
ASAP: An Advertisement-based Search Algorithm
for Unstructured Peer-to-peer Systems

Peng Gu, Jun Wang Hailong Cai
Electrical Engineering and Computer Science 1600 Amphitheatre Parkway

University of Central Florida, Orlando, FL 32816 Google Inc, Mountain View, CA 94043
{penggu,jwang}@eecs.ucf.edu hailong@google.com

Abstract— Most of existing search algorithms for unstructured
peer-to-peer (P2P) systems share one common approach: the
requesting node sends out a query and the query message is
repeatedly routed and forwarded to other peers in the overlay
network. Due to multiple hops involved in query forwarding,
the search may result in a long delay before it is answered.
Furthermore, some incapable nodes may be easily overloaded
when the query traffic becomes intensive or bursty.

In this paper, we present a novel content-pushing,
Advertisement-based Search Algorithm for unstructured P2P
systems called ASAP. An advertisement (ad in brief) is a synopsis
of contents a peer tends to share, and appropriately distributed
and selectively cached by other peers in the system. In ASAP,
nodes proactively advertise their contents by delivering ads, and
selectively store interesting ads received from other peers. Upon
a request, a node can locate the destination nodes by looking
up its local ads repository, and thus obtain a one-hop search
latency with modest search cost. Comprehensive experimental
results show that, compared with traditional query-based search
algorithms, ASAP achieves much better search efficiency, and
maintains system load 1 at a low level with small variances. In
addition, ASAP works well under node churn.

Index Terms— Peer-to-peer, advertisement, ASAP, search, un-
structured P2P

I. INTRODUCTION

How to develop efficient content location schemes remains
to be one of the foremost challenges in P2P systems. The past
few years have seen many search algorithms presented and
studied, and even more being developed. In unstructured P2P
systems, most of existing query-based search algorithms share
one common approach: upon a search request, a node sends
out a query and the query is repeatedly routed and forwarded to
other peers in the overlay network. This leads to the following
limitations.

1) When a query travels multiple hops, it may take an
arbitrarily long time for the query to be answered.
Additionally, the search process incurs multiple query-
related messages across the network. As a result, a
significant amount of both network bandwidth and com-
puting power are consumed at all the involved nodes on
the routing path.

2) Query-based searches can not persistently offer a high-
quality service under dynamic environments. When the
request workload fluctuates, the system load generated

1By system load, we refer to all P2P traffics triggered by external events
such as a search request. This does not include the keep-alive messages
between peers as they are internally used to maintain overlay connectivity.
Downloading traffic is not counted because it is out of the scope of content
location and unavoidable in any content-sharing P2P system.

by query messages tends to vary sharply since each
request may lead to many query messages. During rush
hours when requests become bursty, a large volume of
query messages may easily overwhelm some incapable
nodes and thus throttle the system scalability.

Both aforementioned limitations stem from a nature of ex-
isting query-based search approaches: a potentially excessive
usage of queries, which usually leads to long search latency
and high system load. One possible solution is to process a
search request in one hop and thus reduce the search cost
to a deterministic constant. The past few years have seen
several efficient one-hop lookup algorithms, such as the One-
hop routing scheme [14] and Beehive [22]. However, these
schemes only work on structured overlays. Since most com-
mercial P2P systems are unstructured, it is a more important
but challenging task to realize one-hop search in unstructured
P2P systems.

In unstructured P2P systems, we find that it is hard to
achieve the goal by following the traditional query-based,
content-pulling approach. There are two reasons: peer pas-
siveness and overlay unstructuredness. In the query-based
approach, most peers sit silently and passively wait for requests
to arrive. Upon a request, the peer knows little about where
to find the content in the unstructured overlay. Therefore,
many query messages are generated for the purpose of object
location, which is subject to long latency and high overhead.
To completely solve the problem, solutions need to be sought
out in a new direction.

In this paper, we present a content-pushing, Advertisements-
based Search Algorithm for unstructured P2P systems (called
ASAP), which aims to achieve a one-hop latency with modest
search cost in most cases. An advertisement (or ad for short)
is a synopsis of contents a peer tends to share, appropriately
distributed and selectively cached by other peers in the system.
Rather than waiting for the peers to reactively send out
query messages, we argue that it is more appropriate for the
system to proactively prepare the interested content indices
before searches are initiated. To do this, each node in ASAP
proactively advertises its shared contents by delivering an ad—
a compact information vehicle with high-level semantics, and
selectively stores interesting ads received from other peers.
Upon a request, the node simply looks up its local ads repos-
itory for results. In this way, ASAP obtains optimal one-hop
search performance with modest search cost. In addition, the
system overhead regarding the ad delivery can be controlled
at an acceptable level by imposing a total budget limit used
in reference [12].

