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Abstract
Existing algorithms for utilizing high-capacity nodes in

heterogeneous P2P systems (e.g., [4], [13], [20]) often re-
quire unrealistically large node degree and high mainte-
nance overhead in P2P networks with highly diverse node
capacities and high churn. In this paper, we propose an
unstructured P2P system that addresses these issues. We
first prove that the overall throughput of search queries in
a heterogeneous network is maximized if and only if traf-
fic load through each node is proportional to its capacity.
We then propose a system that achieves this traffic distribu-
tion by biasing search walks using the Metropolis-Hastings
algorithm [5], [12] without requiring any special underly-
ing topology. We finish the paper by comparing our method
with Gia [4], where we find in simulation that the former
outperforms the latter under all studied conditions, two
novel saturation metrics introduced in this paper, and such
end-to-end parameters as query success rate, latency, and
query-hits.

1 Introduction

Recent measurement studies (e.g., [15]) show that P2P
overlays contain nodes of varying capacity, which is a gen-
eral term describing the ability of each user to router traffic,
store object replicas, and answer queries. If a P2P system is
not capacity-aware, slow nodes may become overwhelmed
by messages even when many high-capacity peers in the
network are still under-utilized. Therefore, node hetero-
geneity plays a key role in the design and future success of
unstructured P2P systems. In this paper, we propose a set
of metrics for measuring the throughput of heterogeneous
P2P networks under random-walk traffic, create algorithms
for maximizing search and replication ability of peers, and
evaluate their performance in simulations. We start with ba-
sic definitions and assumptions.

1.1 Assumptions

In this paper, we assume a general unstructured P2P
network that utilizes random walks (as opposed to flood-
ing [6], [22] or some hybrid methods [3], [23]) for finding
neighbors, searching for content, and replicating existing
file pointers. The reason for using random walks is their

ability to achieve arbitrary stationary distributions (see be-
low) across existing nodes in the system and clear bounds
on overhead. The capacity Ci of user i determines its ability
to process incoming messages, where excess traffic is back-
logged at each user in some infinite queue. Also assume
that joining users, as well as peers seeking new neighbors,
perform so-called build walks with TTL kb ≥ 2 and select
peers at the end of these walks as their neighbors. Note that
the transition probability of these random walks influences
the topology of the resulting overlay.

Once the graph is built, search walks are then used for
discovering the desired content. Nodes looking for certain
files start several random walks with TTL ks ≥ 2 and ex-
amine the content of each peer through which these walks
pass. This query is called successful if any of the search
walks started by a node passes through at least one user
that shares the desired file or knows which peer does. The
number of found users holding the file is called query-hits,
which determines the download’s ability to be parallelized
and its robustness against failure.

To increase query success rates and achieve redundancy,
nodes replicate pointers to their shared files to other peers,
as long as the number of replicas stored at each node i does
not exceed its capacity Ci. When publishing their content
into the system, nodes start a replication walk with TTL
kr ≥ 2 and select one or more nodes along the walk to hold
pointers to all of their content. After replication, any query
for this content can also be answered by one of its replicas
thereby improving the query success rate of the P2P system.

A well-designed P2P system should possess build,
search, and replication components that guarantee a high
network-wide throughput under load and achieve good per-
formance using such end-to-end parameters as query suc-
cess rates, query-hits, and latency to find the first result.
Next, we discuss the challenges involved in designing these
three components and then outline our proposed system to
address these issues.

1.2 Challenges

One direction in constructing heterogeneous P2P sys-
tems [13], [20] is to ensure that node degree di is linearly
proportional to capacity Ci. However, in real networks,
node capacities are extremely diverse [15], which means
that this linear dependence often produces nodes with very



large degree. Such high degree may not be feasible in
practice due to the high overhead involved in maintaining
neighbor connections, the large number of failed links each
time a high-capacity node departs the system, and the dif-
ficulty in maintaining di ∼ Ci under churn. Another di-
rection [4], [20] is to continuously perform dynamic topol-
ogy adaptation, which involves nodes constantly replac-
ing their existing neighbors with better ones so as to sat-
isfy some performance objective. In P2P networks with
heavy-tailed lifetimes [21] where the majority of nodes fail
quickly, these systems almost constantly remain in subop-
timal states, which causes enormous traffic overhead and
leads to lower performance since the system never reaches
the desired (i.e., stable) state.

