
A Scalable Interest-oriented Peer-to-Peer Pub/Sub
Network

Kaoutar Elkhiyaoui∗ , Daishi Kato†, Kazuo Kunieda†, Keiji Yamada† and Pietro Michiardi∗
∗ Eurecom, 2229, route des Cretes, Sophia Antipolis, France
† C&C Innovation Research Laboratories, NEC corporation

8916-47, Takayama-Cho, Ikoma, Nara 630-0101, Japan

Abstract—Publish/subscribe represents a new paradigm for
distributed content delivery. It provides an alternative to
address-based communication due to its ability to decouple
communication between the source and the destination. How-
ever, it has remained a challenge to devise a scalable over-
lay supporting expressive content-filtering while satisfying the
desirable requirements large distributed systems should fulfill.
Our goal is to build an efficient P2P publish/subscribe network
where only interested nodes are involved in event dissemination,
and the amount of overhead generated by network discovery
and membership management is small. In order to do so,
we use a Bloom filter based mapping scheme to map IDs to
nodes’ interests, in addition to a new interest proximity metric
to forward events and to build nodes’ routing tables. As for
network discovery we propose a new approach we call “shared
interest approach”. Our scheme ensures an upper bound of
routing tables size that only depends on the size of the ID
digest. To evaluate the algorithms proposed in this work we
conducted simulations in both static and dynamic settings.

I. I NTRODUCTION

Publish/subscribe systems have received a lot of attention
in the last years as they allow efficient, distributed and
selective content delivery to a potentially large set of users. In
such systems, users register subscriptions representing their
interests in content while publishers inject events which are
delivered to the matching subscribers.

There are two common types of publish/subscribe sys-
tems:

• Topic-based, which rely on a set of predefined topics to
which subscribers register their interests: all messages
related to a particular topic are broadcast to all registered
users;

• Content-based, which allow subscribers to specify any
filter over the entire content. A data event specifies
values for a set of attributes associated with the event.
Subscribers thus, register their interests in form of filters
that are used by the system to deliver relevant events to
the subscribers.

In this paper we focus on content-based publish/subscribe
systems. Many applications require content-based pub-
lish/subscribe systems with fine grained expressiveness: for
example, real-time stock quotes notification, Internet games
and sensor network applications, to name a few. However, the
implementation of such systems has remained a challenging
issue.

Most content-based systems employ an overlay network of
event brokers, which support rich subscription languages (e.g.
SIENA [1], [2]). However, they commonly have two draw-
backs. Firstly, a broker should maintain large routing tables.
Indeed, every broker can be an intermediate relay on the paths
of an event dissemination tree and should match each incom-
ing event against every known subscription. Secondly, these
systems require static overlay networks where the brokers are
highly reliable and under administrative control, or assume
the entire broker set to be known beforehand [3]. Scalability
and reliability issues affecting content-based schemes have
been addressed in the literature using system design inspired
from the peer-to-peer (P2P) paradigm. Several implemen-
tations of content-based systems have been investigated in
the literature, for instance Meghdoot[4], Mirinae [5], or
HOMED [6]. Although these proposals address scalability
and reliability issues, they whether have low overhead but
involve not interested nodes in event dissemination [5], [6],
[4], or they engage only interested nodes but generate a large
amount of overhead (e.g. [7] where nodes use gossiping for
membership management and routing table construction).

In this paper, we propose a new peer-to-peer content-
based publish/subscribe scheme based on structured overlays.
Our system aims at involving only interested nodes in event
dissemination while ensuring a low overhead. In order to
do so, we map nodes’ interests to their identities (ID) using
Bloom filters, and we use a novel proximity metric. This
metric is used to cluster nodes according to their subscrip-
tions’ similarity. Therefore, events will be directly posted to
the proper cluster where they are going to be disseminated
efficiently. Indeed, our scheme ensures an upper bound of
routing table size that only depends on the size of a node’s
ID. Furthermore, application overhead is reduced thanks to
a new approach to network discovery.

The remainder of the paper is structured as follows: we
present related works in Section II. Section III describes the
design and the algorithms used by our system. We present
a simulation-based evaluation of our system in Section IV
and an analytical approach to evaluate application overhead
in Section V. We conclude in Section VI.

