
Virtual Direction Routing for Overlay Networks
141

Abstract— The explosion of peer-to-peer systems in recent
years has prompted research into finding scalable and robust
seeding and searching methods to support these overlay networks.
Initial work relied on network flooding to find information and
while robust, lacked scalability. In effort to scale large networks,
many have looked at structured approaches to the problem by
imposing some sort of structure to the network topology and
routing based on that structure. To support search queries, a
robust overlay network with routing policies must be in place as
search fails to address the actual data traversal path. In much
the same way, routing in overlay networks have evolved from
pure flooding techniques to structured techniques. In this paper,
we attempt to drop the need for imposing a specific structure on
the overlay network and introduce a technique to scalably route
packets through an unstructured overlay network. We introduce
Virtual Direction Routing (VDR). VDR is a lightweight, but
scalable overlay network routing protocol that uses the concept of
virtual directions to efficiently perform node information seeding
and lookup. State information is replicated at nodes along virtual
orthogonal lines originating from each node and periodically
updated. When a path lookup is initiated, instead of flooding
the network, query packets are also forwarded along virtual
orthogonal lines until an intersection with the seeded state occurs.
We show that VDR achieves high reachability with relatively low
seed and search packet TTL even under high network churn. We
also show that VDR scales well without imposing DHT-like graph
structures (eg: trees, rings, torus, coordinate-space, etc.) and the
path stretch compared to random-walk protocols is very good.
The tradeoff is added latency by choosing suboptimal paths.

I. INTRODUCTION

The explosion of peer-to-peer (P2P) systems in recent years
for distribution of content has prompted research into finding
scalable and robust seeding, searching and routing methods
to support these overlay networks. Peer-to-peer systems are
attractive for several reasons including 1) its distributed nature,
2) shared overhead, 3) relatively quick response to dynamic
network changes, and 4) ease of joins and leaves. One of
the biggest challenges in peer to peer systems is information
replication/dissemination and discovery in environments of
high dynamism. In order to locate where items resolved in
a network of peers, various strategies for query propagation
and information location need to be implemented. To support
search queries robust overlay networks with routing policies
must be in place as P2P systems often assume an underlying
overlay network.

Peer-to-peer networks are broadly characterized into two
major types based on whether or not strict overlay topologies
are enforced: unstructured and structured. Unstructured P2P
systems make little or no requirement on how overlay topolo-
gies are established and are often easy to build and maintain
while being robust to churn [1], [16]. Unfortunately, they tend
to have difficulty in finding rare objects and because overlay
topologies tend to move toward a power-law distribution when

it comes to node degrees, high load is often placed on high
degree nodes. Early unstructured systems like Gnutella [8]
queried for objects by simply flooding the network with search
queries until an item was found. Flooding and even limited
flooding techniques (e.g. normalized flooding [5]), tend to be
prohibitive in large-scale networks as limited available band-
width and the large number of nodes limit scalability. Several
techniques have been been examined to attempt to address
the lack of scalability in flood-based techniques citechawathe-
sigcomm03.

Because of the inherent lack of scalability in flood-based
schemes, researchers have looked at several hierarchical and
structured based approaches [6], [7]. Hierarchical approaches
like Kazaa [9] relied on certain nodes to house more infor-
mation and coordinate data for a specific subset. Although
effective in their own right, hierarchical approaches require
reorganization in the event of node failure of local leader
nodes. Recently, researchers have utilized novel distributed
hash table (DHT) techniques to build virtual structures on
overlay networks by mapping nodes to a specific structure
be it a CHORD [6] or a coordinate space [7]. In these
self-organizing overlay networks, neighborhood relations are
more strictly controlled than in unstructured networks and
search queries are propagated along the structure until a match
is found. Maintaining the structure, however, makes DHT
approaches brittle to attacks and churn as repair techniques
that detect the failure and replicate the lost data or pointers
incur substantial overhead [16].

In recent years, researchers have witnessed a large move yet
again from hierarchical and structured systems to unstructured,
flat, yet scalable techniques to perform search [5], [1], [16],
[17]. As mentioned before, an underlying overlay network with
specific routing strategies must already in place for each of
the search techniques to work. Routing issues are differ from
search issues in that 1) search does not deal with path selection
but simply with finding objects and 2) search assumes an
underlying overlay network. In this paper, we present Virtual
Direction Routing (VDR), a light-weight node information
dissemination and location routing technique in unstructured
P2P systems. VDR places no restrictions on the underlying
overlay topology and utilizes a novel concept we call virtual
directions to provide efficient node query lookup.

In VDR, each node forms a set of virtual interfaces (inti)
and assigns immediate neighbors to an interface based on a
hash of their unique node IDs (e.g. moded with the num-
ber of interfaces). State information is replicated at nodes
along virtual orthogonal lines originating from each node and
periodically updated. When a lookup is initiated, instead of
flooding the network, query packets are also forwarded along

B Rendezvous Node

Virtual Direction

Routing:

Basic Example

VDR Virtual Path

G

A D

P

L
O

M

N

J

K

H

F

C

E

Fig. 1. Virtual Direction Routing Basic Example

virtual orthogonal lines until an intersection with the seeded
data occurs. If more than one neighbor is assigned to a virtual
interface, ties are broken by selecting the neighbor with the
ID closest to the search ID. In this way, seed and query
packets automatically “gravitate” toward each other increasing
the likelihood of intersect.

Key contributions of VDR include:
• Introduction of the concept of Virtual Directions to

eliminate the need for virtual coordinate space or DHT
structures to locate items in structured-based approaches
to provide routing.

• A flat, highly scalable, and resilient to churn routing
algorithm.