For a P2P system to function properly, it is highly desir-
able that it also not be congested by non-topology-related
traffic, which primarily consists of search and replication
walks. To properly load high-capacity nodes, existing
search methods heavily rely on special overlay properties
(e.g., di ∼ Ci or underlying adaptation algorithms); how-
ever, more fundamental questions of whether it is possible
to construct a well-behaving system that does not depend
on a specific topology, whether it can function regardless of
churn, and what search algorithm achieves optimal through-
put have not been explored before. Since search algorithms
typically visit higher-capacity nodes more often, it makes
sense to replicate content to those nodes with a higher prob-
ability. However, existing schemes such as 1-hop replica-
tion [4], in which replicas are stored on immediate neigh-
bors, again rely on the stationary properties of the overlay
topology, which are not easily achievable under churn. Fur-
thermore, as there is no well-known correlation between file
popularity and the capacity of neighbors of the user sharing
the file, 1-hop replication is biased against peers with low
degree and/or low-capacity neighbors.

1.3 Our Contributions

We start by defining metrics for assessing the overhead
and maximum throughput of a given topology-construction
algorithm. To quantify the amount of traffic necessary to
maintain a given overlay, we introduce a metric we call
Build Saturation Point (BSP) as the maximum node ar-
rival/departure rate µ for which the average queue length
E[Q] in the system in some time-interval [0, t] is no larger
than c seconds, where c is a constant. Networks with higher
BSP experience less overhead due to churn and can thus
retain more spare capacity for other types of traffic (e.g.,
queries and replication). Our second metric, which we call
Search Saturation Point (SSP), quantifies the overlay’s ca-
pacity for sustaining random walks and is defined as the
maximum rate at which walks of a certain TTL can be com-
pleted in the overlay. Higher SSP allows more queries to be
answered and more objects replicated per time unit.

We next focus on defining a network that achieving opti-
mal SSP and then building a decentralized approximation
to it. For a given number of users n, set of capacities

{C1, . . . , Cn}, fixed average degree d, and random walk
length k, we define a network N with a search algorithm S
to be throughput-optimal if pair (N ,S) achieves the max-
imum possible SSP equal to

∑
i Ci/k. We prove that this

optimality can be realized if the stationary probability of
random walks visiting a node i is simply

πi =
Ci∑n

j=1 Cj
, (1)

which means that each node must be loaded proportionally
to its capacity. We should note here that when all nodes
in the network are congested, further increase in query rate
actually decreases the completion rate of random walks and
hurts performance, even though the rate at which individual
messages are processed remains constant.

We then provide a framework we call Capacity-
Proportional Metropolis-Hastings (CPMH) for achieving
(1). CPMH applies the Metropolis-Hastings algorithm [5],
[12], a Markov chain based sampling method, to calculate
the transition probability of random walks. CPMH does not
impose additional restrictions on the overlay topology to
achieve capacity-proportionality. To illustrate this, we ap-
ply CPMH on top of various topologies (such as BA [2] and
Gnutella [11]) and show the convergence of random walks
to the target stationary distribution given by (1).

We then build a heterogeneous P2P system by design-
ing its three components – topology, search, and repli-
cation. We first propose an overlay topology we call
Capacity-Scalable Out-Degree (CSOD), in which the out-
degree dout(i) of node i is given by

dout(i) = a + bb log10 Cic, (2)

where a, b are some constants. Observe that node degree
in CSOD is sublinear in Ci and hence the new approach
is more scalable as Ci → ∞ than the methods presented
in [20]. For searching, we use CPMH random walks and
show that among the studied topologies, CSOD achieves
the fastest convergence to the target stationary distribu-
tion π = (π1, . . . , πn). We call the resulting combina-
tion CSOD-CPMH and use it throughout the paper. To ad-
dress the drawbacks of existing replication schemes such
as 1-hop replication, we propose a method we call CPMH-
replication, which uses CPMH walks for replicating shared
content and places greater responsibility on higher-capacity
nodes without requiring any special overlay properties.

We finally perform simulation-based evaluation of the
proposed CSOD-CPMH system and compare its perfor-
mance with that of Gia. Simulations show that CSOD-
CPMH typically achieves four times higher SSP than Gia
and close to 100 times higher BSP. In a static network with
CPMH-replication, CSOD-CPMH achieves 15% higher
query success rates, ten times smaller query latencies, and
twice the number of query-hits when compared to Gia.
We also evaluate these networks under churn by simulat-
ing Poisson node arrivals with Pareto lifetimes and find that
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CSOD-CPMH obtains 20% higher query success rates at
half the latency when compared to Gia.