II. RELATED WORK

The first implementations of content-based
publish/subscribe systems used a network of event brokers

to implement distributed content based routing: SIENA[2]
and KYRA [8]. Although these approaches can support
rich subscription languages, they have two main limitations.
First of all, they require static networks which lead to
un-optimized network topology. In other words, the network
topology should cope with the changing nodes’ interests
in order to reduce network congestion and minimize
routing depth. This means that for an optimized design,
the network of the brokers should be dynamic. Secondly,
in these approaches a broker keeps a large amount of
routing information and generates a considerable amount
of overhead in order to perform routing and to minimize
notifications relaying. A broker needs to keep track of the
changing state of its clients as they issue new or cancel
subscriptions so that it reflects perfectly its clients interests.
Although summarization using Bloom filter and aggregation
using covering relation andmerger are currently used to
reduce notification overhead, a leaving node could generatea
lot of overhead since she has to forward all the subscriptions
she covers.

Other implementations rely on a peer-to-peer architec-
ture in order to achieve self organization and robustness.
In a peer-to-peer system all participants act as subscribers
and publishers but, in addition, they also route notification
among themselves. Some approaches implement content-
based routing on top of DHTs. Terpstra et al. [9] used
Chord [10] combined with filter-based routing algorithms
(merging and covering) in order to attenuate the overhead
generated by event broadcast. A variant based on CAN [11]
was implemented in [4]. The nodes build a multidimensional
DHT and maintain information about the coordinates of their
zones and store coordinate information of their neighboring
zones. The idea behind these schemes is to have a rendez-
vous node for each event. Rendez-vous nodes act as an
entry point to a distinct overlay network composed by the
group of interested nodes. Other approaches aim at clustering
nodes semantically using an interest proximity distance to
route the events introduced into the overlay and to build
routing tables. Some implementations intend to have a mesh-
like structure for event dissemination [5], [6] and use the
hamming distance combined with a hypercube overlay to
route and disseminate events published by different nodes.In
[7], nodes maintain semantic links to nodes with which they
share some interests. Moreover, [7] uses gossip algorithmsfor
membership management and to provide nodes with random
links that represent a partial view of the overlay to ensure
connectivity.

Our proposal is also based on the semantic approach.
We aim at clustering nodes based on their interests: in our
system events are forwarded using a new interest proximity
metric while application overhead is reduced through a new
mechanism for network discovery.

III. OVERLAY DESIGN AND EVENT DISSEMINATION

This section outlines our content-based publish/subscribe
system. Our goal is to organize nodes semantically in a man-

ner that only interested nodes in evente will forward it while
minimizing the overhead due to membership management
and network discovery.

In the remainder of this section we will make extensive
use of the following definitions:

Definition 1. Filters: a filter denotes the set of subscriptions
issued by a given subscriber.

Definition 2. Coverage: a filter F1 coversF2, iff N(F1) ⊂
N(F2) whereN(F) is the set of notifications that match the
filter F .

Definition 3. Mergers: merger operation consists of deriving
new filters from existing ones such that each new filter covers
the set of filters it was generated from.

We now describe the method to assign a “semantic” ID
to a node, which is inspired by [5]. In our system, we
partition the event spaceΩ into cells ci of a regular grid.
The process of partitioning the event space depends on
the publish/subscribe application. For instance, in a stock
quote application, the partitioning could correspond to a
price/company’s name partitioning.

Specifically, consider a setSn = {ci, ci∩S 6= ∅}. We use
k independent hash functionsh1, ...,hk, each with range 1 to
d. The bits at positionh1(ci), ..., hk(ci) in IDn are set to 1
for each cellci ∈ Sn. As an event has a single cellce, its ID
is set to 1 at positionsh1(ce) , ...,hk(ce). Figure 1 illustrates
the process of generating a semantic ID for a node.

Fig. 1. Process to compute the semantic identifier of a node.

Assigning IDs using this approach renders the semantic
clustering easier, as the similarity between two nodes can be
estimated using the distance between two IDs. Moreover, this
ID fulfills a very important property: if a nodeN is covered
by another nodeM , her IDM subsumes all 1s ofIDN .

Since node IDs obtained with this method might not
be unique, we could concatenate an additional vector to
distinguish nodes whose original ID collide. Instead, we
organize nodes with the same ID in a cluster that will be
transparent to other nodes that have a different ID. Hereafter,
we refer to this ID byIDsemantic.