We will show that:
• VDR performs much better in state dissemination and

reach than random walk
• VDR scales much better than flood-based techniques such

as normalized flooding techniques [1]
• VDR performs especially well in dense connectivity

situations where the number of neighbors is high. This is
valuable as the P2P overlay networks can easily achieve
dense connectivity by installing links to several other
peers/nodes

• In dynamic network environments where nodes fre-
quently go on and off, VDR significantly outperforms
its counterparts in terms of end-to-end reachability and
throughput.

To achieve these goals, VDR trades off the end-to-end path
stretch required compared to flood-based techniques. Since
most real-world topologies have order log(N) reach, it is
expected that simple flooding techniques will find shorter paths
from source to destination. VDR provides a scalable alter-
native to pure flooding and normalized flooding techniques.
Additionally, state is not evenly distributed network-wide due
to the biasing of dissemination packets.

The rest of the paper is organized as follows: Section II
outlines the concept of VDR including a detailed explanation
of information replication and lookup. Section III evaluates
VDR against several protocols under varying conditions of

churn and TTL. Finally, section IV presents some concluding
thoughts and ideas on future work.

II. VIRTUAL DIRECTION SEARCH

The concept of Virtual Direction Search (VDR) is simple: in
flat networks, a pair of orthogonal lines centered at different
points will intersect at two points at minimum. By seeding
state information along orthogonal lines and performing node
lookups along those same virtual directions, one can ensure
successful node lookup in an unstructured manner without
flooding the network as these seed and search packets in-
tersect. In this section, we outline VDR and discuss various
techniques for mapping neighbors to interfaces in a globally
consistent manner, requiring low maintenance manner under
various topologies as well as state dissemination and lookup
techniques.

A. Virtual Interface Assignment

In this section, we define the concept of virtual interfaces
as used in VDR. Traditionally, interfaces are physical devices
that offer points of connection between other devices. These
devices can be physical connectors or wireless antennas that
negotiate links between neighbors. In VDR, each node parti-
tions its set of one hop (or low latency) neighbors into a set
number (n) of virtual interfaces. The total number of virtual
interfaces per node can be fixed or varied but the partitioning
strategy (i.e. hash functions) must be globally consistent. We
will assume for now that the total number of virtual interfaces
a node has (n) is fixed and globally consistent (i.e. all nodes
decide on the same number of virtual interfaces and this
number does not change).

1
0

12

3

4

5 6

7

10

26

30

1568

30 % 8 = 6 8 Virtual Interfaces

68

15

1

26

30

10

15 % 8 = 7
10 % 8 = 2

26 % 8 = 2
68 % 8 = 4

VDR Neighbor to Virtual Interface Map

Fig. 2. VDR Virtual Interface Assignment

Each virtual interface is assigned an ID from 0 to n−1 and
each one hop neighbor (as determined by physical neighbors
or by a latency constraint) is assigned to a specific interface.
In assigning nodes to an interface, it is important to keep
the assignment globally consistent even in the presence of
high churns. In other words, nodes assigned to a specific
interface should always be assigned to the same interface even
if they are unreachable for a certain amount of time. This
will minimize the dynamism and make replicated data less
susceptible to network dynamism.

Assuming each node has a unique identifier (e.g. IP ad-
dress), we employ a simple heuristic to assign neighbors to an

|10 – 1| = 9

|26 – 1| = 25 VDR State Information Replication

1
0

12

3

4

5 6

7

10
26

30

1568

10
0

12

3

4

5 6

7

1

67

5
13

28

48

5
0

12

3

4

5 6

7

14

55

10

22

Seed Source: Node 1

|5 – 1| = 4

|13 – 1| = 12 |14 – 1| = 13

|22 – 1| = 21

Fig. 3. VDR State Information Seeding Example

interface: 1) Hash each neighbor node ID to 160 bit IDs using
SHA-1 [10] and 2) Mod the resulting value by the number
of interfaces and assign the node to the interface ID with
the resulting value. By assigning neighbors in the preceding
manner, we are able to consistently map neighbors to the
same interface despite network churn. It is important to note
that with these conditions, some interfaces might have more
neighbors assigned to them than others. We evaluate another
technique whereby we first perform the hash but attempt to
make sure that no interface is assigned additional neighbors
until all other interfaces have the same number of neighbors
in section III.

After all the neighbors have been assigned to a virtual
interface, a virtual north is randomly chosen for each node.
This is done by randomly selecting an interface to be the
virtual north. This selection is important because information
is later forwarded out orthogonal directions with respect to
this virtual north.

B. State Information Dissemination

In order to minimize network flooding, each node dissemi-
nates its own ID to specific neighbors in the network to make
itself easier to locate. To do this, each node periodically seeds
its own ID to nodes along orthogonal paths with respect to its
own virtual north. Each node will select 4 interfaces that are
orthogonal to each other and choose the neighbor along that
virtual interface which has the closest hashed ID match to the
source node’s hashed ID.

When the neighbor node receives this seed packet, it will
note the previous hop and source of the packet in its routing
table (storing the source as the destination and the previous
hop as the next hop) and forward the packet out the interface
that is virtually opposite of the receiving interface. The packet
is not flooded to all neighbors assigned that that virtual
interface, however, but the neighbor that has a hashed ID
closest to the source’s hashed ID. This will ensure that the
packet forward is biased toward nodes that are closer in ID
to the source so searching for nodes will form a much higher
level of convergence. The packet is forwarded until the TTL
is reached. Algorithm 1 gives the algorithm for VDR State
Dissemination.

A secondary heuristic (in addition to pure random walk) is
used for comparison in our simulations: randomly choosing a
neighbor in each virtual direction rather than biasing it toward
the ID of the source.