ASAP offers several benefits for searching contents in
unstructured P2P systems. First, from the end user’s point of
view, ASAP services search requests in very short latency.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



From the system’s point of view, ASAP maintains a low
system load with small variance, showing the good potential
of smoothing out the bursty traffic. Second, unlike traditional
query-based search schemes, the service quality is independent
on the popularity of contents. Because of the proactive content
pushing technique, both hot and cold documents are treated
equally. Third, ASAP works well on purely decentralized P2P
systems, and does not require the presence and willingness of
powerful nodes that act as super peers.

Comprehensive simulation results show that, compared with
representative query-based approaches, ASAP improves the
search performance by more than 62% in terms of response
time and slashes the search cost by 2 to 3 orders of magnitude
in terms of bandwidth consumed in a search. In addition,
ASAP keeps the system load 2 to 5 times lower, and experi-
ences only minor load variations.

II. RELATED WORK

Traditional P2P search schemes, such as flooding, random
walk [5], [11], [21], and routing indices [6] rely on queries
for content location. The search performance has been continu-
ously improved by new alternatives. In structured P2P systems
[16], [23], a query reaches its destination within O(logN)
hops, and an object publish/removal also requires O(logN)
messages of overlay maintenance. DHTs achieve good search
performance by deterministically routing queries to specific
nodes where the objects are saved. As studied by Blake et
al. [1], however, DHT overlays are constructed in such an
algorithmic fashion that contents close in the ID space are
published to a randomly picked node with the closest nodeId,
while the user at that node may have no interest in these data
replicas at all. Consequently, queries are still needed for users’
requests, and this scheme is also subjected to the problem of
arbitrarily long latency and labile system load.

To further improve the search efficiency, researchers have
proposed several one-hop lookup algorithms upon DHTs.
Based on Chord, Gupta et al. [14] proposed a one-hop lookup
scheme for P2P overlays, in which each node maintains accu-
rate routing tables with complete membership information. For
the purpose of disseminating information about membership
changes, the system requires relatively powerful and stable
nodes to act as slice and unit leaders. Following another
direction, Ramasubramanian et al. [22] presented Beehive,
a proactive replication framework that delivers O(1) lookup
performance for common Zipf-like query distributions. Bee-
hive continuously monitors the changes of content popularity
and query distribution, and quickly adapts its performance to
dynamic environments. Presented by Li et al. [17], Accordion
automatically tunes itself according to the operating environ-
ment, aiming to persistently deliver good performance in terms
of lookup latency by adaptively adjusting the routing table size.
Kelips [15] probabilistically offers O(1) lookup performance
by dividing the network into O(

√
N) groups of O(

√
N) nodes,

replicating every object on every node within an group, and
using gossip to propagate updates.

Content pushing is widely used in pub-sub systems [27],
where publishers generate events that are consumed by sub-
scribers. Unlike P2P systems, Pub-sub systems bear a distinct
system architecture in that they rely on a dedicated network
of routing brokers working exclusively for event propagation.
PlanetP [8] employs a gossiping layer to globally replicate a
membership directory and content indices. While the search

performance was reported promising, the system load tends
to be high due to the global gossiping. This could limit the
system scalability.

III. ASAP DESIGN

We present the detailed design of ASAP in this section,
starting with an explanation of the design rationale in Section
III-A. Then we discuss the ad representation in Section III-B.
The ASAP search algorithm is described in Section III-C in
detail.

A. Design rationale

In this paper, we leverage the idea of preparing indices
beforehand for unstructured P2P systems. Instead of placing
them in an “ID-matching” way as used in DHTs, we develop
a more aggressive scheme that pushes the content indices
to their potential consumers, such that user requests can be
resolved by simply looking up local indices. Borrowing ideas
from the real life, we call these indices advertisements, which
play an important role in our real life. People receive a lot
of ads from a variety of sources, such as mailing, TV, radio
and posters. With different background and specific interests,
people collect, keep or remember some of the ads that may
be useful to them. When having a request, they just find or
recall the related ad, go directly and get the product or service.
Clearly this is a short-cut than blindly going out to search for it.
Following the same philosophy, we design ASAP for efficient
content location in unstructured P2P systems.

ASAP is designed based on four observations. First, query
messages contribute to a large portion of network traffics in
today’s P2P systems, and are likely to continuously increase
with the emergence of new applications. The measurement
study by Gummadi et al. [13] reports the finding of nearly
100 million transactions over a period of 200 days in a
24,578-user Kazaa network. This corresponds to an average
of 6 transactions undergoing every second, and the number of
requests is even larger because not all requests succeed with
a download.

Second, in content sharing P2P systems, the arrival rate of
search requests tends to fluctuate. Several studies have shown
the presence of daily patterns in user requests [24]. This is
reasonable since most requests are submitted in the daytime
until early night. During this period, the number of requests in
a unit of time is likely to be much larger than the average. Let
us consider the same network as studied in [13], and assume
a number of 20 user requests during the peak time. Given an
average node degree as 5 and TTL set to 7, these requests
may lead to an average of 20 × (5 − 1)7/24, 578 ≈ 13 query
messages handled at each node per second in a Gnutella-like
system. In addition to other network traffics, such an heavy
workload may easily overwhelm some incapable nodes with
limited network bandwidth.