Moreover, we assign to each node arandom IDuniformly
drawn from a large identifier space: this ID comes in addition
to herIDsemantic.

A. Building the routing tables

The main challenge in peer-to-peer publish/subscribe sys-
tems is how to build a routing table that would ensure no
false negatives and at the same time involve only interested
nodes in event dissemination. To do so, we use an interest
proximity metric which is the product of the inverse of an
affinity and the hamming distance normalized by the size of
the IDsemantic digestd. The distance between two nodesN

andM in the network graphG is:

d(N, M) =
dhamming(N, M)

d×A(N, M)
(1)

A(N, M) represents theaffinity between nodesN and M

and is computed according to the following expression:

A(N, M) =
|Sn ∩ Sm|

min(|Sn|, |Sm|)
(2)

where Sn refers to{ci, ci ∩ S 6= ∅} and ci is the ith cell
of the grid obtained by partitioning the event spaceS and
the subscriptions issued byN . Furthermore,|Sn| refers to
cardinality of the setSn.

The distance defined in Equation 1 allows a given node
N to connect to the nodes that cover her interests with the
smallest hamming distance. Formally, given two nodesN

andM , N connects toM when:

M ∈ G , M covers N and→

dhamming(N, M) = min{dhamming(N, K), K ∈ G}

We note that when two nodesN and M do not share any
interests, the distanced(N, M) will be infinite:

ifSn ∩ Sm = ∅ ⇒ d(N, M) =∞

In our system, nodes are organized in a containment
hierarchy based on covering relationship. Hence, every node
N in the network has three types of bidirectional links:
covering links, which correspond to links to nodes that cover
N , covered linkswhich refers to linksN keeps to nodes she
covers, andneighbors linksthat correspond to linksN keeps
to nodes with which she shares part of her interests. In the
following, we present how a node in the overlay picks her
neighboring nodes:

• Covering links: A nodeN connects first to the closest
node in term of hamming distance which covers her
interests, this latter is the parent ofN .

• Covered links: N goes through the nodes she knows in
increasing order of the random ID (looping when she
reaches the maximal sequence ID) and selects a node
only if she intersects N’s interests at some region not
yet covered by the already selected covered nodes. This
process is then repeated in decreasing order.

• Neighbors links: N keeps links to nodes with which
she shares a part of her interests. The process of picking
these links is identical to the covered links.

Algorithms 1 and 2 illustrate how covering and covered
links are created, where we introduce the following notation:

• nodesto add(N) denotes all nodes thatN has discov-
ered and used to build her routing table.

• N ⊃ M denotes thatN coversM interests.N ⊂ M

denotes thatN ’s interests are covered by M. Similarly
N + M means thatN does not coverM ’s interests.

• ⊔{N1, ..., Nk} denotes the mergers ofN1 ... Nk

Algorithm 1 Building the overlay -Covering Nodes-
for all N ∈ G do

for i ∈ nodes to add(N) do
if i ⊃ N then

if

dhamming(i, N) <

dhamming(covering node(N), N)

then
covering node(N)← i

end if
end if

end for
end for

Algorithm 2 Building the overlay -Covered Nodes-
for all node N∈ G do

Initialize coverednodes(N)
Sortnodesto add(N)in increasing order of random ID
for node i∈ nodesto add(N)do

if n ⊃ i ∧ ⊔(covered nodes(N)) + (N) then
if i ⊃ some ofN ’s interests not covered yet by
covered nodes(N) then

coverednodes(n).add(i)
end if

end if
end for
sortnodesto add(N)in decreasing order of random ID
for node i∈ nodesto add(N)do

if n ⊃ i ∧ ⊔(covered nodes(N)) + (N) then
if i ⊃ some ofN ’s interests not covered yet by
covered nodes(N) then

coverednodes(n).add(i)
end if

end if
end for

end for

Our overlay construction mechanism ensures a published
event to be delivered to all interested nodes with high
probability. Furthermore, the routing table size is upper-
bounded, as derived in the following proposition:

Proposition 1. The routing table size in the overlay has an
upper bound of2 × d + c, wherec is a constant parameter
referring to the number of covering links a nodeN can have
and d is the size of theIDsemantic digest.