Algorithm 1 VDR State Information Dissemination
SendStatePacket(p)

1: // Check if we are the source - forward opposite if not
2: if p → Src = ID then
3: // We are the source, forward orthogonally
4: // Hash Node ID to 32 Bit SHA-1
5: Ψ ← SHA1(ID)
6: // Get Interface ID of Virtual North
7: j ← GetVirtNorthIntID
8: α ← NumInterfaces
9: // Send out Orthogonal Directions

10: for i = 1, i ≤ 4, i++ do
11: Φ ←FindClosestHashedNeighbor(j)
12: // Send to Neighbor
13: send(Φ)
14: j ← ((j + α/4)%α)
15: end for
16: else
17: // We are forwarding - only forward opposite
18: // Hash Packet Source ID to 32 Bit SHA-1
19: Ψ ← SHA1(p → Src)
20: // Get received interface ID
21: j ← (p → Recv Int Id)
22: // Get opposite interface j ← ((j + α/2)%α)
23: Φ ←FindClosestHashedNeighbor(j)
24: // Send to Neighbor
25: send(Φ)
26: end if

C. Route Query

When a node wants to do a search for another node in
the network, it generates a search request (SREQ) packet and
forwards it along virtually orthogonal interfaces with respect
to its virtual north. Upon receipt of the packet, each neighbor
will update its routing table with a “destination - next-hop”
entry based on the SREQ packet’s source and previous hop
and check to see if it has a routing entry to the node the
source is searching for. If not, it will forward the node to
the interface virtually opposite the receiving interface until it
reaches a node that has information to the search destination
or reaches its own TTL.

|10 – 12| = 2

|26 – 12| = 15 VDR Route Request

1
0

12

3

4

5 6

7

10
26

30

1568

10
0

12

3

4

5 6

7

1

67

5
13

28

48

13
0

12

3

4

5 6

7

38

10

6

Route Request: Node 12

RREQ Source: Node 1

|5 – 12| = 7

|13 – 12| = 1

|6 – 12| = 6

|38 – 12| = 26

Fig. 4. VDR RREQ Path Illustration: Packets are biased toward destination
ID.

If, however, an entry to the search destination exists, the
node will prepare a search reply (SREP) packet which contains

26

5

38

68

48

10
13

6

12

2

46

1

Rendezvous Node

30

RREQ: Node 12

Seed Path

RREQ Path

RREP Path

VDR Route Request
Virtual View

Fig. 5. VDR Dissemination and Route Request Virtual View

the number of hops to the search destination and send it in the
reverse direction, relying on routing table entries of the reverse
path to get back to the source. Under network churn, if a node
in the reverse path is no longer active, VDR will re-select a
node in the same virtual direction that has the closest hashed
ID match to the original source of the SREQ packet to forward
to. This ensures a globally consistent biasing of the packets
toward the intended destination despite path breakages due to
network churn. The algorithm for route queries is similar to
Algorithm 1 except that instead of hashing the packet source
to Ψ, the packet query destination is hashed to Ψ.

Algorithm 2 VDR Find Closest Hashed Neighbor
FindClosestHashedNeighbor(j)

1: // Finds neighbor in virtual direction w/ closest ID match
2: γmin ← 0xFFFF
3: // Get Each Neighbor in Virtual Interface
4: for all k ∈ Neighbor List(j) do
5: Θ ← SHA1(k)
6: // Check Hash Distance
7: γ ← abs(Θ−Ψ)
8: if γ ≤ γmin then
9: γmin ← γ

10: // Store Send Next Hop
11: Φ ← k
12: end if
13: end for
14: Return(Φ)

D. Path Deviation

There are instances when nodes wishing to forward in a
specific interface find that no neighbors are assigned that
virtual interface. VDR employs a strategy to correct for path
deviations in an attempt to maintain virtual straight lines.
The strategy is fairly straight-forward and employs an angle
correction method based on encoding a multiplier in the header
based on the number of interfaces deviated from the intended
send direction. More information can be found in [11].

III. PERFORMANCE EVALUATION

In this section, we provide performance evaluations of VDR
under various parameters and against some basic random-walk

TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter Values
Number of Nodes 50,000
Number of Virtual Interfaces 8
Simulation Cycles 150
Churn percentage 0% - 50% every 5 cycles
Seed/Search TTL 10 - 100 hops
Seed Entry Expiry 10 Cycles (in churn environments)
Interface Assignment VDR Hash, VDR Hash w/ NB Shift
Seed/Search Strategy VDR, VDR-Random, Random Walk
Number of Queries 1000 Randomly Generated

techniques and flooding techniques. The simulations were
performed using PeerSim [13] under a cycle-driven model. We
wire our topology such that each node has a K out-degree.
Because links are bidirectional, it is expected that each node
has an average of 2K one hop neighbors. Although internet
topology is power-law (many nodes have few connections
while some nodes have a large number of neighbors), we
can assume this topology because 1) peer-to-peer systems
are overlay networks and connections are often virtual, 2) 1
hop neighbors can be physical one hop neighbors or links
with the lowest latency to the source, and 3) peer-to-peer
systems represent a subset of the whole network and small-
world examples show relatively flat topologies [2], [3].

The performance metrics evaluated include reachability,
path stretch vs. shortest path, and network-wide state distri-
bution. We examine these metrics under conditions of varying
seed and search TTL and strategies, average number of imme-
diate neighbors, number of virtual interfaces, and percentage
of network churns. All simulations were averaged over 10 runs
under random topologies and 95% confidence intervals were
mapped. Unless otherwise stated, 1000 randomly generated
source and destination queries were generated to start some-
where between cycle 30 to 100. Table I outlines our default
simulation parameters.

Interface assignment refers to the strategy used to assign
neighbors to virtual interfaces. The techniques used consist
of the standard VDR hash strategy as described in Section II
and a modified heuristic that attempts to evenly distribute the
neighbors to each interface (VDR w/ NB Dist). The purpose
behind this is to make sure one interface doesn’t have a lot of
neighbor assignments while the others have none.