Third, although peers may come and go freely, contents
shared on many nodes do not change very often, if ever. In
P2P systems, most contents are shared as the nodes enter the
network. And they usually do not further share the documents
downloaded from other peers, while some sharing may be im-
posed during the downloading. This can be safely conjectured
by the existence of a large portion of free-riders in the system
[25]. In addition, the contents in P2P systems are unlikely to
be altered because of natural immutability [13].

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



Fourth, it is known that interest clustering is common in
P2P systems [10] and it has been successfully exploited in
prior work like SON [7] and SSW [18]. It is expected that
many peers share common interests and the variety of each
peer’s interests is limited. Furthermore, most peers are unlikely
to change their interests very often assuming a peer only
corresponds to one user. In fact, node interest clustering and
stability properties are two important assumptions based on
which ASAP is designed.

While the search requests continuously increase and fluc-
tuate, the contents are relatively stable as long as the system
has warmed up. This motivates us to design a cooperative
system in which peers proactively distribute and cache content
indices. A modest investment on the indices distribution and
preparation is well amortized to the service of a large number
of user requests.

In an “optimal” approach, we may assume a system in which
every node maintains a copy of complete content indices. If
the indices are always up-to-date, all searches can be answered
in 1 hop by local lookups. In practice, however, the index
maintenance overhead in such a system would be prohibitively
expensive, in terms of both network bandwidth and storage
space on each node. Therefore, to develop a practical content-
pushing, ads-based search algorithm, the biggest challenge is
how to make the ad preparation and distribution efficient such
that the index maintenance cost is kept reasonably low, and
effective so that most local lookups get a hit. ASAP addresses
these issues by appropriately conducting ad representation,
issuing, forwarding, updating and refreshing.

B. Ad representation

In ASAP, an ad is comprised of four components: a node
identity I , a piece of content information denoted by C, a
set of topics T covered by the node, and a version number
v. Thus an ad a is denoted as a tuple (I, C, T, v). The node
identity can be the IP address along with a machine name, or
a user account in case of dynamic IP address. With regard to
content information, ASAP predefines three types of ads: full
ad with complete indices of a peer’s contents, patch ad with
incremental index changes since the last update, and refresh
ad with empty content information. The version number is a
16-bit integer used for consistently merging index changes.
More details on this can be found in the next section.

The content information in a full ad summarizes all the
contents shared on a node by using Bloom filter [2], [9]. Bloom
filter is a hash-based data structure representing a set to support
membership queries, and has been widely used in P2P system
designs [3], [8]. The membership test returns false positives
with a predictable probability but never returns false negatives.
Assume Dp is the set of documents shared on node p, and
Kp = {kw ∈ di|di ∈ Dp} is the set of keywords that appear
in any document in Dp, where kw is a keyword that appears
in document di. The content filter of node p is initialized by
hashing all the keys in Kp and setting the corresponding bits.
Free-riders have a null content filter, thus having nothing to
advertise.

Given a set of predefined hash functions, we can obtain
the minimum probability of false positive as pmin = (1

2 )k =
(0.6185)

m
n , where k is the number of hash functions, m is the

filter length and n is the set size. For example, with k = 8,
the smallest false positive rate is 0.39%, and it demands 11.54
bits per element. This minimum probability of false positive

imposes a requirement on the ratio of filter length to the set
cardinality, that is, the average number of bits per element. In
unstructured P2P systems, peers share contents at their own
will and thus have different keyword set sizes. As a result, the
desired false positive rate requires a different minimum length
of content filter for each peer. There are two approaches to
address this issue. One solution is to use the Bloom filters with
fixed length for all peers, which is determined as m= nk

ln 2 =
|Kmax|k

ln 2 , where Kmax is the largest keyword set among all
the peers. The other approach is to use variable filter lengths.
Suppose all nodes agree on a set of universal hash functions
{h1, h2, ..., hk} and a pool of available filter lengths. Each
node p chooses a minimum filter length that is greater than
|Kp|k
ln 2 . When mapping or querying an item on a filter F with

length l(F ), we can use a set of hash functions ranging from 0
to l(F )−1, for example, by defining them as {h′

1, h
′
2, ..., h

′
k},

where h′
i = hi mod l(F ).

The first approach is simple and effective. But when some
peers share much more contents, the filter length may have to
be increased unless some load migration mechanism is used to
prevent the maximum keyword set from growing. On the other
hand, the variable filter length releases the constraint on the
maximum keyword set and utilizes the space more efficiently.
However, it complicates the system design in other aspects. For
example, a node may have to compute the filter multiple times
using different lengths for a search request. In this paper we
choose Bloom filters with fixed size for two reasons. First,
it is simple since only one set of hash functions are used
everywhere. Second, it suffices for current P2P applications
since the sizes of the keyword sets are not arbitrarily large [3].
With |Kmax|=1, 000 and k=8, the minimum length of a filter
with the smallest false positive rate is m= 1,000×8

ln 2 =11, 542
bits =1.43 KB.