Proof: If nodeN hasn bits set to 1 then she will have
d − n neighbors when Algorithm 1 loops overIDrandom

in increasing sequence order and anotherd − n neighbors
links when Algorithm 1 loops overIDrandom in decreasing
sequence order, at most.

Moreover,N will have n covered links when Algorithm
2 loops overIDrandom in increasing sequence order and an-
othern covered links when Algorithm 2 loops overIDrandom

in decreasing sequence order, at most.
It is also clear thatN hasc covering links.
Therefore,N will have 2d+c entries in her routing table,

at most.

B. Event dissemination

In this work, we cluster the overlay network semantically:
hence, every node connects to neighbors with shared inter-
ests. When an event reaches a matching nodeN , N relays the
message to her neighbors that match the event. Our system
differentiate between two types of messages:

• Multicast: When a nodeN receives aMulticast mes-
sage, it sends aMulticast message to her covered nodes
and neighbors nodes that match the event.

• Forward: Upon the receipt of aForward message, a
nodeN sends aForward message to her covering and
covered nodes, as well as to her neighbors nodes that
match the event.

Unlike the works in [5], [6] that rely on a technique to
make node IDs unique (as the uniqueness of the semantic
IDs cannot be guaranteed), we cluster nodes with the same
semantic ID and to organize them into a logical ring1. Each
ring will have theIDsemantic identifier of the member nodes.
A leader labelledprimary nodeis assigned to each ring: the
primary node acts as a relay point between the nodes on the
ring and the outer nodes. Therefore, the cluster is transparent
to the outer neighbors that will only point to the leader. When
the primary node receives an event which she is interested
in, she forwards the event on the ring. Leader election is
based on joining time: the first node joining a cluster is
automatically elected as a primary node. If a primary node
fails or leaves, the node that joined the cluster after the failing
or leaving leader is elected as the next clsuter leader.

C. Membership management

In current peer-to-peer publish/subscribe systems, network
connectivity and network discovery is achieved by space
splitting and gossip-based membership management. The
use of the former approach leads to engaging nodes in
disseminating events they are not interested in with high
probability. The latter approach allows nodes to maintain
random views for membership management but generates a
large amount of overhead due to the periodic exchange of
views between different nodes.

Our system relies on a new approach we calledshared
interest approach. In this approach, all nodes have a common

1Note that the logical ring is not a DHT.

subscription. This common subscription renders possible to
find a route between any two nodes in the network which al-
lows nodes joining the network to find their closest neighbors
semantically. This common subscription can just be presented
as a fixed bit that is set to 1 inIDsemantic of all nodes.

Join: When a nodeN joins the network, she contacts a
bootstrap node that is already a member of the system. In this
work we gloss over the details of how system bootstrap is
achieved: for example, a list of well-known bootstrap nodes
could be published on a separate communication channel.
The bootstrap node routes the join query using the distance
we defined earlier. The join mechanism takes several steps
until the routing table ofN converges. The number of these
steps depends on the number of bits that are set to 1 in the
IDsemantic. If we assume that subscriptions are uniformly
random, the number of these steps will be on averaged

2

whered is the size ofIDsemantic.
Once N receives the first join reply, she will build her

routing table based on the one she receives from the replying
node, and then she will send another join query but this time
she will advertise a new ID which represents the interests
that are not covered yet by her current neighbors links.

When a nodeM replies to the join query issued byN
she proceeds as following:

• if N coversM , M checks ifN is closer than some of
her covering links.

• if M covers N , M checks if N covers part of her
interests not covered yet by her covered links.

• if N shares just a part ofM ’s interests,M checks if
N covers part of her interests not covered yet by her
neighbors links.

In each of these cases,M updates her routing table.
If there are nodes in the network which have the same

IDsemantic as the joining nodeN , N will join the cluster
defined by herIDsemantic and copy the routing table from
one of the nodes that has the sameIDsemantic.

Leave: When a nodeN leaves the network or fails, the
nodes that point toN will update their routing table based
on the routing table ofN . These nodes will use merger and
covering relationships to update their routing table.

We implement a heart beat mechanism in order to detect
failed nodes. When a nodeN fails, the first node detecting
the failure notifies all the nodes pointing toN which we call
incoming links. These incoming links are piggybacked in the
heart beat messages.