Overall, CPMH achieves close-to-optimal traffic distri-
bution, high SSP/BSP, and good end-to-end performance
without requiring any special overlay topology. This prop-
erty enables incremental deployment of the proposed P2P
components on existing networks such as Gnutella.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work. In Section 3, we establish
optimality of capacity-proportional networks and in Section
4, we describe the CPMH framework and build a capacity-
proportional system using it. In Section 5, we provide sim-
ulation results and in Section 6 conclude the paper.

2 Related Work
Many random walk techniques [1], [8], [9], [14], [18]

have been proposed to reduce the overhead of flooding in
unstructured P2P systems like Gnutella [11]. Among the
approaches that explicitly take into account heterogeneous
capacity of end-users, Gia [4] is one prominent example of
an unstructured P2P network in which nodes seek neigh-
bors that match their own capacity in a process called dy-
namic topology adaptation, which involves replacing ex-
isting neighbors with more suitable options based on their
capacity and degree. The rate of adaptation of the nodes
is controlled by their satisfaction level, which indicates
whether their neighbors have enough capacity to handle the
arriving traffic.

Vishnumurthy et al. [20] discuss several build and search
walk strategies for heterogeneous networks. In these meth-
ods, nodes maintain their out-degree dout(i) linearly pro-
portional to their capacity Ci and then bias build walks
to achieve in-degree din(i) = dout(i). Kwong et al. [13]
propose a protocol for constructing heterogeneous P2P net-
works, where a node joining the network starts random
walks to preferably connect to nodes with high capacity per
neighbor. In this system, the stationary probability of build
walks is given by

πi =
Ci/di∑n

j=1 Cj/dj
,

where n is the number of nodes in the network. The tran-
sition probability of these walks is calculated using the
Metropolis-Hastings algorithm [12].

Additional prior work [7], [17] on P2P networks em-
ploys the Metropolis-Hastings algorithm, but it addresses
entirely different problems related to unbiased node/data
sampling. Among the existing literature, Gia [4] is the
only complete system that provides topology construction,
search algorithms, and replication strategies. Therefore,
during evaluation, we compare our system only with Gia.

3 Optimal Network
In this section, we define optimality of a P2P network

under random-walk traffic and derive the corresponding sta-
tionary distribution.

3.1 Basics and Assumptions
The P2P systems considered in this paper use random

walks for key overlay operations such as topology construc-
tion, search, and content replication. As a result, a major
part of the overlay traffic is due to random walks, whose
distribution across online users determines the volume of
messages that can be handled by a P2P system and thus its
throughput. We define a network to be throughput-optimal
if it achieves the maximum rate of completion of random
walks for a given average degree d of the system and node-
capacity distribution {C1, . . . , Cn}.

As before, the capacity Ci of a node i is the maximum
rate at which it can handle incoming messages, where queu-
ing at each node is assumed with infinite buffers. Observe
that the traffic distribution among nodes in the network can
be controlled by the stationary probability π of random
walks. If T is the total traffic rate in the network, then the
average rate of incoming messages at node i

Ti = πiT, (3)

where πi is the stationary probability for the walks to visit
node i. Intuitively, to achieve maximum completion of ran-
dom walks in the network, the traffic distribution among
nodes should be proportional to their capacity such that all
nodes are loaded to their maximum, but none are yet con-
gested. In this section, we provide a simple proof for this.

Consider a connected, undirected graph G with n nodes.
Walks are started from a node i at rate λi and continue for
k hops. Let Λ =

∑
λi be the total input rate in the net-

work and let M be the completion rate of these walks. At
a node i, if Ti > Ci then messages are added to the node’s
input queue, which is processed by the node at rate Ci.
By its definition, a throughput-optimal network achieves
M = Λ =

∑n
i=1 Ci/k, which is the absolute maximum

possible for a given n and capacity distribution {Ci} (i.e.,
all nodes are fully utilized and every 1/k-th message is
completing some random walk). Our first result links traffic
volume at each node with stationary distributions of random
walks.

Lemma 1 Assume that random walks are started at each
node with rate λi and proceed according to a positive ir-
reducible Markov chain with transition matrix P . If k is
larger than the mixing time of P , the following holds

Ti = πikΛ, (4)

where πi is the unique solution to π = πP .

Recalling that random walks on an undirected graph
form a positive irreducible Markov chain, the next result
follows.

Theorem 1 Assuming k is sufficiently large, the optimal
stationary distribution of random walks is

πi =
Ci∑n

j=1 Cj
. (5)
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We next use this result to quantify the capacity of P2P
systems in supporting search walks.

3.2 Search Saturation Point
To evaluate an overlay network in terms of its ability to

route traffic, one requires a metric that is independent of
the specific file popularity and replication strategy. For this
purpose, we propose a new metric, which we call Search
Saturation Point (SSP), to express the capacity of an overlay
topology in supporting random walks.

