed to access the variable waiting. Make a new file with pa6.cc

with both the routines modified which corrects the above mutual exclusion problems using
semaphore(s). (Hint: you can use a third semaphore to ensure mutual exclusion).

How to Submit:

In this assignment you have created a set of program files *.cc and one answersheet proj1.txt
which contains all your explanations.

On top of each file include your name, data and project number. Add:

/**
Name:
Date:
Project/Question Number:
OS CS 5/43201, SPRING 2006
Instructor: KHAN, KSU
***/

For source files (*.cc) comment them.

You now need to mail all of them into one package using the following procedure:

%tar cvf project1.tar pa1.cc pa2.cc pa3.cc sync1.cc pa4.cc pa5cc pa6.cc proj1.txt
After that you should have file project1.tar file, which contains above files.
Send this file to xzou1@kent.edu with subject “Project 1 your group number”
and attach file project1.tar to that e-mail

Check thoroughly before you submit. If you need to re-send, for any reason inform TA
(xzou1@kent.edu) beforehand. Keep a copy of all the files including project1.tar in your directory.
Do not modify them afterward. If need arises, TA may want to check these files. Any modification
afterward (reflected in the file date) will result in late submission penalty.

Grading:

See notes to grader in the website.

Cheating and Copy:

Projects have to be done individually. If a copy is caught, all involved submissions (original as well as the copies) will be
penalized. So it is your responsibility to guard your work. Secure the read/write access of your directories. Any copy will
result in ZERO grade for the assignment for both party. Only exception is when you report the theft of your work in
advance.