The search and seed strategies used include VDR, VDR-
Random (VDR-R), and Random Walk Routing (RWR). VDR
is the exact strategy described in Section II while VDR-
Random (VDR-R) utilizes the same node to interface as-
signment technique, but randomizes the node forwarding in
a specific direction. In short, if a virtual interface has multiple
nodes assigned to it, VDR-Random will choose a random
neighbor associated with that interface rather than choose the
neighbor with the hash closest in distance from the source node
(for seed packets) or query-search node (for search packets).
The random walk strategy is not a pure random walk but its
built around the same concept. For the random walk strategy, 4
“walkers” are used with each source node seeding and search

for information by sending out 4 random neighbors. Each
of the walkers are essentially random walk packets and are
dropped after a certain TTL.

A. Evaluation of VDR in Churn-less Environments

In this section, we examine the effect of search and seed
packet TTL, number of virtual interfaces, and average number
of neighbors per node on reachability, path stretch, and state
distribution under the three seed strategies as listed above
(VDR, VDR-Random, and Random Walk Routing) in a fixed,
no churn environment. Each node utilizes 8 virtual interfaces
with out-degree k assigned to 10. Because links are bi-
directional, this means that each node has an average of about
20 neighbors with the deviation from the average to be quite
small.

For all cases, seed information is sent only once and the
expiry time for each entry is set to the number of simulation
cycles as we assume that the network is not dynamic and con-
tinual send is redundant. This is also important because under
the random walk search (RWR) technique, continual sending
of the seed packets lead to different neighbors chosen each
time leading to huge confusion in path choices (essentially,
all nodes in the network would know a source after a set time
if the expiry was set high).

1) Effect of Seed and Search TTL: In this subsection,
we examine the effect of search and seed packet TTL on
reachability, path stretch, and state distribution under three
seed and search strategies. We expect that VDR should provide
higher connectivity and lower path stretch than the other
strategies (VDR-Random and Random Walk) under lessened
seed/search TTL simply because it biases the packets toward
a specific ID. Figures 6-8 give our results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

R
ea

ch
 P

ro
ba

bi
lit

y

TTL of Seed / Query Packets - 50,000 Nodes (K: 10)

Reach Probability vs. Seed/Query TTL

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Protocol

Fig. 6. VDR-R achieves better reachability within less TTL in comparison
to RWR. Additional consistency reinforcement with closest ID match (VDR)
improves the reachability further.

It can be seen in figure 8 that VDR is able to find
information with a higher success rate with less search and
seed TTL. This is beneficial because lower TTL lowers the
amount of packets traveling network-wide and frees up the
links for actual traffic. It is interesting to note that even with
a TTL of 100, VDR achieves almost 100% reachability in a
network of 50,000 nodes. The random walk search (RWR)
technique, as expected, converged the slowest, requiring a
much higher TTL to even come close to VDR. The reason
that RWR even comes close to VDR is because of the fixed

network environment. Under network churns, however, state
maintenance would grow dramatically simply because seed
dissemination would no longer be sent to the same nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

A
vg

. E
nd

-t
o-

E
nd

 P
at

h
Le

ng
th

TTL of Seed / Query Packets - 50,000 Nodes (K: 10)

Avg. End-to-End Path Length vs. Seed/Query TTL

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Protocol (RWR)

Fig. 7. VDR finds information seeds with 25% less hops than random walk.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

A
vg

. E
nd

-t
o-

E
nd

 P
at

h
S

tr
et

ch

TTL of Seed / Query Packets - 50,000 Nodes (K: 10)

Avg. End-to-End Path Stretch vs. Seed/Query TTL

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Protocol (RWR)

Fig. 8. In VDR, path stretch from source to actual data (destination) is
roughly 15% less than with random walk.

We see from figure 7 that the path from the source to a
seed node is also much shorter in VDR. Again, this is due to
sent packets being biased toward the ID with the closest match.
Path stretch (figure 8) shows similar results. It is interesting to
note the substantially high number of hops traversed through
VDR, VDR-Random, and RWR as compared to shortest path.
The shortest path in a wired network grows on order of
Log(N) where N is the number of packets in the network.
Therefore, it is expected that with 50,000 nodes in the network,
the shortest path should be roughly 4.7 hops. It makes sense
that these path lengths increase with increased TTL because
source and destination pairs that are now farther away can
be reached and so the average path length increases with
increased reach.

2) Effect of Number of Virtual Interfaces: In this section,
we examine the effect of modifying the number of virtual
interfaces on reach probability, end-to-end path stretch, and
number of states maintained network-wide. With finer granu-
larity (more virtual interfaces), it is expected that the difference
between VDR and VDR-R will become smaller because the
randomness in neighbor selection for each interface will be
reduced as there would only be 1 neighbor per interface. In
our simulations, we ran a 50,000 node network with each node
having an average of 20 neighbors. Figures 9-10 show our
results for simulating VDR and VDR-R with a search/seed
TTL of 50 and 100.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 8 16 24 32

R
ea

ch
 P

ro
ba

bi
lit

y

Number of Virtual Interfaces - 20 Average Neighbors

Reach Probability vs. # of Virtual Interfaces

VDR w/ Closest ID Match (VDR) - TTL: 50
VDR w/ Random ID Match (VDR-R) - TTL: 50

VDR w/ Closest ID Match (VDR) - TTL: 100
VDR w/ Random ID Match (VDR-R) - TTL: 100

Fig. 9. When the number of interfaces are much less than the number of
neighbors, the biasing effects of VDR are more pronounced leading to higher
reach.

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 8 16 24 32S
ho

rt
es

t P
at

h
to

 S
ou

rc
e

(#
 h

op
s)

Number of Virtual Interfaces - 20 Average Neighbors

Path Stretch (Src to Dest) vs. # of Virtual Interfaces

VDR w/ Closest ID Match (VDR) - TTL: 50
VDR w/ Random ID Match (VDR-R) - TTL: 50

VDR w/ Closest ID Match (VDR) - TTL: 100
VDR w/ Random ID Match (VDR-R) - TTL: 100

Fig. 10. Biasing effects are greater seen when there are more neighbors
assigned to a virtual interface, generating shorter paths.