Consider an overlay graph G with n nodes of capacity
{C1, . . . , Cn} and average node degree d. In this network,
random walks of length k are started from randomly se-
lected nodes. As earlier in this section, let Λ be the rate at
which these walks are started and M(Λ) be the completion
rate of the walks. In the beginning, as Λ increases, M(Λ)
also increases until a certain point where the network is sat-
urated. Beyond this point, any increase in Λ results in addi-
tional message backlog at nodes and thus decreases M(Λ).
The curve M(Λ) has a unique global maximum, which we
define as the SSP of graph G

SSP = max
Λ

M(Λ). (6)

If a P2P system uses search walks, then the SSP signi-
fies the query completion rate that can be achieved in the
network. Unlike graph properties such as expansion (i.e.,
second eigenvalue λ2), which characterize G’s topological
properties, the SSP is a more direct measure of the overlay’s
effect on queries which are run over it. During evaluation,
we perform simulations to obtain the SSP of various P2P
networks.

3.3 Centralized Construction
While comparing different overlays using SSP, one

needs a standardized upper-bound on the achieved perfor-
mance. For this purpose, we next create an optimal network
(OPT), which has the maximum SSP for a given capacity
distribution {Ci}, and use it in all comparisons later in the
paper.

To obtain the optimal stationary distribution (5), we first
construct a network in which di = Ci and then run unbiased
random walks on this network, which gives

πi =
di∑n

j=1 dj
=

Ci∑n
j=1 Cj

. (7)

Consider Algorithm 1, which first generates node capac-
ities C from a given distribution {Ci}. For each node i,
the goal is to attempt selecting di = Ci neighbors from the
available neighbor slots AS. While choosing neighbors of
i, duplicate edges and self-loops are prevented by not con-
sidering i (Line 8) or its existing neighbors (Lines 6, 13) as
available for connectivity. Using this AS vector, a random
neighbor r is selected in Line 11 with probability

p(r) =
AS[r]∑n

j=1 AS[j]
,

Algorithm 1 Create Optimal topology
1: C ← capacities of n nodes.
2: for each node i do
3: di ← C[i] . Required degree
4: AS ← C . Available neighbor slots
5: for each neighbor j of node i do
6: AS[j] ← 0 . Avoid duplicate edges
7: end for
8: AS[i] ← 0 . Avoid self loops
9: tas =

∑n
j=1 AS[j] . Total available slots

10: while (di > 0 && tas > 0) do
11: r ← getRandomNode(AS) . Biased by AS
12: addEdge(i, r)
13: AS[r] ← 0 . Update available slots
14: tas ← tas− C[r]
15: C[r] ← C[r]− 1 . Update unsatisfied degree
16: C[i] ← C[i]− 1
17: di ← di − 1
18: end while
19: end for

Capacity Fraction
1 0.65

10 0.3

100 0.049

1000 0.001

Table 1. Capacity distribution of nodes.

which ensures that the generated graph is random and the
nodes requiring high-degree get sufficient neighbors. This
step is repeated until no more available slots are left or the
required degree di is met.

Graphs constructed using Algorithm 1 exhibit di ≈ Ci.
For generating graphs with exact degree distributions di =
Ci one can use randomized variations of the Havel-Hakimi
algorithm [10], [19]. But unlike these methods, Algorithm
1 is faster and simpler due to its relaxed constraints. This
algorithm can also produce graphs with a degree distribu-
tion close to the required distribution even when the exact
target degree-set {C1, . . . , Cn} is infeasible.

We next apply Algorithm 1 to construct an OPT P2P
network with n = 10, 000 nodes with the capacity dis-
tribution shown in Table 1, which was obtained by prior
measurements [15] of Gnutella. The target degree of nodes
in this setup is twice their capacity, i.e., di = 2Ci. Ob-
serve in Figure 1(a) that the expected degree E[di] of each
node indeed equals 2Ci and in Figure 1(b) that traffic vol-
ume achieved by unbiased random walks is, as expected,
capacity-proportional.

4 Distributed Capacity Proportionality

The previous section shows that (5) can be achieved us-
ing Algorithm 1; however, it assumes centralized construc-
tion and static node conditions (i.e., no churn). This sec-
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Figure 1. Capacity-proportionality in OPT.

tion provides a framework for implementing throughput-
optimality using distributed operation and under dynamic
node arrival/departure.

