
ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 7

Project TiniTorrent: Design Space Exploration

Javed I. Khan

Fall 2013

ST: 6/759995 Foundations of Peer-to-Peer Computing

Department of Computer Science, Kent State University

javed@kent.edu

1 Introduction

One of best way to start the project is to divide and conquer. We will progress step by step. We will consider several

simplifications for our task and then gradually build toward a full scale BitTorrent which will be able to

communicate in any standard BitTorrent swarm over the open Internet.

2 Few Assumptions and Simplifications

� Dummy for Torrent & Tracker: Initially we would avoid implementing or even contacting Torrent Server or

Tracker. Rather for the first phase we will use two simple text files to make all torrent and tracker information

available locally to the TiniTorrent.

� Strategies in the Base Model: In the basic version, peers will use altruistic strategy rather than tit-for-tat.

Thus, all peers will fulfill all requests as long as it has the piece, and will explicitly unchoke all connection at

the start and will never choke it. Peers will not use any intelligent download ordering, i.e. the pieces can be

requested one by one in sequential download order. Peers will not pipeline requests. Indeed, each peer will

fetch only one piece via one connection and will close the connection after sending/receiving the piece. Initially

we will also assume all peers use matched message sequence- where at each step a peer sends and the other side

waits to receive a specific message. This generally avoids race condition. We will also start with a simple

system without connection maintenance. There will be no keep-alive messages.

3 Architecture

Indeed, there are many ways to design the TiniTorrent. However, I have given one high-level schematics of

TiniTorrent (Fig-1). Your first task will be to go over it and try to understand the basic components. The top part is

the main driver program- which usually handles interactions with users, torrent server, tracker server and

initialization. Since, the TiniTorrent will avoid torrent server or tracker server we supply all the required parameters

into two files.

Torrent & Tracker Files: You can write those into two text files SampleFile.tinitorrent and

SampleFile.tinitracker. Write using a human readable way such as “field-name=value” to specify all the

usual torrent, and tracker supplied parameters and their values. Put dummy value for the information those

you will not actually use in basic version (such as HASH info). In advanced version you only have to

populate these files from information received from torrent and trackers.

Local Configuration File: You may also keep all the local configuration parameters in another text file

called MyInit.tini. It should have fields such as local port number, various limits such maximum number of

concurrent slaves to run, etc.

TiniTorrent program should start with all three of these configuration filenames as one of its arguments such as:

� TiniTorrent MyInit.tini SampleFile.tinitorrent SampleFile.tinitracker

TiniTorrent then fork into two processes- parent process continues to serve as main process- the child process

becomes the seeder section. The main process than becomes the user interface. Normally, it would wait for

download orders from the users. Since, in our case we already provided the order in the Torrent and Tracker files it

simply reads those and continues. Upon reading the orders it then keeps forks the leecher section.

Both the leecher and seeder subsections however ultimately depend on piece exchange slaves for handling the inter

peer communications and messaging. Fig-2 provides a high level schematics of the exchange slave. Fig-3 depicts a

probable sequence of messages between two peers when one peer is trying to download a piece from the other.

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 8

Initialize

System States

& CARDS

Have All

Pieces?

Select a Slave

and a Piece

Found

?
Open Socket

Piece

Exchange

Slave (leech mode)

Exit Wait (S)

Wait/

Seed More

?

Wait (C)

Piece

Exchange

Slave (seed mode)

Exit

Read A Torrent/

Tracker File

Init CARDS

Start (Init.txt,

Torrent.txt

Tracker.txt)

Seeder

Processes Leecher

Processes

Main

Processes

Fig-1 Top Level Architecture of TiniTorrent. It has three major sections. Main processes handles users, trackers, and torrents. The

seeder processes handles the communication in seeding mode and the leecher processes handles the communication in other

situations. Both seeder and leecher sections however, use piece exchange slaves (next fig) to handle actual messaging with peers.

Initialize

System States

& CARDS

Have All

Pieces?

Select a Slave

and a Piece

Found

?
Open Socket

Piece

Exchange

Slave (leech mode)

Exit Wait (S)

Wait/

Seed More

?