As shown in figure 9, VDR has much higher reach prob-
ability with lower number of virtual interfaces. This is due
to the biasing of IDs such that there is a better convergence.
The results are more pronounced at lower seed/search TTL
simply because there isn’t a saturation of states. The closer
VDR gets to 100% reach, the less TTL will affect the packet
reach probability resulting in less difference in reach. One
of the reasons for greater reach is the lowered path length
required for VDR as compared to VDR-R. This again, is due
to the biasing of packet IDs. It is interesting that the lower
the TTL, the lower the path stretch observed. This is because
there is a smaller fraction of delivery success and only the
paths that succeed (the shorter ones) are measured.

3) Effect of Number Neighbors: In overlay networks, neigh-
bor nodes are often assigned randomly based on the latency
from a specific node rather than physical links. Because of
this flexibility in neighbor assignment, it becomes interesting
to examine how increasing the number of neighbors per node
affects reach, path stretch, and state distribution in networks
utilizing VDR, VDR-Random, and RWR.

In these simulations, we fix the virtual interfaces to 8
and increase the k constant (the number of out-degrees)
from 5 (average of 10 neighbors/node) to 20 (average of 40
neighbors/node). Because as k is increased, a greater number
of neighbors will be assigned to each interface, it is expected
that the biasing effect in VDR will yield much more beneficial
results over VDR-Random for larger k values. As the k is
increased, we also expect to observe increased path stretch
under lower search/seed TTL simply because the number of

nodes in the network are fixed and if each node has more
neighbors, paths to each node is inherently shorter (lower
shortest path yielding higher path stretch). One would also
expect higher reach with increased k because end-to-end paths
to all nodes are essentially shorter.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40

S
ea

rc
h

S
uc

ce
ss

 R
at

e

Average # of Neighbors (2k) - Seed/Query TTL: 50

Reach Probability vs. Average # of Neighbors (2k)

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 11. VDR has higher reachability than VDR-R and RWR with increased
neighbors because it and search/seed TTL of 50 hops because of biasing
packets toward the query destination.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40

R
ea

ch
 P

ro
ba

bi
lit

y

Average # of Neighbors (2k) - Seed/Query TTL: 100

Reach Probability vs. Average # of Neighbors (2k)

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 12. VDR has higher reachability than VDR-R and RWR with increased
neighbors because it and search/seed TTL of 100 hops because of biasing
packets toward the query destination.

Figures 11 and 12 show our results for reachability/search
success while increasing k for each of the search and seed
strategies at 50 and 100 TTL. It can be seen that with VDR,
as the number of neighbors increase, higher reach occurs.
Under the same conditions, we see that VDR-Random and
RWR yield significantly less reach than VDR. Comparing
VDR to VDR-Random, we see that as the number of neighbors
increase, VDR-Random reach remains relatively constant. This
is due in part to the forwarding mechanism found in VDR-
Random. In VDR-Random, although the number of neighbors
(and thus the number of neighbors assigned to each interface)
increases, its decision-making strategy is still to choose a
random neighbor in a specific virtual interface direction.

The assignment of nodes to a virtual interface negatively
impacts the options available to send and therefore the gains
by simply having more neighbors (and thurs shorter end-to-end
paths) are offset by the losses due to assigning neighbors to
rigid virtual interfaces. Because VDR-Random still randomly
chooses nodes in a specific interface direction, this results in
a relatively constant reach even under increased k.

Figures 13 and 14 show the results for end to end path
stretch while increasing k for a query and seed TTL of 50

 8

 9

 10

 11

 12

 13

 14

 15

 10 20 30 40

(S
rc

 to
 D

es
t)

 P
at

h
S

tr
et

ch

Average # of Neighbors (2k) - Seed/Query TTL: 50

Path Stretch vs. Average # of Neighbors (2k)

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 13. Path stretch increases with more neighbors because in a network
of fixed number of nodes, with more connections to and from each node, the
average end to end shortest path decreases.

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 10 20 30 40

(S
rc

 to
 D

es
t)

 P
at

h
S

tr
et

ch

Average # of Neighbors (2k) - Seed/Query TTL: 100

Path Stretch vs. Average # of Neighbors (2k)

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 14. Path stretch increases with more neighbors because in a network
of fixed number of nodes, with more connections to and from each node, the
average end to end shortest path decreases.

and 100. It’s interesting that overall, the path stretch increases
with increased number of neighbors. This makes sense because
paths chosen are less efficient due to the greater number of
neighbors assigned to each interface. Comparatively, however,
VDR still yields only slightly shorter path stretch than VDR-
Random and RWR with increased number of neighbors. This
is due to the biasing effect of forwarding.

4) Evaluation of State Distribution: Its interesting to ex-
amine how evenly the state is spread network-wide because
in flat topologies, even distribution suggests no single point
of failure. Because VDR is essentially a biased random-walk
technique, it is expected that state is fairly evenly distributed
throughout the network. To simulate state distribution, we
generated a fixed overlay network with an average of 20
neighbors each. Keeping this overlay network fixed, we ran the
simulation 10 times with varying initial virtual orientations
and took snapshots of the state throughout the simulation,
averaging the state per node for each run over all 10 runs.
A histogram of the frequency of a average states maintained
is shown in figure 15.