For those peers who share few files and keywords, we use
a compressed representation of the filter as a collection of 2-
tuples (i, x), which means that the ith bit is set for x times.
Only the first number in each tuple is transmitted over the
network. Similarly, an ad patch for content filter changes is
implemented by a list of changed bit locations in the filter.

To determine the topics of an ad, we predefine a universal set
U of all possible topics in the system, and apply classifications
to the contents. We assume each document d belongs to a topic
t(d)∈U , and each node p has a set of interests I(p)⊆U . For
example, in a music file sharing network like Napster, music
files are classified into tens of topics, such as pop, country and
jazz. A node may be interested in pop and jazz but indifferent
in any other types. Therefore, the topics of an ad a (no matter
which type this ad is) from node p is denoted as T (a) =
{t(d)|∀d∈Dp}. A node q is interested in ad a if there is non-
empty intersection between T (a) and I(q), where I(q) is the
set of q’s interests. The document classification technique is
matured in information retrieval field and out of scope of this
paper.

C. ASAP search algorithm

In general view, search by flooding drives queries towards
data, and DHT-based search moves both queries and data,
causing them to meet at a rendezvous in the network [20]. As
for ASAP, ad delivery moves data indices (i.e., ads) towards
interested nodes so that a later search is executed mostly on
the local node. Figure 1 gives an illustration of the search
procedures in the three categories respectively.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



A

B

A

B

A

B

Q uery DHT Publish ASA P Ad

(a)Flooding query (b)DH T publish and query (c) ASA P adsdelivery

ASAP C onfirm ation

A

B

(d)ASA P contentconfirm ation

Fig. 1. The search procedure of a request from node A for a document shared by node B. The object publishing in (b) and ad delivery in (c) are done before
the search begins. Shaded nodes in (c) and (d) are interested in the ad issued by node B. In ASAP, node A looks up local ads cache and directly contacts
node B for content confirmation.

TABLE I

ASAP SEARCH ALGORITHM IN PSEUDO-CODE.

ASAP search (Request: r)
//search algorithm running on node p with ads cache $
{

K ← getSearchTerms(r)
for each ad a ∈ $

F ← getContentF ilterFromAd(a)
if match(K, F ) = true

S ← getAdSourceNode(a)
send confirmation message to node S

if more responses needed
for each neighbor i

A ← requestAdFromNeighbors(i, h, I(p))
if A = ∅ return
for each ad a′ ∈ A

F ′ ← getContentF ilterFromAd(a′)
if match(K, F ′) = true

S′ ← getAdSourceNode(a′)
send confirmation message to node S′

$ ← $ ∪ A
}

Given a request, a node p firstly looks up its local ads
repository, and tries to find matching ads that contain the
search terms (an ad is considered a match if the Bloom
filter returns true for all the query terms). A match by an
ad aq (q is the source of this ad) indicates that node q has
the requested objects. However, this may not be sufficient
for a search in some cases. For example, node q may have
multiple documents, each containing one or multiple of the
search terms, while none of them have all of them. On the
other hand, node p may expect documents to contain all or
most of the terms. In addition, the ads are represented by
Bloom filters in which false positives may occur, and the ad
source node may be offline at the request time. For these
reasons, node p needs to send the request to node q for
content confirmation, and after a positive match the search
is completed with the cost of one hop communication 2.
Table I shows the ASAP search algorithm in pseudo code. In
A←requestAdFromNeighbors(i, h, I(p)), h is hop number
and I(p) is the set of node p’s interests.

With the help of ads cache lookup, most search requests are

2It is possible to piggyback download requests along with these confirma-
tion messages in implementation, such that a download may begin just after
the confirmation. However, we are only concerned with the search process
that is the focus of our paper.

expected to be answered in one hop. However, if no match is
found, or more responses are needed, then node p sends out
ads request messages to its neighbors within a hop distance
of h. These neighbors reply to p with their cached ads that
contain topics overlapping with p’s interests. In order to control
the network bandwidth consumption, we limit the ads request
scope by setting the distance h to a small value, e.g., 1 by
default. After this, the search is repeated by looking up the
replied ads for more possible hits. In essence, this is the same
ads requesting process as the one when a brand new node
joins. If a node stays offline for a long time and then rejoins,
the ads in its cache could be mostly out of date. This ads
request method enhances the chances to serve requests from
these nodes.

