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[class mechanics][class mechanics]

• [2/17/10, took 1 class hashing principles+ routing, 1 class to 
explain join/leave+stability+performance ] [2/14/08] 0.5 classes 
on first day (take time to explain the hashing principles, has 
identifier space, consistent hashing, hash space, since this is the 
first class on DHT)

• [2/19/08]1 class on 2nd day [routing +node join+node 
departure+ performance from paper] 

• [some problem in sequencing needs fixing, problem explaining 
short jump in last stage of example???] 

• [add stability routing-added]+ used paper to explain 
performance on load balancing, node aggregation+hops+ 
stability]

• With the stability it should be two class material [added 2/17/10]
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OverviewOverview
1. Chord

1. Topology

2. Routing

3. Self-Organization

2. Pastry

1. Topology

2. Routing

3. Self-Organization

3. CAN (Content Addressable Network)

1. Topology

2. Routing

3. Self-Organization

4. Symphony

5. Viceroy

6. Kademlia

7. Summary
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Chord: OverviewChord: Overview

• Chord is one of the original distributed hash table protocols 
being developed at MIT (2001). 

• Chord source code can be downloaded and used under the MIT 
License.

• Simple & elegant

– easy to understand and implement

– many improvements and optimizations exist

• Main responsibilities:

– Routing

• Flat logical address space: l-bit identifiers instead of IP addresses

• Efficient routing in large systems: log(N) hops with N total nodes

– Self-organization

• Handle node arrival, departure, and failure
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Chord: TopologyChord: Topology

• Hash-table storage

– Put (key, value) inserts data to Chord

– Value = get (key) retrieves data from Chord

• Identifiers

– Derived from hash function

• E.g. SHA-1, 160-bit output → 0 <= identifier < 2^160

– Key associated with data item

• E.g. key = sha-1(value)

– ID associated with host

• E.g. id = sha-1 (IP address, port)
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Chord: TopologyChord: Topology

• Keys and IDs on ring, i.e., all arithmetic modulo 2^160

• (key, value) pairs managed by clockwise next node: successor
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Chord: TopologyChord: Topology

• The basic topology of chord is a circular linked list. Each 

node remembers just one piece of information about next 

node in clockwise direction.
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Chord: RoutingChord: Routing

• Primitive routing:

– Forward query for key x until successor(x) is found

– Return result to source of query

• Pros:

– Simple

– Little node state

• Cons:

– Poor lookup efficiency:

O(1/2 * N) hops on average

(with N nodes)

– Node failure breaks circle
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Chord: RoutingChord: Routing
• [VVI: it does not forward query rather keeps on asking about the predessor of k 

to nodes closer and closer to k]

• Advanced routing:

– Store links to z next neighbors

– Forward queries for k to farthest known predecessor of k

– For z = N: fully meshed routing system

• Lookup efficiency: O(1)

• Per-node state: O(N)

– Still poor scalability

• Scalable routing:

– Linear routing progress scales poorly

– Mix of short- and long-distance links required:

• Accurate routing in node’s vicinity

• Fast routing progress over large distances

• Bounded number of links per node
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Corrected RoutingCorrected Routing
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Chord: RoutingChord: Routing

• Chord’s routing table: finger table

– Stores log(N) links per node

– Covers exponentially increasing distances:

• Node n: entry i points to successor(n + 2^i) (i-th finger)
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Chord: RoutingChord: Routing
• Chord’s routing algorithm:

– Each node n forwards query for key k clockwise

• To farthest finger preceding k

• Until n = predecessor(k) and successor(n) = successor(k)

• Return successor(n) to source of query
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Chord: SelfChord: Self--OrganizationOrganization

• Handle changing network environment

– Failure of nodes

– Network failures

– Arrival of new nodes

– Departure of participating nodes

• Maintain consistent system state for routing

– Keep routing information up to date

• Routing correctness depends on correct successor 

information

• Routing efficiency depends on correct finger tables

– Failure tolerance required for all operations
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Chord: Failure Tolerant StorageChord: Failure Tolerant Storage

• Layered design

– Chord DHT mainly responsible for routing

– Data storage managed by application

• persistence

• consistency

• fairness

• Chord soft-state approach:

– Nodes delete (key, value) pairs after timeout

– Applications need to refresh (key, value) pairs periodically

– Worst case: data unavailable for refresh interval after node 

failure
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Chord: Failure Tolerance RoutingChord: Failure Tolerance Routing

• Finger failures during routing

– query cannot be forwarded to finger

– forward to previous finger (do not overshoot destination 

node)

– trigger repair mechanism: 

replace finger with its successor

• Active finger maintenance

– periodically check liveness of fingers

– replace with correct nodes on

failures

– trade-off: maintenance traffic

vs. correctness & timeliness
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Chord: Failure Tolerance RoutingChord: Failure Tolerance Routing

• Successor failure during routing

– Last stop of routing returns failed node to source 

of query.

– All queries for successor fail

– Store m successors in a successor list

• successor[0] fails -> use successor[1] etc.

• routing fails only if m consecutive nodes fail 

simultaneously

• Also add one predecessor in table.