As figure 15 shows, the average states maintained is less
evenly distributed in VDR compared to VDR-R and RWR.
This suggests that some nodes have more information than
other nodes. We suspect this is due to certain nodes with
hashed IDs closer to the average being chosen as an appropri-
ate “next hop” more than the other nodes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0-100
100-200

200-300

300-400

400-500

500-600

600-700

700-800

800-900

900-1000

N
um

be
r

of
 N

od
es

Average Number of States (10 Runs - 50,000 Nodes)

Frequency of States Maintained Networkwide

VDR: Avg States: 389.7, Std. Dev: 204.7
VDR-R: Avg States: 397.8, Std. Dev: 108.0
RWP: Avg States: 357.8, Std. Dev: 56.6

VDR w/ Closet ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 15. VDR has high state distribution deviation suggesting an uneven
distribution of state networkwide.

5) Evaluation of Network Load Distribution: It has been
shown that network congestion can be controlled and limited
by routing packets using two-phase routing algorithms [15]
[14]. Current overlay measure route cost through hop count
and at times, load. In high-traffic networks, by choosing
the shortest path, nodes with many connections will become
saturated with packets. Busch et al. [15] has shown that
by drawing a perpendicular bisector between source and
destination and forwarding packets from source to a random
point on the perpendicular bisector which in-turn forwards to
destination when that point is reached, load can be balanced
across the network. In much the same way, VDR inherently
implements a seemingly two-phase routing algorithm because
it provides rendezvous abstractions whereby the source sends
search packets until it rendezvous with seed information. As a
result, it is interesting to see the distribution of load network-
wide.

In this subsection, we measure network load by taking snap-
shots of queue lengths of 50,000 nodes at specific intervals in
time. Essentially, we fix the wiring of the overlay network with
the only variable for each run being the virtual orientation.
We then run the simulation 10 times and average out the
instantaneous queue lengths per snapshot per simulation run
for each node. By understanding the variation from the mean
number of packets in the queues per node, we can see how
evenly distributed the load is across the network.

Figure 16 shows the histogram for the number of nodes with
queue sizes in the intervals given. It can be seen that there is
greater spread of load using VDR compared to VDR-R and
RWR suggesting that some nodes incur heavier load than other
nodes. This is to be expected because VDR chooses shorter
paths and constrains neighbor sending to virtual interfaces.
As can be seen, RWR performs the best because random walk
models are known to distribute load fairly evenly.

B. Evaluation of VDR in Dynamic Environments

In this section, we examine the effect of network churn
on reachability, end-to-end path stretch, overall network load
and state distribution under the three seed/search strategies as
listed above (VDR, VDR-Random, and Random Walk). We
simulate churn in the following manner: First, all nodes are

 0

 5000

 10000

 15000

 20000

 25000

 30000

0-2
2-4

4-6
6-8

8-10
10-12

12-14
14-16

N
um

be
r

of
 N

od
es

Average Queue Size (10 Runs - 50,000 Nodes)

Frequency of Queue Sizes Networkwide

VDR: Avg Queue Size: 5.86, Std. Dev: 2.76

VDR-R: Avg Queue Size: 5.86, Std. Dev: 1.81

RWR: Avg Queue Size: 5.60, Std. Dev: 1.18

VDR w/ Closet ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 16. VDR has high queue size distribution deviation suggesting an uneven
distribution of load networkwide.

connected by assigning an average of k out nodes from each
node. Because the links are bi-directional, each node generally
has roughly 2k neighbors. We then “turn off” half the nodes in
the network probabilistically essentially dropping the average
number of neighbors to k. The inactive nodes now serve as
“raw material” for new connections and nodes currently in the
original set can be either turned off or on per simulation cycle.

For our simulations, we fix the number of nodes active to
be a constant at half the total available nodes and every 5
cycles, randomly activate a percentage of nodes with respect
to the active nodes and deactivate the same number of nodes
randomly. When nodes are deactivated, all the packets in their
incoming queue are dropped and routing tables emptied. When
they are activated, the connections that were originally formed
with neighbor nodes remain the same. Thus, nodes can be
active and inactive at any point in the simulation and have
essentially maintain the same state.

The simulator keeps track of all the nodes that have ever
been active and queries are generated based on any node
that has ever been active. This makes sense as in an overlay
network, resources that have never been allocated will never
be able to be found. Expiry time for each routing entry is
set 10 cycles which is the same as the seed/announcement
packet send interval. As per the VDR algorithm, search queries
are sent out virtual orthogonal directions until they intersect
a node with a path to the destination in their routing table.
When this occurs, a search reply packet is generated and sent
in the reverse path. In the event of reverse path nodes no longer
being up, a node in the same virtual direction is chosen with
an ID closest in match to the source of the search query (the
destination of the search reply). Under RWR, another node is
randomly chosen. In our scenarios, we simulated 25,000 active
nodes with a total pool of 50,000 nodes under various churn
percentages. The TTL of the seed/announcement packets was
set to 150 and each node contained an average of 20 one-hop
neighbors.

1) Effect of Churn on Search Success: In this subsection,
we examined how the percentage of network churns affect
search success. We consider a successful search to have oc-
curred when a search query is initiated and it receives a search

reply. It’s expected that VDR outperforms VDR-R and RWR
simply because it orders neighbors into a more structured
fashion with virtual interface assignments. With the RWR,
four “walkers” are sent out to random neighbors in search for
seed information planted by four seed “walkers”. These seed
packets are sent out periodically to different neighbors so while
at some point there might be more state network-wide, the
expiry of the routing information removes stale routes quickly.
Our results are shown in figures 17 and 18.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50

R
ea

ch
 P

ro
ba

bi
lit

y

Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 50)

Reach Probability vs. Network Churn

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Protocol

Fig. 17. VDR maintains much higher reachability than VDR-R and RWR
with increased percentage of network churn. It also much more robust to
network churn, dropping only 5% reach for 50 seed/search TTL compared to
VDR-R and RWR which dropped 12-15% going from 0% to 50% network
churn for a seed/search TTL of 50.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50

R
ea

ch
 P

ro
ba

bi
lit

y

Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 70)

Reach Probability vs. Network Churn

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 18. VDR maintains much higher reachability than VDR-R and RWR
with increased percentage of network churn. It also much more robust to
network churn, dropping only 2% reach for 70 seed/search TTL compared
to VDR-R and RWR which dropped 7-8% going from 0% to 50% network
churn for a seed/search TTL of 70.