For most requests from nodes that maintain many ads, only
one hop communication is needed for a search, delivering
an optimal search performance. In the mean time, the search
cost only includes content confirmation messages, and only
the initiating and destination nodes are involved in the search
process. By moving ads towards their potential consumers
beforehand, ASAP trades the ad preparation and distribution
cost for a high search efficiency, and for most search requests,
offers one-hop search performance with modest search cost.
Moreover, ASAP bounds the system load at a low level
and maintains small variances under the stress of extensive
requests.

IV. EVALUATION METHODOLOGY

We develop a trace-driven simulator to evaluate the per-
formance of ASAP compared with several representative un-
structured search algorithms. We describe our experimental
methodology in this section and present the simulation results
and analysis in the next section.

A. Experimental framework

In the experiments we use an overlay network with 10,000
peers that are constructed upon the GT-ITM transit-stub model
[26]. This model constructs a hierarchical Internet network
with 51,984 physical nodes randomly distributed in an Eu-
clidean coordinate space. We set up 9 transit domains, with
each containing 16 transit nodes on the average. Each transit
node has 9 stub domains attached. Each stub domain has an
average of 40 stub nodes. Nine transit domains at the top
level are fully connected, forming a complete graph. Every
two transit or stub nodes in a single transit or stub domain are
connected with a probability of 0.6 or 0.4 respectively. There

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



is no connection between any two stub nodes in different stub
domains. The network latency is set according to the following
rules: 50 ms for inter transit domain links; 20 ms for links
between two transit nodes in a transit domain; 5 ms for links
from a transit node to a stub node; 2 ms for links between two
stub nodes in a stub domain. Out of these 51,984 physical
nodes we randomly select 10,000 P2P nodes and construct
the logical topology. Notice that only some physical nodes
participate in the P2P system but all of them contribute to the
network latency.

Three logical topologies are used in our experiments: ran-
dom, powerlaw and crawled. In the random topology connec-
tions are randomly created with an average node degree of 5.
The node degrees in the powerlaw topology have the same
average but follow a powerlaw distribution with α = −0.74.
The crawled topology is derived from a crawled Limewire
network topology [19] with an average node degree 3.35.

We choose several representative search schemes, such
as flooding, random walk and generalized search algorithm
(GSA) as baselines 3. The TTL for flooding is set to 6. For ran-
dom walk, 5 walkers are used each running with TTL=1024.
Each query by GSA is assigned a budget of 8,000, which limits
the total number of messages during a search process. By
adopting different ad forwarding algorithms (flooding, random
walk or GSA), we develop and examine three ASAP schemes:
ASAP(FLD), ASAP(RW) and ASAP(GSA), respectively. Ad
flooding in ASAP(FLD) also sets TTL equal to 6, and 5 walker
are used in ASAP(RW). For ASAP(RW) and ASAP(GSA),
the total budget for one ad delivery can be determined by the
number of topics in the ad and a budget unit M0 =3000.

B. Trace preparation

Since there is no real-world trace publicly accessible that
contains query and download history information needed in
our experiments, we carefully rebuild such a trace by process-
ing a content distribution trace of an eDonkey system obtained
from [10]. The eDonkey trace, probed during the first week of
November 2003, contains the names of 923,000 files shared
among 37,000 peers. More analysis of this trace, such as file
popularity distribution, can be seen in [4], [10]. This trace
contains a snapshot of the system while we need a query trace.
We conduct the following preprocessing to construct such a
synthetic but reasonable query trace.

1) We randomly select 10,000 peers out of the 37,000 nodes
observed in the content distribution trace. All documents
shared on these peers are collected to form a universal
content set Dall. Other peers and their contents are not
considered in our experiments.

2) We classify all the documents in Dall into 14 categories
according to their content semantics with an assumption
that each document belongs to a single class. File content
semantics are deduced from its name and extension.
Figure 2 shows the number of nodes whose shared
contents fall in each of the semantic classes.

3) These semantic classes also define the universal set of
peer interests and ad topics. If a peer is not a free-rider,
the set of its interests contains all the semantic classes

3Hierarchical scheme with superpeers is not used as a baseline since it
requires a different system architecture and the presence and willingness
of powerful nodes to act as super peers. Moreover, ASAP can work well
on hierarchical systems in which only super peers are responsible for ad
representation, delivery, caching and processing.

of its contents. This set also comprises the topics of
ads from this peer. The interests of free-riding nodes
are assigned randomly. Figure 3 shows the distribution
of the node interests, that is, the number of nodes with
each interest.

4) With an assumption that a peer only asks for interesting
documents, we create a synthetic trace containing 30,000
search requests, 10% of which are followed by a content
change, such as a document addition or removal. The
network dynamics are emulated by inserting 1,000 node
join and 1,000 node departure events randomly in the
trace.

5) We add a time stamp to each query event. The request
inter-arrival time is modeled by a Poisson distribution
with λ=8 (Averagely about 8 requests enter the system
per second).

6) When the trace is constructed, we feed it into each
testing system, replaying the queries and collect the
results.

