
1

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-1
FP2P, javed@kent.edu

Javed I. Khan@2008

A Course on Foundations ofA Course on Foundations of

PeerPeer--toto--Peer Systems & ApplicationsPeer Systems & Applications

2

CS 6/75995CS 6/75995
Foundation of PeerFoundation of Peer--toto--PeerPeer

Applications & Systems Applications & Systems

Kent State Kent State
UniversityUniversity
Dept. of Computer ScienceDept. of Computer Science

www.cs.kent.edu/~javed/classwww.cs.kent.edu/~javed/class--P2P08/P2P08/

2

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-3
FP2P, javed@kent.edu

Javed I. Khan@2008

Structured Systems:Structured Systems:Structured Systems:

ChordChordChord

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-4
FP2P, javed@kent.edu

Javed I. Khan@2008

Background:Background:Background:

Consistent HashingConsistent HashingConsistent Hashing

3

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-5
FP2P, javed@kent.edu

Javed I. Khan@2008

[class mechanics][class mechanics]

• [2/17/10, took 1 class hashing principles+ routing, 1 class to
explain join/leave+stability+performance] [2/14/08] 0.5 classes
on first day (take time to explain the hashing principles, has
identifier space, consistent hashing, hash space, since this is the
first class on DHT)

• [2/19/08]1 class on 2nd day [routing +node join+node
departure+ performance from paper]

• [some problem in sequencing needs fixing, problem explaining
short jump in last stage of example???]

• [add stability routing-added]+ used paper to explain
performance on load balancing, node aggregation+hops+
stability]

• With the stability it should be two class material [added 2/17/10]

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-6
FP2P, javed@kent.edu

Javed I. Khan@2008

OverviewOverview
1. Chord

1. Topology

2. Routing

3. Self-Organization

2. Pastry

1. Topology

2. Routing

3. Self-Organization

3. CAN (Content Addressable Network)

1. Topology

2. Routing

3. Self-Organization

4. Symphony

5. Viceroy

6. Kademlia

7. Summary

4

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-7
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: OverviewChord: Overview

• Chord is one of the original distributed hash table protocols
being developed at MIT (2001).

• Chord source code can be downloaded and used under the MIT
License.

• Simple & elegant

– easy to understand and implement

– many improvements and optimizations exist

• Main responsibilities:

– Routing

• Flat logical address space: l-bit identifiers instead of IP addresses

• Efficient routing in large systems: log(N) hops with N total nodes

– Self-organization

• Handle node arrival, departure, and failure

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-8
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: TopologyChord: Topology

• Hash-table storage

– Put (key, value) inserts data to Chord

– Value = get (key) retrieves data from Chord

• Identifiers

– Derived from hash function

• E.g. SHA-1, 160-bit output → 0 <= identifier < 2^160

– Key associated with data item

• E.g. key = sha-1(value)

– ID associated with host

• E.g. id = sha-1 (IP address, port)

5

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-9
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: TopologyChord: Topology

• Keys and IDs on ring, i.e., all arithmetic modulo 2^160

• (key, value) pairs managed by clockwise next node: successor

6

1

2

6

0

4

26

5

1

3

7

2
Chord

Ring

Identifier

Node

X Key

successor(1) = 1

successor(2) = 3successor(6) = 0

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-10
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: TopologyChord: Topology

• The basic topology of chord is a circular linked list. Each

node remembers just one piece of information about next

node in clockwise direction.

0

4

26

5

1

3

7

6

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-11
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: RoutingChord: Routing

• Primitive routing:

– Forward query for key x until successor(x) is found

– Return result to source of query

• Pros:

– Simple

– Little node state

• Cons:

– Poor lookup efficiency:

O(1/2 * N) hops on average

(with N nodes)

– Node failure breaks circle

0

4

26

5

1

3

7

1

2

6

Key 6?

Node 0

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-12
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: RoutingChord: Routing
• [VVI: it does not forward query rather keeps on asking about the predessor of k

to nodes closer and closer to k]

• Advanced routing:

– Store links to z next neighbors

– Forward queries for k to farthest known predecessor of k

– For z = N: fully meshed routing system

• Lookup efficiency: O(1)

• Per-node state: O(N)

– Still poor scalability

• Scalable routing:

– Linear routing progress scales poorly

– Mix of short- and long-distance links required:

• Accurate routing in node’s vicinity

• Fast routing progress over large distances

• Bounded number of links per node

7

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-13
FP2P, javed@kent.edu

Javed I. Khan@2008

Corrected RoutingCorrected Routing

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-14
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: RoutingChord: Routing

• Chord’s routing table: finger table

– Stores log(N) links per node

– Covers exponentially increasing distances:

• Node n: entry i points to successor(n + 2^i) (i-th finger)

0

4

26

5

1

3

7

finger table

i succ.

keys

1

0

1

2

3

3

0

start

2

3

5

finger table

i succ.

keys

2

0

1

2

0

0

0

start

4

5

7

1

2

4

1

3

0

finger table

start succ.

keys

6

0

1

2

i

8

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-15
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: RoutingChord: Routing
• Chord’s routing algorithm:

– Each node n forwards query for key k clockwise

• To farthest finger preceding k

• Until n = predecessor(k) and successor(n) = successor(k)

• Return successor(n) to source of query

63
4

7

16

14

13

19

23

26
3033

37
39

42

45

49

52

54
56

60

i 2 î Target Link

0 1 53 54

1 2 54 54

2 4 56 56

3 8 60 60

4 16 4 4

5 32 20 23

i 2^i Target Link

0 1 24 26

1 2 25 26

2 4 27 30

3 8 31 33

4 16 39 39

5 32 55 56

i 2^i Target Link

0 1 40 42

1 2 41 42

2 4 43 45

3 8 47 49

4 16 55 56

5 32 7 7

45

42

49

i 2^i Target Link

0 1 43 45

1 2 44 45

2 4 46 49

3 8 50 52

4 16 58 60

5 32 10 13 44

lookup (44)lookup (44) = 45

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-16
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: SelfChord: Self--OrganizationOrganization

• Handle changing network environment

– Failure of nodes

– Network failures

– Arrival of new nodes

– Departure of participating nodes

• Maintain consistent system state for routing

– Keep routing information up to date

• Routing correctness depends on correct successor

information

• Routing efficiency depends on correct finger tables

– Failure tolerance required for all operations

9

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-17
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Failure Tolerant StorageChord: Failure Tolerant Storage

• Layered design

– Chord DHT mainly responsible for routing

– Data storage managed by application

• persistence

• consistency

• fairness

• Chord soft-state approach:

– Nodes delete (key, value) pairs after timeout

– Applications need to refresh (key, value) pairs periodically

– Worst case: data unavailable for refresh interval after node

failure

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-18
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Failure Tolerance RoutingChord: Failure Tolerance Routing

• Finger failures during routing

– query cannot be forwarded to finger

– forward to previous finger (do not overshoot destination

node)

– trigger repair mechanism:

replace finger with its successor

• Active finger maintenance

– periodically check liveness of fingers

– replace with correct nodes on

failures

– trade-off: maintenance traffic

vs. correctness & timeliness

63
4

7

16

14

13

19

23

26
3033

37
39

42

45

49

52

54
56

60

45

42

49

44

10

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-19
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Failure Tolerance RoutingChord: Failure Tolerance Routing

• Successor failure during routing

– Last stop of routing returns failed node to source

of query.

– All queries for successor fail

– Store m successors in a successor list

• successor[0] fails -> use successor[1] etc.

• routing fails only if m consecutive nodes fail

simultaneously

• Also add one predecessor in table.

• Active maintenance of successor list

– periodic checks similar to finger table

maintenance

– crucial for correct routing

1

2

4

1

3

0

finger table

start succ.

keys

6

0

1

2

i

Successor List

Predecessor

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-20
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Node JoinChord: Node Join

• New node n picks ID

• Contact an existing node m

• Construct finger table standard routing/lookup() [send query

message via m to each start table entry and see who responds-javed]

• Retrieve (key, value) pairs from successor

0

4

26

5

1

3

7

finger table

i succ.

keys

1

0

1

2

3

3

0

start

2

3

5

finger table

i succ.

keys

2

0

1

2

0

0

0

start

4

5

7

1

2

4

1

3

0

finger table

start succ.

keys

6

0

1

2

i

7

0

2

0

0

3

finger table

start succ.

keys

0

1

2

i

11

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-21
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Node ArrivalChord: Node Arrival

• Examples for choosing new node IDs

– random ID: equal distribution assumed but not guaranteed

– hash IP address & port

– place new nodes based on

• load on existing nodes

• geographic location, etc.

• Retrieval of existing node IDs

– Controlled flooding

– DNS aliases

– Published through web

– etc.

0

4

26

5

1

3

7

ID = ?ID = rand() = 6

DNS

entrypoint.chord.org?

182.84.10.23

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Chord: Node ArrivalChord: Node Arrival

• Construction of new node’s finger table

– iterate over finger table rows

– for each row: query entry point m for successor

– Standard Chord routing propagated by entry point.

– Returned results tells new node who is the successor for

each finger. O(m.log N) ≈ O(log2 N)

• Optimization #1:

– Check if i-th finger is also the finger for (i+1) th finger.

– i.e if finger[i] node >= finger [i+1].start, then the (i+1)-finger

will have the same as i-th finger. So skip query.

– Example: Finger (i=0) is 0 which is also higher that finger

(i=1)’s start 0.

• Optimization#2:

– Query immediate successor for its entire finger table. Then

query to verify. Actual corrected fingers should be very close.

Practically O(log N)

6
7

0

2

0

0

3

finger table

start succ.

keys

0

1

2

i

12

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-23
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Node Arrival (contd..)Chord: Node Arrival (contd..)

• Construction of new node’s successor list

– add immediate successor from finger table

– request successor list from successor

0

4

26

5

1

3

7

7

0

2

0

0

3

finger table

start succ.

keys

0

1

2

i
succ(7)?
succ(0)?
succ(2)?

succ(7) = 0
succ(0) = 0
succ(2) = 3

successor list

0 1

successor list

1 3

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Chord: Node Arrival (contd..)Chord: Node Arrival (contd..)