IV. EVALUATION

We built a discrete event-based simulator, which does not
model packet loss and assumes unlimited bandwidth along
all the links.

Our work focuses on a stock quote application. The
events in a stock quote application are generated by various
stock exchanges where trading occurs and the subscribers are
clients interested in the price of the stocks they trade. Without
loss of generality, events in our simulation are mapped to
a 2-dimensional event space. In fact, there are well-known

methods to map a multidimensional space to one dimensional
space using a space filling curve [5].

In our simulations, an event corresponds to the value
of these attributes (stock-name, price) and a subscription
corresponds to (stock-name, low price, high price).

Metrics: In our evaluation, we will focus on the following
metrics:

• Delivery depth: this metric accounts for the number
of hops required by a node to receive events she is
interested in. We evaluate this metric as it mirrors the
delay that an event takes to be disseminated;

• Routing table size: this metric measures the size of
routing tables stored at each node. Small routing table
sizes are preferred as they indicate the ability of a
publish/subscribe network to scale with system size;

• False positives ratio:A false positive is defined as an
event received by a node not interested in it. As we
partition the event space and we use Bloom filters, this
metric allows us to evaluate the amount of overhead our
approach generates.

Parameter space:With the goal of collecting statistics on
the average delivery depth and on the routing table sizes, we
ran simulations while varying the network size. We assume
a uniform, random distribution of users’ subscriptions. Inall
the experiments we conducted theIDsemantic size is 1024
bits.

Furthermore, we evaluate the impact of the distribution of
users’ subscriptions on false positives and routing table sizes
by varying its skewness. We first simulate uniformly random
subscriptions. Then we focus on subscriptions distributed
according to a Pareto lawx−a: we vary the distribution
skewness by varying the coefficienta ∈ [1, 4]. For these
experiments we ran simulations in an overlay of 4000 nodes
in which every node publishes at most 10 events

In order to gain statistical confidence in our results, we
conducted 10 simulation runs for each experiment.

A. Static settings

We ran simulations while varying the network size. We
assume a uniformly random distribution of subscriptions.

Figure 2.(a) shows the average delivery depth we mea-
sured as the system scale increases: we observe that the av-
erage delivery depth growth can be roughly approximated to
a logarithmic growth. Figure 2.(b) illustrates that the average
routing table size stabilizes with system scale. Indeed, when
the size of the network is small, nodes are not able to build
complete routing tables whose mergers cover their interests.
Hence, when the size of the network grows the size of the
routing tables do so. When the size of the network becomes
large, the nodes are able to build routing tables that cover
their interests and thus, the size of the routing table will not
vary drastically.

Figure 3 shows that the percentage of false positives
decreases with subscriptions popularity. Figure 4 shows that
the process of building routing tables size depends on the
distribution of interests when the size of the network is

125 250 500 1000 2000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4
Number of hops

Number of nodes

N
um

be
r o

f h
op

s

(a) Average delivery depth in static settings.

125 250 500 1000 2000 4000
6

8

10

12

14

16

18

20

22

24
Routing table size

Number of nodes

R
ou

tin
g

ta
bl

e
si

ze

(b) Routing table size in static settings.

Fig. 2. Evaluation of our system in a static setting with uniformly
distributed subscriptions and with a size ofIDsemantic of 1024 bits

large and that decreases with subscriptions popularity. These
observations indicate that our system would prove effective
when considering realistic system sizes, which can be safely
assumed to be large.

B. Dynamic settings

We now study the impact on delivery depth and routing
table size of dynamic settings. We assume nodes join the
network at random point of time.

In this work we do not simulate node departures since
our main focus is on the scalability of the overlay network,
presented by the average delivery depth and the size of
routing table. Moreover, as the incoming links of a node
are piggybacked in the heartbeat messages as discussed in
Section III, the nodes in the network will be able to update
their routing table whenever one of their neighbors leaves or
fails.
As the Figure 5.(a) shows, the size of the routing tables is
larger than in the static setting: indeed, a nodeN does not
have global knowledge of the network when it builds her
routing table, hence the routing tables are not optimal. As the

random a=1 a=2 a=3 a=4
0

5

10

15

20

25

Routing table size
4000 nodes

Subscriptions distribution law
a ispareto shape

R
ou

tin
g

ta
bl

e
si

ze

Fig. 3. Routing table size as a function of the subscriptionslaw.

random a=1 a=2 a=3 a=4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Subscriptions distribution Law
a is pareto shape

Fa
ls

e
po

si
tiv

es
 ra

tio

False positives ratio
4000 nodes

Fig. 4. False positives ratio as a function of the subscriptions law.

number of hops is inversely proportional to the size of routing
tables, we notice that the delivery depth of events is slightly
smaller than the one observed in the static setting, yet the
logarithmic growth is preserved, as Figure 5.(b) illustrates.