V. SIMULATION RESULTS

In this section, we present the experimental results obtained
from trace-driven simulations. In all the experiments, we
mainly focus on two aspects: search efficiency and system
load as well as its variation.

A. Search efficiency

We compare the search efficiency of all search algorithms by
measuring their search performance and cost when replaying
the trace in each of the three overlay topologies. Search
performance metrics include success rate and response time.
The success rate is defined as the percentage of search requests
that obtain at least one result. Notice that all the search requests
are created such that there is at least one matching document
existing in the system at the request time. The response
time is averaged among all successful search requests. Since
the processing time at a node is negligible compared to the
network delay, we ignore the queuing delay and Bloom filter
computation overhead when calculating the average response
time. The search cost is measured in the average bandwidth
consumed in a search process.

The search performance results are shown in Figure 4
in terms of search success rate and Figure 5 concerning
the average response time. Compared to the baseline search
schemes, ASAP consistently obtains both high success rate and
low response time in all experiments. ASAP is able to offer
a low response time about 62% to 78% shorter than that of
flooding and GSA search algorithms. Among the three ASAP
schemes, ASAP(FLD) shows the best performance since it
delivers ads more broadly and extensively than the other two.

We can see that, in all three overlay topologies, ASAP
achieves satisfactory success rate and very short response
time, although the success rates are not always the best for
powerlaw and crawled topology. By studying the eDonkey
content distribution trace, we find that the average number
of copies per document is around 1.28 and 89% files only
have one copy in the whole network. This partially explains
why the random walk scheme shows poor success rate and
long response time, as it usually requires a high document
replication ratio [11]. For the same reason, GSA also exhibits
poor success rate, but its response time is comparable to
flooding.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



0

200

400

600

800

1000

1200

1400

1600

1800

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Semantic Classes

N
u

m
b

er
 o

f 
P

ee
rs

Fig. 2. The distribution of 14 semantic classes among the 10,000 peers
used in our experiments.

0

500

1000

1500

2000

2500

3000

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

Node Interests

N
u

m
b

er
 o

f 
P

ee
rs

Fig. 3. The distribution of 14 node interests among the 10,000 peers used
in our experiments.

0%

20%

40%

60%

80%

100%

random powerlaw crawled

S
uc
ce
ss
 R
at
e

Flooding Random W alk GSA
ASAP(FLD) ASAP(RW ) ASAP(GSA)

Fig. 4. Comparison of search performance in terms of search success
rate.

1

10

100

1000

10000

100000

random powerlaw crawled

R
es
po
ns
e 
T
im
e 
(m
s)

Flooding Random W alk GSA
ASAP(FLD) ASAP(RW ) ASAP(GSA)

Fig. 5. Comparison of search performance in terms of search response
time.

2.22.3
3.9 3.6

3.9
3.0

2.83.14.1

1

10

100

1000

10000

100000

random powerlaw crawledB
an

d
w

id
th

 C
o

n
su

m
p

ti
o

n
 i

n
 a

 S
ea

rc
h

 (
K

B
)

Flooding Random Walk GSA

ASAP(FLD) ASAP(RW) ASAP(GSA)

Fig. 6. Comparison of search cost in terms of bandwidth consumed in a
search.

content

confirmation

0.07%

ads request

0.01%

full ads

8.50%

refresh ads

68.30%

patch ads

23.12%

Fig. 7. Breakdown of ASAP(RW) system load in consumed bandwidth.

Figure 6 depicts the comparison of search cost in bandwidth
consumption for all algorithms in the three overlay topologies.
Notice that the search cost includes both content confirmation
and ads request messages in ASAP, while in the baselines it
refers to query messages only. The figure shows that ASAP
satisfies most searches while consuming a small amount of
bandwidth since only a few messages are generated in a search
process. Compared with baseline algorithms, ASAP drastically
reduces the search cost by 2 to 3 orders of magnitude. The
significant improvement on search efficiency stems from the
the beforehand ad preparation and distribution.

By maintaining a substantial amount of ads, a node is able
to resolve most search requests by looking up local ads cache

(and one message is needed for content conformation). Only if
this fails, the node requests more ads from its neighbors within
h hops. In order to obtain a satisfactory success rate, baseline
search schemes have to generate multiple query messages and
touch many nodes in the network. In ASAP, however, the ads
are able to guide a request directly to its destinations, thus
offering both optimal search performance and minimum search
cost.

B. System load

While significantly improving the search efficiency, ASAP
introduces extra maintenance overhead by ad deliveries. To
sustain a good search efficiency, we need to limit the amount

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



0

4

8

12

16

20

random powerlaw crawled

S
y

st
em

 L
o

ad
 M

ea
n

 (
K

B
/s

ec
o

n
d

/n
o

d
e)

Flooding Random Walk GSA

ASAP(FLD) ASAP(RW) ASAP(GSA)

Fig. 8. Comparison of the average system load in bandwidth consumption.