4.1 CPMH Framework
The stationary distribution π of random walks depends

on their transition probability matrix P and the overlay
graph G on which they are performed. Therefore, to achieve
a particular π, one can construct overlays with special prop-
erties, e.g., di = Ci, and then run unbiased random walks
on these networks. However, in P2P systems with churn,
maintaining these special overlays is not just challenging,
but sometimes simply impossible. As a result, it is desir-
able to design transition matrix P so as to achieve the tar-
get π without imposing any restrictions on topology G. In
this direction, we use the Metropolis-Hastings algorithm,
a Markov-chain sampling method [5], [12], to find P that
achieves the optimal π. We call this technique Capacity-
Proportional Metropolis-Hastings (CPMH) and describe it
next in more detail.

In CPMH, the next transition of a random walk from a
node i is found in two steps. Define N(i) to be the set of i’s
neighbors. First, we choose one neighbor among the users
in N(i) to which the walk should transition. The probability
q(i, j) to select j ∈ N(i) is given by

q(i, j) =

{
Cj/

∑
x∈N(i) Cx j ∈ N(i)

0 j /∈ N(i)
. (8)

Then, the random walk transitions to the above selected
node j with probability α(i, j) or stays at node i with prob-
ability 1 − α(i, j), where the acceptance probability α is
given by

α(i, j) =

{
min

(
1,

∑
x∈N(i) Cx∑
x∈N(j) Cx

)
j ∈ N(i)

0 j /∈ N(i)
. (9)

Note that in the Metropolis-Hastings algorithm, func-
tions q(.) and α(.) are given in some general form, while
the above two equations are customized to our particular
needs. While several choices of q(.) are possible, we found
that (8) performed better in terms of achieving the target
distribution π.

4.1.1 Self Transitions

Observe that in CPMH, self transitions at node i occur
when a selected jump i → j is rejected, which happens
with probability 1 − α(i, j). From (9), notice that the ac-
ceptance probability α(i, j) is low for transitions from a
high-capacity node i to a low-capacity node j. Therefore,
when a random walk hits a high-capacity node in its path,
it is likely to undergo multiple self-transitions and become
“stuck” there. In real networks, however, these self-loops
are just virtual hops and do not count toward network traffic.
Three intuitive observations follow from this: 1) the TTL
of CPMH walks is implicitly adapted based on the capac-
ity of nodes visited and is generally shorter when passing
through high-capacity nodes; 2) if the replication scheme
ensures that high-capacity nodes in the network share more
resources, then walks passing through these users may need
to visit fewer peers to get the required number of query hits;
and 3) random walks are much more likely to terminate at
high-capacity nodes, which ensures that search, replication,
and neighbor selection favors users with sufficient resources
and desired content.

4.2 Topology Construction

In this section, we describe the overlay topology of our
proposed system. In this network, a new node i joining the
system will start dout(i) build walks for selecting its out-
neighbors among existing peers. The desired out-degree
dout(i) of node i is given by

dout(i) = a + bb log10 Cic, (10)

where a and b are constants. During simulations, we use
a = 4 and b = 15 to achieve an average degree equal to that
of other networks evaluated in this paper. In (10), observe
that the out-degree of a node is not linearly proportional to
its capacity (as in prior approaches) and thus scales well
in networks with an extremely wide range of node capaci-
ties. We call this approach Capacity Scalable Out-Degree
(CSOD).

It should be noted that CSOD uses unbiased build walks;
however, CPMH walks can also be used for the construction
of overlays if the system can tolerate in-degree linearly pro-
portional to Ci. In certain cases, however, such high degree
may not be feasible in practice due to the overhead involved
in maintaining a large set of neighbors. Since we gener-
ally assume that the volume of build traffic is insignificant
compared to that of search traffic, the use of unbiased build
walks has little effect on capacity-proportionality of com-
bined traffic at each peer.

Figure 2(a) shows the average node degree in a 10, 000-
node CSOD network with the capacity distribution given
by Table 1. Observe in the figure that node degree scales
sublinearly (i.e., logarithmically) as capacity increases. At
the same time, Figure 2(b) shows that the average volume
of CPMH traffic (TTL = 1024 hops) at each node is in fact
capacity-proportional.
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Figure 2. CPMH walks on the CSOD topology.

4.2.1 CPMH Walk Convergence
In general, CPMH does not require any special un-

derlying topology (e.g., CSOD) for achieving capacity-
proportionality of search traffic. To illustrate this, we show
the convergence of CPMH walks to the optimal stationary
distribution π using two additional topologies – BA [2] and
Gnutella [11] – that do not consider node capacity during
construction of the overlay.