These results indicate the ability of our system to cope
with system dynamics.

V. A NALYSIS

In this section, we are interested in comparing our ap-
proach to the work presented in [5]. We present a theoret-
ical approach to estimate the overhead generated by both
schemes. We limit the comparison to [5] as we think it is the
closest scheme to ours; both schemes rely on Bloom filters
for ID assignment but differ in overlay building and event
dissemination. As [5] and our system use both Bloom filters
we can safely assume they generate the same amount of false
positives that depend on the size of Bloom filter used and the
event space.

The work described in [5] might involve un-interested
nodes in forwarding events while nodes in our system send
multiple messages to correctly join the overlay. We thus

125 250 500 1000 2000 4000
10

15

20

25

30

35
Routing table size

Number of nodes

R
ou

tin
g

ta
bl

e
si

ze

(a) Routing table size in dynamic settings.

125 250 500 1000 2,000 4,000
0

0.5

1

1.5

2

2.5

3

3.5

Number of nodes

N
um

be
r o

f h
op

s

Number of hops

(b) Average delivery depth in dynamic settings.

Fig. 5. Evaluation of our system in a dynamic setting with uniformly
distributed subscriptions and with a size ofIDsemantic of 1024 bits

estimate the overhead generated by both approaches. We will
use the following notation:

• d refers to the size ofIDsemantic.
• n denotes the number of nodes in the overlay.
• λjoin andλpublish denote the join rate and the publica-

tion rate respectively.
• k denotes to the number of join messages sent at each

round.

Proposition 2. On average, our scheme generatesk × d
2
×

lnn× λjoin join messages.

Proof: We assume that the overlay graph is a random
graph. In this case the diameter of the graph will beO(ln n)
where n is the number of nodes. For a nodeN with m

bits in herIDsemantic digest set to 1 there will bem join
messages generated in the worse case. If the interests are
distributed uniformly at random we can safely assume that
the probability for a given bit in theIDsemantic digest to be
set to 1 is 1/2.

Therefore, on average we will havek× d
2
× lnn×λjoin.

Proposition 3. The overhead due to event dissemination in
[5] amounts to:

p× lnn× λpub

wherep is the probability that nodeN gets an event that she
is not interested in.

Proof: A node N will forward an evente that is not
interested in if she is in the path of this event. This happens
if her ID cover matches the event. This could occur if one
of the bits that are set to 0 in her ID digest are set to * in
the ID cover.

Let N be a node withm bits set to 1 andpm the
probability that nodeN gets an event that she is not interested
in, givenm bits of N ’s ID are set to 1. Then:

pm = 1− (1 −
1

d
)d−m (3)

where 1

d
is the probability that one of the d bits is set to *.

Furthermore, letqm be the probability thatm bits of N ’s
ID digest are set to 1. Then:

qm = Cm
d

1

d

m

(1−
1

d
)d−m (4)

eventA = N gets an event that it is not interested in

eventB = m bits of N’s ID are set to 1

Pr(eventA ∩ eventB) = pm × qm (5)

Let p denote the probability that nodeN gets an event
that she is not interested in. Then

p =

d∑

m=0

pm × qm (6)

As described in [5], the event dissemination happens in
lnn steps on average therefore:p× lnn×λpub approximates
the overhead generated by event dissemination.

We now illustrate the impact of system parameters on the
overhead generated by our system and the one described
in [5]. There two important parameters we focus on are
are the join rateλjoin and the publication rateλpub. If we
assume thatλpub is larger thanλjoin, our scheme performs
better. Such an assumption holds in practice if we rely on
a system model where nodes remain on-line for reasonably
long periods of time [3].