As figures 17 and 18 show, VDR has the highest percentage
of search success/reach under the same network churn rate
compared to VDR-R and RWR. It outperforms VDR-R be-
cause of the biasing effect of the neighbor send. Because each
node has about 15 neighbors and 8 virtual interfaces, there is
a possibility that if a neighbor is down (or swapped), VDR
will choose another neighbor that is atleast biased toward the
search query source (search reply destination) whereas VDR-R
will simply randomly choose a node. VDR outperforms RWR
simply because in sending search replies, if a previous hop is
no longer available, then it must randomly choose a neighbor
to forward. If it was forced to perform a random walk until
it reached the search query source, it would most definitely
result in a packet loss the majority of the times. However,
because the random walk need only intersect a node with a

path in its routing table to the search query source, there is
still relatively high reach (∼81% even for 50% network churn
with a search/seed TTL of 70).

It is also important to understand the rate at which search
success/reach drops with respect to the percentage of churns.
As can be seen from figures 17 and 18, VDR drops only 5%
in reach from 0% to 50% network churn for a search/seed
TTL of 50 and only 2% for a search/seed TTL of 70. This is
important because even with 50% nodes turning off and new
ones being added, there is still a high degree of reach and
robustness to search. VDR-R and RWR, on the other hand,
drops about 12-15% in reach for 50 TTL and 7-8% in reach
for 70 TTL simply because of the random nature of their send
as described before: if a search query reply packet finds the
next hop inactive, it must retrace its path without any kind of
“hints”.

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 0 10 20 30 40 50

P
at

h
S

tr
et

ch
 (

vs
. S

ho
rt

es
t P

at
h)

Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 50)

Avg. Path Stretch (Src to Dest) vs. Network Churn

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 19. VDR performs with the shortest amount of path stretch as compared
to VDR-R and RWR because of a consistent virtual direction and biasing
effect of packets.

2) Effect of Churn on Path Stretch: Figure 19 shows our
result on path stretch under churn for VDR, VDR-R, and RWR
with a search/seed TTL of 50. It can be seen that as network
churn increases, the path stretch increases. This is consistent
with expectations as when reverse paths are not reachable, new
neighbors must be chosen resulting in often longer paths.

What is interesting, however, is that VDR actually generates
much lower path stretch compared to VDR-R and RWR
despite the fact that VDR-R and RWR have lower search
success and reach. In general, paths with shorter hops are less
affected by network churn and therefore it is expected that with
lower reach/search success, the paths are generally shorter in
general. We see therefore, that VDR not only provides higher
path reach, but that it also finds shorter paths.

3) Effect of Churn on Network Load: It has been shown
that network congestion can be controlled and limited by
routing packets using two-phase routing algorithms [15] [14].
Current overlay measure route cost through hop count and at
times, load. In high-traffic networks, by choosing the shortest
path, nodes with many connections will become saturated
with packets. Busch et al. [15] has shown that by drawing
a perpendicular bisector between source and destination and
forwarding packets from source to a random point on the
perpendicular bisector which in-turn forwards to destination
when that point is reached, load can be balanced across the
network. In much the same way, VDR inherently implements

a seemingly two-phase routing algorithm because it provides
rendezvous abstractions whereby the source sends search
packets until it rendezvous with seed information. As a result,
it is interesting to see the distribution of load network-wide.

In this subsection, we measure network load by taking
snapshots of queue lengths of nodes that are active at specific
intervals in time. What we measure is the deviation from the
average queue length (in our case, 19.7 average packets per
node). A higher deviation means that certain nodes have more
packets on average than other nodes. One possible issue with
measuring instantaneous queue sizes and averaging it over
several snapshots network wide is that it does not take into
consideration nodes that have just become active compared to
nodes that have been active for an extended amount of time.
We balance this issue out by taking the RWR as the base case
simply because under random walk strategies, it is known that
state is relatively well distributed. Figure 20 shows our results
for a seed/search TTL of 50.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 10 20 30 40 50

A
vg

. Q
ue

ue
 L

en
gt

h
S

pr
ea

d

Network Churn (% of Network) - 25,000 Nodes (K: 10, TTL: 50)

Avg. Queue Length Spread vs. Network Churn - 19.7 Avg Queue

VDR w/ Closest ID Match (VDR)
VDR w/ Random ID Match (VDR-R)

Random Walk Routing (RWR)

Fig. 20. Effect of network churn percentage on VDR queue size distribution.
VDR has a large spread in queue length distribution suggesting that load is
not evenly balanced network-wide (about .65X more than VDR-R and 1X
more than RWR).

It can be seen that as expected, VDR has the highest
deviation from the average of 14.33 average packets in the
queue per node. This is expected as again, certain nodes have
preferred paths due to closer ID matching. VDR-R has a higher
deviation than RWR because it also makes the routing more
rigid by mapping neighbor nodes to virtual interfaces. We see
that the queue length spread per node for VDR is about .65X
more than VDR-R and 1X more than RWR. As network churn
increases, more queues are emptied per churn interval resulting
in fewer packets per node in the queues overall.

4) Effect of Churn on State Distribution: Similar to subsec-
tion III-B.3, it is interesting to understand the state distribution
network-wide. Comparing VDR to the other techniques, we
see that in general, the states network-wide are fairly consistent
at about 171 average states per node. It is interesting, therefore,
to understand how those states are distributed to see whether
or there are more single points of failure with using VDR as
compared to the other strategies. The same issues with network
churn apply as in subsection III-B.3 and we likewise address
this issue by comparing to the baseline random walk technique
(RWR) since it is well known that random walk techniques
distribute state fairly evenly. Figure 21 shows our results for
a search/seed TTL of 50.