• Active maintenance of successor list

– periodic checks similar to finger table 

maintenance

– crucial for correct routing
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Chord: Node JoinChord: Node Join

• New node n picks ID

• Contact an existing node m

• Construct finger table  standard routing/lookup() [send query 

message via m to each start table entry and see who responds-javed]

• Retrieve (key, value) pairs from successor
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Chord: Node ArrivalChord: Node Arrival

• Examples for choosing new node IDs

– random ID: equal distribution assumed but not guaranteed

– hash IP address & port

– place new nodes based on

• load on existing nodes

• geographic location, etc.

• Retrieval of existing node IDs

– Controlled flooding

– DNS aliases

– Published through web

– etc.
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• Construction of new node’s finger table

– iterate over finger table rows

– for each row: query entry point m for successor

– Standard Chord routing propagated by entry point.

– Returned results tells new node who is the successor for 

each finger.  O(m.log N) ≈ O(log2 N)

• Optimization #1:

– Check if  i-th finger is also the finger for (i+1) th finger.

– i.e if finger[i] node >= finger [i+1].start, then the (i+1)-finger 

will have the same as i-th finger. So skip query.

– Example: Finger (i=0) is 0 which is also higher that finger 

(i=1)’s start 0.

• Optimization#2:

– Query immediate successor  for its entire finger table. Then 

query to verify. Actual corrected fingers should be very close. 

Practically O(log N) 
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Chord: Node Arrival (contd..)Chord: Node Arrival (contd..)

• Construction of new node’s successor list

– add immediate successor from finger table

– request successor list from successor
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• Reconstruction of fingers in other nodes:

• Conditions for updates:

– Node n will be i-th finger in p if: (a) p preceds 

n by  at least 2 i-1. and (b) the i-th finger of p 

succeeds n. 

• Process:

– Start with  immediate predecessor within n-2 i-1

distance backward which is also the i-th finger.

– So go there are correct all the required entries. 

These are generally low i entries.

– Then continue walk backward (counter-

clockwise) check its higher distance entries. 

Update the entries until it hits node p whose i-

th finger does not reach n. 
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• If joining nodes have affected some region of the Chord 

ring, a lookup that occurs before stabilization has finished 

can exhibit one of three behaviors:

•

– The common case is that all the finger table entries involved in 

the lookup are reasonably current, and the lookup finds the 

correct successor s.

– The second case is where successor pointers are correct, but 

fingers are inaccurate. This yields correct lookups, but they may 

be slower. 

– In the final case, the nodes in the affected region have incorrect 

successor pointers, or keys may not yet have migrated to newly 

joined nodes, and the lookup may fail. 

Chord uses a period stabilization  algorithm to correct the network.
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• When node n first starts, it send a Join() message to any 

known Chord node m:

–  Join() asks m to find the immediate successor of n. n adds this to 

its successor table.

–  By itself,  Join() does not make the rest of the network aware of  

n in the network.

• Rather, every node runs Stabilize () periodically:

– When node n runs stabilize, it asks it’s successor for the 

successor’s predecessor  p.  

– Upon receiving p, n decides if p should be n’s successor instead.

– If that’s the case then n also sends message to p of n’s existence, 

giving  the successor a chance to change its predecessor to n.

– The successor p updates its predecessor only if it knows of no 

closer predecessor that n. 
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• The stabilization scheme guarantees to add nodes to a Chord ring in a 

way that preserves reachability of existing nodes, even in the face of 

concurrent joins and lost and reordered messages. 

• THEOREM 6. If we take a stable network with n nodes, and another set 

of up to nodes joins the network with no finger pointers (but with 

correct successor pointers), then lookups will still take O(log N) time 

with high probability.

• Stabilization by itself won’t correct a Chord system that has split into 

multiple disjoint cycles, or a single cycle that loops multiple times 

around the identifier space. These pathological cases cannot be 

produced by any sequence of ordinary node joins. 

• It is unclear whether they can be produced by network partitions and 

recoveries or intermittent failures.  If produced, these cases could be 

detected and repaired by periodic sampling of the ring topology.
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Chord: Node DepartureChord: Node Departure

• Deliberate node departure

– clean shutdown instead of failure

• For simplicity: treat as failure

– system already failure tolerant

– soft state: automatic state restoration

– state is lost briefly

– invalid finger table entries: reduced routing efficiency

• For efficiency: handle explicitly

– notification by departing node to

• successor, predecessor, nodes at finger distances

– copy (key, value) pairs before shutdown
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Performance: Average Path LengthPerformance: Average Path Length

Moderate impact of 
number of nodes on 

lookup latency

Consistent average path 
length
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Performance: Lookup Path LengthPerformance: Lookup Path Length

• Lookup latency (number of hops/messages): average, 1st and 9th

percentile  average is around ~ 1/2 log2(N)

• Confirms theoretical estimation
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Performance: Node Join/Leave vs. Failed LookupPerformance: Node Join/Leave vs. Failed Lookup

• 104 nodes storing 106 keys, and fraction p of randomly selected node 

fails/joins using Poissons distribution. Each 30 second a stabilization is 

runs. The network starts with 500 nodes.
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Chord: SummaryChord: Summary

• Complexity

– Messages per lookup: O(log N)

– Memory per node: O(log N)

– Messages per management action (join/leave/fail): O(log² N)

• Advantages

– Theoretical models and proofs about complexity

– Simple & flexible

• Disadvantages

– No notion of node proximity and proximity-based routing 

optimizations

– Chord rings may become disjoint in realistic settings

• Many improvements published

– e.g. proximity, bi-directional links, load balancing, etc.
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Pastry & CANPastry & CANPastry & CAN