To measure convergence of random-walk distributions,
we use the difference metric from [24]. Assuming T (Ci) is
the average amount of traffic passing through all nodes of
capacity Ci, then the convergence error of CPMH walks is
given by

φ =
1
2

∑

i

∣∣∣∣
T (Ci)∑
i T (Ci)

− Ci∑
i Ci

∣∣∣∣. (11)

On the evaluated topologies, CPMH walks are started
at random nodes and at a constant rate of 50 new walks/s.
Convergence is evaluated by computing φ after 1000 sec-
onds of simulation time. The TTL of these walks is in-
creased until φ becomes less than or equal to 0.01, which
allows us to compute the smallest TTL that allows the em-
pirical distribution π to approximate the desired one with
sufficient accuracy.

Table 2 shows the minimum TTL required to achieve
convergence of CPMH walks on different topologies. Ob-
serve that due to its capacity-aware nature, CSOD achieves
dramatically faster convergence than the other two graphs.
While CPMH can indeed be applied incrementally over any
underlying overlay structure, convergence time of random
walks in such cases may be longer than in CSOD.

4.3 Search Methodology
In the proposed system, CPMH walks are used for prop-

agating search requests. Specifically, a node i looking for a
file, starts a search walk of TTL ts. When this walk passes
through a node containing the required file, a query-hit mes-
sage is sent back to i. Search walks continue until their
TTL reduces to 0 or the maximum number of query-hits,
specified by the query-initiator i, is reached. For a query to
succeed, it should result in at least one query-hit message.

Topology TTL
CSOD 50

BA 640

Gnutella 620

Table 2. Convergence TTL for CPMH walks.

As CPMH walks are used for query propagation, the search
load in the proposed system is capacity-proportional. To in-
dicate the topology and the type of search walks used, we
call the proposed system CSOD-CPMH.

4.4 Replication Strategy

In a P2P network, file replication involves storing repli-
cas of shared files in other nodes. Replication is used to im-
prove the query success rate and reduce the query latency
by making pointers to shared files available in the paths of
query walks. One-hop [4] and random-walk replication [8],
[16] are the two most common schemes used in unstruc-
tured P2P networks. To ensure a capacity-proportional dis-
tribution of replication load in the network, we propose to
use the random-walk replication scheme with CPMH walks
and call this strategy CPMH replication. In this scheme,
to achieve a replication factor r, every node starts a CPMH
walk with TTL kr. This walk first transitions for hf hops
and then starts replicating at every unique node visited until
the required replication factor r is achieved or TTL reduces
to 0. The value of hf depends on the mixing time of random
walks on the network.

Unlike 1-hop replication, which requires capacity-
proportional degree distribution to achieve the same effect
as our approach, CPMH-replication works with any under-
lying topology and maintains the desired replication dis-
tribution in dynamic networks under churn, while requir-
ing almost no additional overhead during construction of
the graph. In addition, CPMH-replication does not exhibit
bias against files shared by low-capacity nodes, which is a
major limitation of 1-hop replication as there is no well-
known correlation between file popularity and capacity of
the nodes sharing them. CPMH-replication overcomes this
problem by ensuring probabilistically equal visibility of
files shared by all nodes in the network, irrespective of their
capacity.

5 Evaluation

In P2P systems that use random walks for searching for
content in the network, user-perceived metrics (e.g., query
success rate) can be improved in two stages – 1) building an
overlay topology that supports high random-walk comple-
tion rates and 2) designing a suitable replication scheme that
ensures that shared files are present with high probability
in the paths of these random walks. Along these lines, we
follow a two-step evaluation process, where we first eval-
uate how well each P2P topology can support search re-
quests and then analyze end-to-end metrics to measure the
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Figure 3. SSP of OPT-unbiased.

performance of these networks for different file replication
schemes.

Throughout this section, we perform simulation-based
evaluation of the proposed CSOD-CPMH network and
compare it with Gia-biased, OPT-unbiased, and CSOD-
biased systems, where the naming convention consists of
{topology}-{search walk}. For example, the Gia-biased
system uses Gia overlay rules (i.e., dynamic topology adap-
tation [4]) and capacity-biased search walks whose transi-
tion probability is given by

p(i, j) =

{
Cj/

∑
x∈N(i) Cx j ∈ N(i)

0 o.w.
. (12)

The OPT-unbiased system uses the optimal topology
constructed using Algorithm 1, and unbiased walks for
searching. As this system achieves the optimal stationary
distribution π, it is used as an upper bound on the SSP while
comparing different P2P systems. Finally, CSOD-biased is
introduced to evaluate the need for CPMH search walks in
the proposed CSOD-CPMH system.