Wait (C)

Piece

Exchange

Slave (seed mode)

Exit

Read A Torrent/

Tracker File

Init CARDS

Start (Init.txt,

Torrent.txt

Tracker.txt)

Seeder

Processes Leecher

Processes

Main

Processes

Fig-1 Top Level Architecture of TiniTorrent. It has three major sections. Main processes handles users, trackers, and torrents. The

seeder processes handles the communication in seeding mode and the leecher processes handles the communication in other

situations. Both seeder and leecher sections however, use piece exchange slaves (next fig) to handle actual messaging with peers.

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 9

Go/No?

Inform Tracker

Exchange Piece(s)

Update CARD

Exchange Handshake

& Bitfield Messages

Update CARD

Signal (S)

Signal (S)

Decide Choke & Interest

Send Message (if needed)

Receive Choke & Interest

Message (if arrives)

Update CARD

Exit

Start (socket, task)

Fig-2 Piece Exchange Slave of TiniTorrent.

Go/No?

Inform Tracker

Exchange Piece(s)

Update CARD

Exchange Handshake

& Bitfield Messages

Update CARD

Signal (S)

Signal (S)

Decide Choke & Interest

Send Message (if needed)

Receive Choke & Interest

Message (if arrives)

Update CARD

Exit

Start (socket, task)

Go/No?

Inform Tracker

Exchange Piece(s)

Update CARD

Exchange Handshake

& Bitfield Messages

Update CARD

Signal (S)

Signal (S)

Decide Choke & Interest

Send Message (if needed)

Receive Choke & Interest

Message (if arrives)

Update CARD

Exit

Start (socket, task)

Fig-2 Piece Exchange Slave of TiniTorrent.

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 10

HANDSHAKE

UNCHOKE

PIECE

BITFIELD

INTERESTED

HANDSHAKE

UNCHOKE

BITFIELD

INTERESTED

REQUEST

Fig-3 Typical message sequence between
two TiniTorrents exchange slaves A & B.

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 11

4 TiniTorrent File Structure

Pieces are real or virtual? You really don’t need to create a separate file to keep each piece. You may consider

creating a fullsized buffer files such as “SampleFile.buffer” to store the each active file. At the start create a dummy

file of size filesize bytes. Then each time you fetch a piece write over the piece bytes at appropriate byte offset in

this file. In that way you don’t have to manage numerous different pieces separately. Remember to write a small

utility routine which can calculate right offsets from piece indices, and handle the piece indexed read write. Once,

the file is complete you can simply rename it to make it usable.

5 TiniTorrent Data Structure

One of the crucial steps in the design of a complex system is to design its data structures. I suggest you start with at-

least two tables to keep all the parameters, states, and co-ordination variables you will need for each file. I call them

CARDs. You can use TORRENT CARD to keep all the information you will receive from the TORRENT file plus

any other long term information you will need to seed the file in future. Similarly, you can use the TRACKING

CARD to keep all the information about a file which is now being actively shared- whether you are leeching or

seeding. Sections below provide some details about suggested structures for these two.

TIPS: Mutual Exclusion & Shared Data Structures: You will see that various processes often will need to read and

update same data structure fields in these CARDs. Don’t forget to use mutual exclusion where needed.

5.1 Torrent CARD

TORRENT Card stores all the data decoded from a torrent file. It also adds few additional fields which are used by a

peer to maintain long time state of a file exchange. There should be one TORRENT CARD for each file which is

considered for exchange - whether it is actively exchanged right now or not.

5.2 Tracking CARD & Various States

Each time a file is actively exchanged (pieces are uploaded or downloaded) more detailed piece and connection

states are needed to be stored. We will abstract those into TRACKING CARD. TRACKING CARD is a more

complex table. It stores the data and states related to a file transfer. It is initialized by data received from the tracker.

Then different program components modified other status bits. The later table explains the various enumerations of

the fields such slave states, connection states (game), remote peer statistics, status of pieces, etc. There are various

ways to model the state transitions. Fig-5.3 to Fig 5.6 explains some of these states.