• Reconstruction of fingers in other nodes:

• Conditions for updates:

– Node n will be i-th finger in p if: (a) p preceds

n by at least 2 i-1. and (b) the i-th finger of p

succeeds n.

• Process:

– Start with immediate predecessor within n-2 i-1

distance backward which is also the i-th finger.

– So go there are correct all the required entries.

These are generally low i entries.

– Then continue walk backward (counter-

clockwise) check its higher distance entries.

Update the entries until it hits node p whose i-

th finger does not reach n.

13

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Chord: StabilityChord: Stability

• If joining nodes have affected some region of the Chord

ring, a lookup that occurs before stabilization has finished

can exhibit one of three behaviors:

•

– The common case is that all the finger table entries involved in

the lookup are reasonably current, and the lookup finds the

correct successor s.

– The second case is where successor pointers are correct, but

fingers are inaccurate. This yields correct lookups, but they may

be slower.

– In the final case, the nodes in the affected region have incorrect

successor pointers, or keys may not yet have migrated to newly

joined nodes, and the lookup may fail.

Chord uses a period stabilization algorithm to correct the network.

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Chord: StabilityChord: Stability

• When node n first starts, it send a Join() message to any

known Chord node m:

– Join() asks m to find the immediate successor of n. n adds this to

its successor table.

– By itself, Join() does not make the rest of the network aware of

n in the network.

• Rather, every node runs Stabilize () periodically:

– When node n runs stabilize, it asks it’s successor for the

successor’s predecessor p.

– Upon receiving p, n decides if p should be n’s successor instead.

– If that’s the case then n also sends message to p of n’s existence,

giving the successor a chance to change its predecessor to n.

– The successor p updates its predecessor only if it knows of no

closer predecessor that n.

14

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Chord: StabilityChord: Stability

• The stabilization scheme guarantees to add nodes to a Chord ring in a

way that preserves reachability of existing nodes, even in the face of

concurrent joins and lost and reordered messages.

• THEOREM 6. If we take a stable network with n nodes, and another set

of up to nodes joins the network with no finger pointers (but with

correct successor pointers), then lookups will still take O(log N) time

with high probability.

• Stabilization by itself won’t correct a Chord system that has split into

multiple disjoint cycles, or a single cycle that loops multiple times

around the identifier space. These pathological cases cannot be

produced by any sequence of ordinary node joins.

• It is unclear whether they can be produced by network partitions and

recoveries or intermittent failures. If produced, these cases could be

detected and repaired by periodic sampling of the ring topology.

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-28
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: Node DepartureChord: Node Departure

• Deliberate node departure

– clean shutdown instead of failure

• For simplicity: treat as failure

– system already failure tolerant

– soft state: automatic state restoration

– state is lost briefly

– invalid finger table entries: reduced routing efficiency

• For efficiency: handle explicitly

– notification by departing node to

• successor, predecessor, nodes at finger distances

– copy (key, value) pairs before shutdown

15

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

Performance: Load DistributionPerformance: Load Distribution

LECT-05, S-29
FP2P, javed@kent.edu

Javed I. Khan@2008

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-30
FP2P, javed@kent.edu

Javed I. Khan@2008

Performance: Average Path LengthPerformance: Average Path Length

Moderate impact of
number of nodes on

lookup latency

Consistent average path
length

16

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-31
FP2P, javed@kent.edu

Javed I. Khan@2008

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-32
FP2P, javed@kent.edu

Javed I. Khan@2008

Performance: Lookup Path LengthPerformance: Lookup Path Length

• Lookup latency (number of hops/messages): average, 1st and 9th

percentile average is around ~ 1/2 log2(N)

• Confirms theoretical estimation

Number of Nodes

L
o

o
k
u

p
 P

a
th

 L
e

n
g

th

17

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-33
FP2P, javed@kent.edu

Javed I. Khan@2008

Performance: Node Join/Leave vs. Failed LookupPerformance: Node Join/Leave vs. Failed Lookup

• 104 nodes storing 106 keys, and fraction p of randomly selected node

fails/joins using Poissons distribution. Each 30 second a stabilization is

runs. The network starts with 500 nodes.

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-34
FP2P, javed@kent.edu

Javed I. Khan@2008

Chord: SummaryChord: Summary

• Complexity

– Messages per lookup: O(log N)

– Memory per node: O(log N)

– Messages per management action (join/leave/fail): O(log² N)

• Advantages

– Theoretical models and proofs about complexity

– Simple & flexible

• Disadvantages

– No notion of node proximity and proximity-based routing

optimizations

– Chord rings may become disjoint in realistic settings

• Many improvements published

– e.g. proximity, bi-directional links, load balancing, etc.

18

FOUNDATION OFFOUNDATION OF

PEERPEER--TOTO--PEERPEER

SYSTEMSSYSTEMS

LECT-05, S-35
FP2P, javed@kent.edu

Javed I. Khan@2008

Next Class: Next Class: Next Class:

Pastry & CANPastry & CANPastry & CAN