It should be noted that message flow-control is an addi-
tional mechanism for preventing backlog in the system. In
this paper, however, we are only focused on the pure proper-
ties of topology, search, and replication mechanisms, while
flow control is an orthogonal approach that can be used to
enhance all studied methods and will be considered in fu-
ture work.

5.1 Topology Evaluation

We start by calculating the Search Saturation Point
(SSP), as defined in Section 3.2, of different overlay topo-
logies. In these simulations, we use search walks with
ks = 1024 on networks with 10, 000 nodes and capacity
distribution in Table 1. To find the SSP of a network, we
perform a binary search by varying the query input rate Λ
and measuring the corresponding completion rate M(Λ).
For each Λ, the network is allowed to stabilize before cal-
culating the corresponding M(Λ). Here, a network is said
to be stable if for 3 successive 100-second intervals, the rate
of completion M is within 5% of the previous completion
rate. Figure 3(a) shows this stabilization process for a single
Λ in the OPT-unbiased system and Figure 3(b) plots the cor-

Name SSP
OPT-unbiased 33.05

CSOD-CPMH 27.75

Gia-biased 6.60

CSOD-biased 5.94

Table 3. SSP of several overlay networks.

responding curve M(Λ) whose globally unique maximum
is 33.05 walks/s, which is the SSP of this system.

Table 3 compares the SSP of the four evaluated overlays.
Observe that OPT-unbiased has the highest SSP because it
achieves capacity-proportional traffic with the highest accu-
racy. The proposed approach CSOD-CPMH has a slightly
lower SSP due to the finite TTL and distributed construc-
tion; however, its throughput is much higher than that of the
other two methods. Gia’s topology adaptation ensures that
high-capacity nodes have high degree, but it does not aim
to achieve perfect capacity-proportionality, which results in
reduced overall throughput in the system. CSOD-biased
also performs poorly because it uses capacity-biased search
walks, which again do not result in capacity-proportional
traffic. This shows that CSOD by itself is insufficient for ap-
proximating the ideal system OPT and that it must be paired
with CPMH random walks.

5.2 Replication Schemes

To evaluate CPMH-replication, we compared it with 1-
hop and no replication. The replication factor for 1-hop
replication is r = E[di] = 20 (i.e., the average degree). To
achieve this replication factor during CPMH replication, a
node starts a replication walk with initial forwarding length
hf = 50 and TTL kr = 200. To capture the replication
ability of a node, we limit the number of replicas at each
node i to its capacity Ci.

We next perform simulations to study how each of the
four combinations of topology/search mechanisms handle
replication. Each shared file j has popularity Pj , which is
the fraction of users that hold it. Variables {Pj} are drawn
from a Pareto distribution with shape parameter α = 3
and expected popularity E[Pj ] = 0.001. Queries for file j
are started with frequency proportional to Pj and continue
for 200 hops. Figure 4 shows the effect of replication on
query success rates in various P2P networks. Observe in
the figure that success rates improve from 20% to over 90%
from replication and that CPMH-replication is more effec-
tive than 1-hop in all cases except OPT-unbiased where the
two are identical due to the topological properties of the un-
derlying graph.

5.3 End-to-End Metrics: Static Network

We now apply these replication schemes to various static
networks (i.e., no churn) and compare them using three end-
to-end metrics – success rates, latency, and query hits.
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Figure 4. Effect of file replication on query success rate.
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Figure 5. Query success rate.

5.3.1 Query Success Rate

Recall that a query is said to be successful if it results in
at least one query-hit. Figure 5 shows success rates of dif-
ferent networks under three types of replication schemes.
Observe that OPT-unbiased, which has a centralized con-
struction, achieves the highest query success rate in all three
replication scenarios and acts as an upper bound for com-
parison. CSOD-CPMH achieves close-to-optimal query
success rates (i.e., over 99%) under CPMH-replication,
while performing slightly worse under 1-hop and no repli-
cation. Due to capacity-proportionality achieved by CSOD-
CPMH, it balances the load in the network and maintains a
constant success rate even at higher query rates, which can-
not be said about Gia-biased or CSOD-biased whose rates
plummet as Λ increases. In fact, CSOD-CPMH is 15−25%
more successful than Gia-biased for Λ = 200 queries/sec.

5.3.2 Query Latency

Query latency is the delay to obtain the first result of
a query. It shows the responsiveness of the system to the
user, with lower latency indicating better performance. In
these simulations, we measure the average latency of all
successful queries at a given input rate Λ. Figure 6 com-
pares the same four networks and three replication schemes
using query latency in seconds. Observe that CSOD-CPMH
not only has the lowest latency, but also that its delay to the
first result is over 10 times smaller than in Gia.