The shown TRACKING CARD has two main tables. The first part MY PIECES is keeping the status of each of the

pieces, namely their hash, whether has the piece (1), or not (0).

The second part is the state of the CONNECTIONs. A peer normally has a limit on the parallel active connections

(and a slave assigned to manage the connection). There is one row for each connection or slave. If the slave is

TORRENT CARD

FILENAME:

ANNOUNCE:

FILESIZE:

PIECESIZE:

#PIECES:

…… You can have other fields..

…..

I WANT TO [SEED|LEECH|NONE]

Fig 5.1

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 12

actively serving its process id (pid) is stored. If the slave is actively connected to a peer then remote peer’s IP:PORT

is also stored. The GAME is a 4 bit status flag (Table 5.4) which stores the current tit-for-tat bits for the connection.

The PIECE STATES table then show which pieces has been requested from the remote peer and the state of the

request. A connection can serve multiple upload and down load. Table 5.6 shows the code for various states a

request might be. The STAT column you can define further. The idea is to keep some statistics about the remote

peer so that you can use those for formulating the tit-for-tat strategy and keep a log/record of performances per

connection. Once, the piece download is completed in a similar way some log/record of performances can be kept in

pSTAT structures in the upper table.

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 13

TRACKING CARD

MY PIECES

PIECEINDEX� 1 2 3 …… N

INFOHASH� 123fd 234fd 1ab2d 23cbb 5333c

HAVE� 0 0 1 .. 1

pSTAT �

MY CONNECTIONS

IP: PORT SLVS GAME cSTAT PIECE STATES

IP1 PORT1 202 1010 FN

IP2 PORT2 103 1010 DN

IP3 PORT3 104 0110 HV HV

IP4 PORT4 303 0111 UP

IP5 PORT5 722 0000 UP

… … 0 … FN

IPp PORTp 0 FN FN

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 14

CODE SLAVE STATES (SLVS)

BIT1 0=NO ACTIVE SLAVE. xxx = PID OF SLAVE ASSIGNED

Fig 5.3 TiniTorrent’s Slave State

GAME BITS

BIT1 1=AM CHOKING. 0= AM NOT CHOKING

BIT2 1= AM INTERESTED, 0= AM NOT INTERESTED

BIT3 1= CHOCKED, 0= NOT CHECKED

BIT4 1= IS INTERESTED, 0=NOT INTERESTED

Fig 5.4 TiniTorrent’s Strategy Bits

SLAVE/CONNECTION/PEER STATISTICS (STAT)

PID: SLAVE PID

START: SLAVE START TIME

UPBYTES: TOTAL UPLOADED BYTES

DNBYTES: TOTAL DOWNLOADED BYTES

(others) Note you can also store other information about the slave, connection, or

the remote peer here such as upload, download speed of the remote peers.

Fig 5.5 TiniTorrent’s Slave Statistics

NUM CODE PIECE STATE(S)

1 FN I HAVE FOUND THIS PIECE IN THIS PEER

2 IN I HAVE EXPRESSED ‘AM INTERESTED’ TO THIS PEER

3 DN I AM DOWNLOADING (IN PROGRESS) THIS PIECE

4 HV I GOT IT. I HAVE THE COMPLETE PIECE.

5 OF I HAVE OFFERED THIS PIECE TO THIS PEER

6 UP I AM UPLOADING THIS PIECE TO THIS PEER

7 ST I AM STOPPING UPLOADING

8 GV I AM DONE UPLOADING THIS PIECE TO THIS PEER

Fig 5.6 TiniTorrent’s Piece Exchange States

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 15

6 TiniTorrent Messages

All peer to peer communication uses Peer Wire Protocol discuss in the class. In this project you will need to

familiarize yourself with byte level details of these communications. Fig-3 provides a typical sequence of such

messages. Below I provide byte level description of messages HANDSHAKE, BITFIELD, UNCHOKE,

INTERESTED, REQUEST & PIECE massages. Normally, a TiniTorrent peer opens a connection and then sends a

continuous stream of characters. Each message is sent in a length, prefix format. The first handshake message has

only one byte length field. The sample handshake message has a total of 68 bytes. After sending handshake

continuous byte streams are send which are more messages- still in length, fields prefix. One of the first messages is

BITFIELD. This is followed by other messages. Nothing other than the length field at the start of each message tells

where message begins and where it ends in this endless stream of characters seen over a connection.