Figure 6.(a) shows the overhead as a function of the
number of nodes: whenk × d

2
× λjoin < p × λpub, our

scheme generates less overhead than [5]. Moreover, Figure
6.(b) shows the overhead as function ofλpub

λjoin
: we observe

that [5] performs better up to a threshold which corresponds
to λpub

λjoin
= k×d

2×p
after which our scheme performs better.

64 128 256 512 1024 2048 4096
4 * b

5 * b

6 * b

7 * b

8 * b

9 * b

10 * b

11 * b

12 * b

Number of nodes

O
ve

rh
ea

d
b

=
p

*
la

m
bd

a pu
b

Comparison beween our system and [5]
(p * lambda

pub
) / (k * lambda

join
 * d/2) = 0.7

Our system
k * lambda

join
 * d/2 * log(n)

Mirinae [5]
p * lambda

pub
 * log(n)

(a) Overhead as a function of number of nodes

0 a 2 * a 3 * a 4 * a 5 * a 6 * a 7 * a 8 * a 9 * a 10 * a
0

b

2 * b

3 * b

4 * b

5 * b

6 * b

7 * b

8 * b

9 * b

10 * b

lambda
pub

/lambda
join

a = k *d / 2*p

O
ve

rh
ea

d

b
=

k
*

d/
2

*
la

m
bd

a jo
in

 *
 lo

g(
n)

Mirinae
Our System

(b) Overhead as a function of
λpub

λjoin

Fig. 6. Comparison between our system and [5]

VI. CONCLUSION

In this paper, we presented a new peer-to-peer approach
for publish/subscribe systems. Our scheme can build a se-
mantic overlay based on nodes’ interests and disseminate
events using a new interest proximity metric. The novelty
of our approach is that it ensures only interested node to
be involved in event dissemination while the overhead is
low as we do not use any gossiping protocol. Furthermore,
simulation results indicate that our scheme is resilient to
system dynamics.

Although the simulations we conducted use arbitrary sub-
scription distributions and the parameter space we explored
is narrow, we were able to show that our system has a very
low false negative rate.

We are currently implementing our system and building a
testbed to verify if the properties we observed in this work
would carry over in a realistic system deployment.

REFERENCES

[1] A. Carzaniga,Architectures for an Event Notification Service Scalable
to Wide-area Networks. PhD thesis, Politecnico di Milano, December
1998.

[2] A.Carzaniga, D. Eosenblum, and A. L. Wolf, “Design and evaluation of
a wide-area event notification service,”ACM transactions on computer
systems, vol. 19, no. 3, pp. 332–383, 2001.

[3] R.Chand and P. Felber, “Semantic peer-to-peer overlaysfor pub-
lish/subscribe networks,” vol. 3648, pp. 1194–1204, 2005.

[4] A. Gupta, O. D.Shahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:
Content-based publish/subscribe over p2p networks,” inProceedings of
the 5th ACM/IFIP/USENIX International Conference on Middleware,
pp. 254–273, Springer-Verlag New York, Inc, 2004.

[5] Y. Choi, H. Lee, K. Park, and D. Park, “A new peer-to-peer over-
lay network for content-based publish/subscribe systems,” in Global
Telecommunications Conference, IEEE GLOBECOM, 2005.

[6] Y. Choi, K. Park, and D. Park, “A peer-to-peer overlay architecture
for large-scale content-based publish/subscribe systems,” in Third
International Workshop on Distributed Event-Based Systems, 2004.

[7] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van Steen, “Sub-2-
sub: Self-organizing content-based publish subscribe fordynamic large
scale collaborative networks,” 2006.

[8] F. Cao and J. P. Singh, “Efficient event routing in content-based
publish/subscribe service networks,” inTwenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies,
vol. 2, pp. 929–940, 2004.

[9] W. W.Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.Buchmann, “A
peer-to-peer approach to content-based publish/subscribe,” in Proceed-
ings of the 2nd International Workshop on Distributed Event-based
Systems, pp. 1–8, 2003.

[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup protocol for internet applica-
tions,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 17–
32, 2003.

[11] S.Ratnasamy, P.Francis, R.Karp, and S.Shenker, “A scalable content-
addressable network,” inProceedings of the 3rd International Work-
shop of NGC, vol. 2233, pp. 14–29, LNCS, Springer, 2003.