Interestingly, the OPT-unbiased network has a higher la-
tency than CSOD-CPMH under these conditions. This can
be explained by the fact that OPT-unbiased uses unbiased

query walks that visit low-capacity nodes earlier in their
path compared to CPMH walks. While OPT is designed
for maximizing query completion rates (i.e., SSP), it is not
guaranteed to have the minimum query latency.

5.3.3 Query Hits
Total number of query-hits returned for all queries

started in a network can also be used as an end-to-end met-
ric to compare different P2P systems. In these simulations,
there is no limit on the number of hits per query. Fig-
ure 7 shows that OPT-unbiased achieves the highest num-
ber of query-hits followed by CSOD-CPMH, which gets up
to twice the number of hits compared to Gia-biased. This
shows that more files can be discovered in a P2P system
if the distribution of replicated files and the query traffic is
capacity-proportional, especially at high search loads.

5.4 End-to-End Metrics: Dynamic Network
Node churn is a common characteristic of existing P2P

networks in which peers depart and rejoin at a later time.
In this section, we first describe our churn model and then
define a metric that quantifies the overhead incurred by P2P
overlays due to churn. We finally compare the various net-
works under churn, both in terms of their overhead and end-
to-end metrics used in the previous subsection.

5.4.1 Churn Model
Many measurement studies (e.g., [21]) have shown that

P2P users commonly exhibit heavy-tailed lifetimes. In our
simulations, we initially construct an overlay with 10, 000
nodes and then start churn in this network. During the churn
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Figure 6. Query latency.
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Figure 7. Query hits.

stage, new nodes with Pareto lifetimes with α = 3 arrive
as a Poisson process. To keep the expected node count in
the network constant, we match node arrival and departure
rates. Specifically, if E[L] is the mean user lifetime, then
the departure rate of a node is 1/E[L] and that of a system
with n nodes is µ = n/E[L]. By varying E[L], one can
achieve different arrival and departure rates in the network.

5.4.2 Build Saturation Point

Under churn, incoming nodes seek new neighbors, while
existing peers in the network constantly seek to replace their
departed neighbors. Therefore, increase in the churn rate µ
increases network traffic, which eventually results in back-
log and increased queue size at each node. Let E[Q] be the
average queue length across all live nodes in the network
during interval [0, t], where t is some constant. To quan-
tify the capacity of a P2P topology in handling churn, we
define a metric we call Build Saturation Point (BSP) as the
maximum µ for which E[Q] ≤ c for some constant c.

In simulations below, we use t = 1000 seconds and
backlog threshold c = 1 second. In Figure 9, observe
that the BSP of Gia and CSOD topologies differ by a factor
of 100, where higher BSP of CSOD indicates dramatically
lower build traffic and much higher rates of churn allowed
by the proposed system. This result can be explained by
the fact that Gia uses complex rules for satisfying neigh-
bor requests and constant topology adaptation, which un-
der churn often results in “unsatisfied” nodes starting many
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Figure 9. BSP of Gia and CSOD.

build walks to get a sufficient number of neighbors to main-
tain their connectivity. This in turn snow-balls into a large
volume of build traffic and prevents Gia from reaching its
ideal stable state.

5.4.3 End-to-end metrics
In our next simulation, we populate the system with

10, 000 nodes and then start churn. Waiting for 1, 000 sec-
onds for the system to reach its steady-state, we start issu-
ing queries at rate Λ and run the simulation for 500 addi-
tional seconds. Figure 8 compares the same four P2P net-
works under churn using our end-to-end query metrics. Ob-
serve that CSOD-CPMH beats Gia-biased in all three met-
rics, achieving 20% higher query success rates at half the
latency. CSOD-CPMH also produces significantly more
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Figure 8. Effect of Churn.

query-hits than Gia-biased, which shows CSOD-CPMH’s
exceptional ability to handle churn without performing con-
tinuous topology adaptation as in Gia.

6 Conclusion

We studied the question of designing P2P systems to
handle high loads of random-walk traffic. We proved op-
timality of capacity-proportional distributions of random
walks and provided a framework for achieving them without
requiring construction of a special overlay topology. Using
this framework, we built a candidate system CSOD-CPMH
and showed in simulations that it had higher SSP/BSP satu-
ration points and end-to-end performance than Gia.

Future work involves implementing CPMH and its de-
ployment in real networks.
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