HAND SHAKE

A peer named “ MINI001” is sending a

handshake message.

Bytes Characters Comment

1 68 (decimal) Length

19 “BitTorrent Protocol” A string

8 0 (decimals) Reserved.

20 1122FF2040..40 Hash-Info

20 MINI001….. 000 Node ID

BITFIELD

A seeding peer is sending its bitfield message

telling it has all the pieces for a sample file which

has 32 pieces and each piece has 256 bytes.

Bytes Characters Comment

4 00 00 00 05 H Length is 5

1 05 H

4 FF FF FF FF .

UNCHOKE

Bytes Characters Comment

4 00 00 00 01 H Length is 1

1 01 H

INTERESTED

Bytes Characters Comment

4 00 00 00 01 H Length is 1

1 02 H

REQUEST

A peer is sending request to get 0-255 bytes of the

5-th piece of the sample file which has 32 pieces

and each piece has 256 bytes.

Bytes Characters Comment

4 00 00 00 0C H Length is 12

1 06 H

4 00 00 00 05 H

4 00 00 00 00 H Get from 0
th

4 00 00 01 00 H 256 bytes

PIECE

A peer is sending 0-255 bytes of the 5-th piece of

the sample file which has 32 pieces and each

piece has 256 bytes.

Bytes Characters Comment

4 00 00 01 09 H Length is 9

1 07 H

4 00 00 00 05 H

4 00 00 01 00 H

ST: 6/759995 Foundations of Peer-to-Peer Systems javed@2013 16

7 Road Map Questions:

Here are some roadmap questions to assist you to start the project. There is no grade for them. But if you can answer

them you are ready to implement the project.

1. Which system call in concurrent.c creates a process?

2. In Top Level Architecture (Fig-1) who signals Wait(S) and who signals wait(C)?

3. Look into message sequences given into Fig-3. What will happen if peer A and peer B both waits for

UNCHOKE and INTERESTED before sending them out?

4. How a process can signal another process? (Hint check system calls and functions: signal(), pause(), wait(),

sleep()).

5. Now work out a small example in detail. Consider two peers. Initially MINI-EVEN has all the even

indexed pieces and MINI-ODD has all the odd indexed pieces of a file which has 4 pieces- each of size 512

Bytes. Determine the sample message streams when MINI-ODD is trying to get pieces 2, 4 and MINI-

EVEN is trying to get pieces 1, 3 from the other. Draw the complete message diagram (like Fig-3) and the

message streams in both directions. How many bytes will travel in each direction to complete this

transaction?

6. What value is returned by fork() call in concurrentserver.c? (Hint check system calls getpid(), fork(),

excv()).

7. For the case above hand trace the initial PIECE STATES in MINI-EVEN. How it will change with each

messages sent when MINI-EVEN is trying to get piece 1 until it is received?

8. Which program blocks (Fig-1) will potentially write into PIECE STATES sub-area of the TRACKING

CARD? Which program blocks will potentially read into it?

9. A leecher initiated slave will alter which piece states and to what values?

10. A seeder initiated slave while uploading will alter which piece states and to what values?

11. Design a small program for “Select a Slave & a Piece” that will look into the current TRACKING CARD
and return a slave and a piece.

12. How can you measure the execution time in the Slave? (Hint: check on system calls time(), sleep()).

13. How many times the leecher fork (in main process) can occur? What factors should dictate the limit on it?

What factors should dictate the limit on the forks to create Piece Exchange Slaves?

14. Complete the TORRENT CARD table so that it will have all the fields of a torrent file. Show the Initial
TORRENT CARD for a music file.

15. Design the detail of the pSTAT field’s data structure so that exact download start time, end-time, and the id
of the remote peer which has successfully supplied the piece all can be logged for each of the pieces and

printed out at the end for plotting.

16. Multiple “slaves” will be running concurrently. Which fields of the TRACKING CARD might need to me

guarded for mutual exclusion?