0

2

4

6

8

10

random powerlaw crawled

S
y

st
em

 L
o

ad
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Flooding Random Walk GSA

ASAP(FLD) ASAP(RW) ASAP(GSA)

Fig. 9. Comparison of the system load variation (standard deviation).

of network bandwidth consumed by ad delivery, so that the
total system load is controlled at an acceptable level. In the
baseline systems, we count all the query messages as the
system load, while in ASAP, all ad delivery messages are
counted in addition to the search-related traffics including
content confirmation and ads request messages. To compare
the system load of ASAP against baseline schemes, we collect
the total amount of bandwidth consumption and the number
of live peers in the system at each second, and calculate the
system load in terms of bandwidth consumption per node per
second. Figure 7 shows the breakdown of the ASAP(RW)
system load during the experiment. It is notable that the size
of a full ad is larger than a query message because a full ad
contains the Bloom filter, usually with a large size. However,
after the system warms up, patch or refresh ads dominate
since most ads are triggered by content updates or periodical
deliveries. We can see that around 91% ads system load is
from patch ads or refresh ads and full ads contribute 8.5%.
The average system load and its standard deviation for each
scheme (in each of the three topologies) are shown in Figure
8 and Figure 9, respectively.

To show the detail of the system load variations, we plot
a graph of the bandwidth consumption per node per second
as in Figure 10. Only a snapshot for a period of 100 seconds
is presented for clarity. From this figure we can make two
important observations. First, existing search algorithms lead
to high system load while in ASAP(RW), the load is much
lower. Compared with random walk which has the lowest
system load among baselines, ASAP(RW) further reduces it
by more than 81%. Second, the system load of ASAP scheme
changes little while the baseline algorithms except random
walk exhibit severe load fluctuations. At the peaks, the system
load of flooding reaches more than 32 KB per node per second,
but ASAP keeps it lower than 0.8 KB at most time. The minor
vibrations in ASAP system load possibly result from a high
search request rate at that time, since a content confirmation
and/or a few ads request messages are generated during an
ASAP search.

C. Comparison of search algorithms

From Figure 4 through 9, we compare the baselines and
ASAP schemes systematically, and draw the following con-
clusions.

1) Flooding obtains good search success rate and fair
response time, but consumes too much bandwidth due

to many query messages generated in a search process.
As a result, the system load is quite high and varies with
a large variation.

2) Random walk controls the search cost within a pre-
scribed limitation. Thus the system load is low and
exhibits the smallest variation. However, the quality of
search service is poor due to low success rate and long
response time.

3) In random and crawled topology, GSA answers more
queries successfully than random walk while consuming
more bandwidth by query messages. It beats random
walk in response time comparable to that of flooding.
However, the system load also goes higher and experi-
ences heavier vibrations.

4) In each overlay topology, all ASAP schemes demon-
strate good success rate, very short response time and
modest search cost. They differ mostly in the average
system load and its variation. Particularly, ASAP(FLD)
incurs relatively high load and sharp variations although
it provides the highest success rate. ASAP(GSA) outper-
forms ASAP(FLD) by low system load and small load
variation. The results show that ASAP(RW) maintains
the lowest system load and variation, indicating the best
choice among the three alternative ASAP schemes. For
this reason, we choose ASAP(RW) as the default ASAP
scheme in the following experiments.

We present results using only the crawled topology in the
following since this topology is derived from a real P2P
network topology.

VI. CONCLUSION

In this paper we propose ASAP, a new search algorithm for
unstructured P2P systems. Nodes in ASAP proactively deliver
content indices to interested peers, and each node caches and
maintains a set of interesting ads. Given a search request, a
node firstly looks up its local ads cache, trying to resolve it
locally and answer it by just one hop content confirmation.
Experimental results prove that ASAP can boost search effi-
ciency by improving search performance and slashing search
cost. In addition, ASAP smoothes out the system load and
keeps it at a low level, and therefore, offering better system
stability than existing search algorithms.

ACKNOWLEDGEMENT

This work is supported in part by the US National Sci-
ence Foundation under grants CNS-0646910, CNS-0646911,

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



0

10

20

30

0 10 20 30 40 50 60 70 80 90 100

Time (second)

S
y

st
em

 L
o

ad
 (

K
B

/s
ec

o
n

d
/n

o
d

e)

Flooding Random Walk GSA ASAP(RW)

Fig. 10. Comparison of real time system load in the average bandwidth consumption per node per second when replaying the trace. To clearly show the
load variation, we only plot the graph for 100 seconds.

CCF0621526 and CCF-0429995, and the US Department of
Energy Early Career Principal Investigator Award DE-FG02-
07ER25747.

REFERENCES

[1] Charles Blake and Rodrigo Rodrigues. High availability, scalable
storage, dynamic peer networks: Pick two. In Proceedings of 9th
Workshop on Hot Topics in Operating Systems (HotOS IX), pages 1–
6, Lihue, Hawaii, USA, May 2003.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
In Communications of the ACM, 13(7), pages 422–426, 1970.