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50

A
vg

. S
ta

te
s

M
ai

nt
ai

ne
d

S
pr

ea
d

Network Churn (% of Network)

Avg. States Maintained Spread vs. Network Churn - 171 Avg States

VDR w/ Closest ID Match
VDR w/ Random ID Match

Random Walk Protocol

Fig. 21. Effect of network churn percentage on VDR state distribution. VDR
showed the highest spread in states maintained network-wide suggesting that
certain nodes have more states maintained than other nodes (about .56X higher
than VDR-R and 1.5X higher than RWR).)

As figure 21 depicts, VDR has the highest deviation from
the average states maintained per node. This suggest that state
is not very evenly distributed network-wide. However, when
compared to RWR (the baseline), we see that VDR state spread
is only about 1.5X higher than RWR. This again, is due to
VDR biasing random walks such that sending favors certain
nodes (ie: announcement packets generally travel through the
same neighbors).

C. Summary of VDR Performance Evaluations

Below we summarize our findings in performance evalua-
tions for VDR:
• VDR reaches 3.5% more nodes than VDR-R and 9%

more nodes than our modified random walk routing
strategy (RWR).

• VDR-R produces the same reach and path stretch results
with increasing number of virtual interfaces. This is due
to the randomization of sends. VDR, however, increases
reach with fewer number of virtual interfaces because of
its biasing technique. The gains disappear if the number
of neighbors is smaller than the number of interfaces.

• Increasing the number of neighbors generally increased
reach and end-to-end path stretch. This was probably due
to more node choices per neighbor to bias information.

• VDR states and queues/load are not well distributed.
• VDR shows a 3-4X reach retention rate going from 0%

to 50% network churn compared to VDR-R and RWR,
showing itself to be much more robust to network churn.

• VDR, even under churn, does not spread state or load
evenly.

• VDR paths exhibit high path stretch compared to shortest
path but good path stretch compared to pure random walk
techniques.

IV. CONCLUSION

In this paper, we presented Virtual Direction Routing
(VDR), a scalable overlay network routing protocol that uses
the concept of virtual directions to efficiently perform node
information dissemination and lookup. State information is
disseminated to nodes along virtual orthogonal lines orig-
inating from each node and periodically updated. When a

path lookup is initiated, instead of flooding the network,
query packets are also forwarded along virtual orthogonal
lines until an intersection with the seeded state occurs. Both
seed and search packets are biased toward the originator ID
and search ID respectively. We show that in a small-world,
unstructured, flat topology, VDR provides high reach even
with low seed/search TTL (∼98% reach for a TTL of 100
for a 50,000 node network) and that VDR is robust to churn
(dropping only 2% in reach going from 0% to 50% network
churn). We also show that VDR scales well without imposing
DHT-like graph structures (eg: trees, rings, torus, coordinate-
space, etc.) and the path stretch compared to random-walk
protocols (the traditional method to route in unstructured
overlay networks) is very good. VDR trades off the gains by
not having a very even distribution of state. This is due to
the biasing of state dissemination packets such that certain
neighbors consistently receive state information while others
do not. Path choices are also suboptimal compared to flooding
techniques due to the two phased-biased random-walk nature
of VDR.

REFERENCES

[1] C. Ghantsidis, M. Mihail, and A. Saberi. “Hybrid search schemes for
unstructured peer-to-peer networks.” Proceedings of IEEE INFOCOM,
2005.

[2] A. Iamnitchi, M. Ripeanu, and I. Foster. “Small-world filesharing com-
munities.” Proceedings of IEEE INFOCOM, 2004.

[3] J. Kleinberg. “Navigation in a small world.” Nature, page 845, 2000.
[4] A. Kumar, J. Xu, and E. W. Zegura. “Efficient and scalable query routing

for unstructured peer-to-peer networks.” Proceedings of IEEE INFOCOM,
2005.

[5] H. Guclu and M. Yuksel. “Scale-Free Overlay Topologies with Hard
Cutoffs for Unstructured Peer-to-Peer Networks.” Proceedings of IEEE
ICDCS, 2007.

[6] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Frans Kaashoek,
F. Dabek, and H. Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications.” IEEE Transactions on Networking,
February 2003.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A Scal-
able Content-Addressable Network.” Proceedings of ACM SIGCOMM
2001.

[8] Gnutella home page. http://gnutella.wego.com.
[9] Kazaa home page. http://www.kazaa.com.
[10] SHA-1 RFC. http://tools.ietf.org/html/rfc3174.
[11] B. Cheng, M. Yuksel, S. Kalyanaraman, “Orthgonal Rendezvous Routing

Protocol for Wireless Mesh Networks,” Proceedings of ICNP 2006.
[12] M. Mitzenmacher, ”Compressed bloom filters,” IEEE/ACM Transactions

on Networking, vol. 10, no 5, pp. 604-612, 2002.
[13] PeerSim: A Peer-to-Peer Simulator. http://peersim.sourceforge.net/.
[14] M. Kodialam, T. V. Lakshman, and Sudipta Sengupta, “Efficient and

Robust Routing of Highly Variable Traffic”, Third Workshop on Hot
Topics in Networks (HotNets-III), San Diego (USA), November 2004.

[15] C. Busch, M. Ismail, and J. Xi, “Oblivious Routing on Geometric
Networks”, Proceedings of the 17th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp 316-324, Las Vegas, Nevada,
July 2005.

[16] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, “Mak-
ing Gnutella-like P2P Systems Scalable”, Proceedings of SIGCOMM
2003, August 2003.

[17] W. Terpstra, J. Kangasharju, C. Leng, A. Buchmann, “BubbleStorm:
Resilient, Prbabilistic, and Exhaustive Peer-to-Peer Search”, Proceedings
of SIGCOMM 2007, August 2007.