[3] Hailong Cai and Jun Wang. Foreseer: A novel, locality-aware peer-
to-peer system architecture for keyword searches. In Proceedings of
International Middleware Conference (Middleware 2004), pages 38–58,
Toronto, Ontario, Canada, Oct. 2004.

[4] Miguel Castro, Manuel Costa, , and Antony Rowstron. Debunking some
myths about structured and unstructured overlays. In Proceedings of
the 2nd Symposium on Networked Systems Design and Implementation
(NSDI’05), Boston, MA, May 2005.

[5] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and
Scott Shenker. Making gnutella-like p2p systems scalable. In Pro-
ceedings of ACM SIGCOMM’03, pages 407–418, Karlsruhe, Germany,
August 2003.

[6] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer
systems. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), pages 23–34, Vienna, Austria,,
July 2002.

[7] Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks
for P2P systems. Technical report, Stanford University, 2003.

[8] Francisco Matias Cuenca-Acuna, Christopher Peery, Richard P. Martin,
and Thu D. Nguyen. PlanetP: Using gossiping to build content address-
able peer-to-peer information sharing communities. In Proceedings of
Twelfth IEEE International Symposium on High Performance Distributed
Computing (HPDC-12), pages 236–249. IEEE Press, June 2003.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, 2000.

[10] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L. Massoulie.
Clustering in peer-to-peer file sharing workloads. In Proceedings of
the 3rd International Workshop on Peer-to-Peer Systems (IPTPS), San
Diego, USA, February 2004.

[11] Christos Gkantsidis, Milena Mihail, and AMin Saberi. Random walks
in peer-to-peer networks. In Proceedings of IEEE INFOCOM’04, pages
120–130, Hong Kang, March 2004.

[12] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Hybrid search
schemes for unstructured peer-to-peer networks. In Proceedings of IEEE
INFOCOM’05, Miami, FL, March 2005.

[13] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload. In Proceedings of 19th ACM Symposium on Operating
Systems Principles (SOSP-19), pages 314–329, Bolton Landing, NY,
October 2003.

[14] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. One hop lookups
for peer-to-peer overlays. In Proceedings of the 9th IEEE Workshop on
Hot Topics in Operating Systems (HotOS IX), pages 7–12, Lihue, Hawaii,
USA, May 2003.

[15] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert
van Renesse. Kelips: Building an efficient and stable p2p DHT through
increased memory and background overhead. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley,
CA, USA, February 2003.

[16] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer,
and Alec Wolman. Skipnet: A scalable overlay network with practical
locality properties. In Proceedings of 4th USENIX Symposium on
Internet Technologies and Systems (USITS ’03), Seattle, Washington,
USA, March 2003.

[17] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek.
Bandwidth-efficient management of DHT routing tables. In Proceedings
of the 2nd symposium on networked systems design and implementation
(NSDI’05), Boston, MA, USA, May 2005.

[18] Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. Semantic small
world: An overlay network for peer-to-peer search. In Proceedings
of 12th IEEE International Conference on (ICNP’04), pages 228–238,
Berlin, Germany, October 05 - 08, 2004.

[19] Limewire. http://www.limewire.org.
[20] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph Hellerstein. The

case for a hybrid p2p search infrastructure. In Proceedings of the 3rd
International Workshop on Peer-to-Peer Systems (IPTPS), San Diego,
USA, February 2004.

[21] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication
in unstructured peer-to-peer networks. In Proceedings of 16th ACM
International Conference on Supercomputing(ICS’02), pages 84–95,
New York, NY, June 2002.

[22] Venugopalan Ramasubramanian and Emin Gn Sirer. Beehive: O(1)
lookup performance for power-law query distributions in peer-to-peer
overlays. In Proceedings of the 1st symposium on networked systems
design and implementation (NSDI’04), pages 99–112, San Francisco,
CA, USA, March 2004.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of the ACM
SIGCOMM 2001, pages 161–172, San Diego, CA, August 2001.

[24] Stefan Saroiu, Krishna Gummadi, Richard Dunn, Steve Gribble, and
Henry Levy. An analysis of internet content delivery systems. In
Proceedings of The Fifth USENIX symposium on Operating System
Design and Implementation (OSDI), pages 315–328, Dec. 2002.

[25] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. In Proceedings of
Multimedia Computing and Networking (MMCN), San Jones, CA, Jan.
2002.

[26] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How
to model an internetwork. In Proceedings of the IEEE Conference on
Computer Communication, pages 594–602, San Francisco, CA, Mar.
1996.

[27] Yuanyuan Zhao, Daniel C. Sturman, and Sumeer Bhola. Subscription
propagation in highly-available publish/subscribe middleware. In Pro-
ceedings of International Middleware Conference (Middleware 2004),
pages 274–293, Toronto, Ontario, Canada, Oct. 2004.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00  © 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


