A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization
Based Privacy Preservation for Data Mining Primitive Computation

Kamalika Das, Hillol Kargupta Kanishka Bhaduri
University of Maryland Baltimore County = MCT Inc. at NASA Ames Research Center
Baltimore, MD-21250 Moffett Field, CA-94040
{kdas1,hillo} @cs.umbc.edu Kanishka.Bhaduri-1@nasa.gov
Abstract which the communication overhead is bounded by a con-

stant or slowly growing polynomial [2] and are usually scal-
This paper proposes a scalable, local privacy-preserving able for large asynchronous networks. Some of the ex-
algorithm for distributed peer-to-peer (P2P) data aggrega isting methods for privacy preservation in multi-party en-
tion useful for many advanced data mining/analysis tasksvironments include the SMC protocols [12] which fail to
such as average/sum computation, decision tree induc-scale to large networks. More recently, Karguetal. [5]
tion, feature selection, and more. Unlike most multi-party present a game theoretic solution for dealing with the eollu
privacy-preserving data mining algorithms, this approach sion problems in large distributed environments. Since pri
works in an asynchronous manner through local interac- vacy is usually a social issue, different parties might have
tions and therefore, is highly scalable. It particularlyale different privacy requirements. Therefore, a heterogaseo
with the distributed computation of the sum of a set of privacy model gives parties the autonomy to optimize their
numbers stored at different peers in a P2P network in the privacy cost requirements. This paper takes a step toward
context of a P2P web mining application. The proposed developing such a model for privacy preserving data aggre-
optimization-based privacy-preserving technique for eom gation in a P2P network. The main contributions of this
puting the sum allows different peers to specify different work are two-fold: (1) multi-objective optimization-bakte
privacy requirements without having to adhere to a global heterogeneous privacy model, and (2) a local asynchronous
set of parameters for the chosen privacy model. Since dis-algorithm for distributed data aggregation in a large nekwo
tributed sum computation is a frequently used primitive, for client-side web mining [2, 7].
the proposed approach is likely to have significant impact  Data analysis in such heterogenous environments calls
on many data mining tasks such as multi-party privacy- for a genre of algorithms which perform the analysis in a
preserving clustering, frequent itemset mining, and stati  distributed fashion. One possibility is distributed data-m
tical aggregate computation. ing (DDM) which deals with the problem of data analy-
sis in environments with distributed data, computing nodes
and users. This area has seen considerable amount of re-
1 Introduction search during the last decade. For an introduction to the
area, interested readers are referred to [6]. P2P datagninin
) _ . i _ has recently emerged as an area of DDM research, specif-
Privacy-preserving data mining (PPDM) is a require- ooy focusing on algorithms which are asynchronous,
ment in Incréasing ngmber of multi-party appllt_:a'uons communication-efficient, and scalable. Da#&hal. [3]
where the dat.a_|s dlstnputgd among many nodes in a net—Ioresents an overview of this topic.
work. Web mining appllcat|o_ns in Peer-to-Peer (P2P) net- .o paper explores the problem of computing the sum
works [7][2] and cross-domain network threat management ;¢ 5 co|lection of numbers distributed in a P2P network in

systelzms f(r)lr anfalyzmg cyber-terrorism trehdse somel ex- .2 privacy-preserving manner. We develop a distributed av-
lamp e;_w_sre data privacy IS an |mp0rta|mt ',Sf]ue' N SUCNeraging technique that uses secure sum computation as a
arge distributed environments, PPDM algorithms are un- building block for scalable data aggregation useful for ynan

likely to work unless they can offer scalability and hetero-_ advanced data mining tasks. The algorithm is provably cor-

geneous privacy-models. Local algorithms are the ones iNcact. Unlike most secure multi-party computation proto-

*Also affiliated to AGNIK LLC, MD, USA cols, our algorithm does not assume s_emi—honest adversary
Iht t p: // www. agni k. cont Pur sui t Fl yer . pdf 1]. However, we prove that this algorithm, though not se-
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cure, is privacy preserving in a well-defined way. This pa- privacy-preserving data mining algorithms. It providega d
per also proposes a new multi-objective optimization-tlase centralized client-side solution for distributed privagme-
privacy model for a heterogenous distributed environment serving data aggregation.
where each node defines its own privacy requirement. Each  The web mining problem of advertisement ranking dis-
user can specify its own set of parameters for the chosercussed here is only a representative application scenadio a
privacy model. Under this proposed model, each peer getshe algorithm can be extended to solve a variety of data
to choose its own privacy and the algorithm guarantees thataggregation tasks. Since the Internet can be viewed as a
the privacy requirement of each peer is satisfied at the endconnected network of users, we pose this as a data analy-
of the protocol. We discuss ranking a set of web advertise-sis problem in a large P2P network. Every user (peer) in
ments as a client-side web mining application of the pro- the network has a predefined vector of fixed size where the
posed algorithm. 5t entry of the vector corresponds to the number of clicks
The rest of the paper is organized as follows. In the next for thejt* advertisement. In this environment, ranking the
section (Section 2) we present an illustrative applicafidn advertisements can be framed as a global sum computation
lowed by necessary background material in Section 3. Secproblem. As the network of users converge to the global
tion 4 first describes the optimization-based privacy model sum for every entry in the data vector, they can locally sort
and then presents the privacy preserving distributed sumthe vectors to get the correct global popularity based ranks
computation algorithm. We analyze the algorithm in Sec- of the advertisements. Since web browsing information can
tion 5 and demonstrate its empirical performance in Sectionbe privacy sensitive, it is important to do this sum compu-
6. Finally, we conclude the paper in Section 7. tation in a privacy-preserving manner. This becomes par-
ticularly challenging in heterogeneous environments such
as the Internet, since different users might have different
guirements of privacy. Therefore the problem that this pape
addresses is to compute the global sum of a data vector in a

Consider a designer shoe manufacturing company thalgistributed, asynchronous, and privacy-preserving manne
wants to study the market in South Asia before finaliz-

ing their advertising campaign for that geographical regio
They plan to use the web for aiding their market research.3 Background
They buy some web-advertisements designed for collecting

user preference-statistics at a popular web-portal ansl ink  |n this paper we propose a privacy-preserving distributed
in a deal with a web-analytics company to provide businesssum computation technique. Since scalability is an im-
intelligence by combining the click-stream data from the portant issue for any large distributed computing environ-
web-advertisements along with user background informa-ment asynchronous solutions are preferred. To the best of
tion collected through the IP address-based mapping of thethe authors’ knowledge, there does not exist any privacy-
geographical location and other related techniques. Amongpreserving asynchronous algorithm for sum computation.
other things, the business intelligence provider companyThe secure sum protocol [1] solves a similar problem but
counts the geographic distribution of clicks on different is highly synchronous. There exist several solutions to
parts of the advertisements from different IP addresses.asynchronous distributed averaging, but are not privacy-
This is how it works today. However, growing concerns for preserving such as [10]. The algorithm proposed here uses
online privacy protection is creating technology for patte  distributed averaging for privacy preserving sum computa-
ing the identity of the user. For example, use of anonymiz- tion in a locally synchronous fashion. Note that the average
ing networks such as TORmay prevent web-servers to  computation problem can be converted to a sum computa-

collect any meaningful information regarding any query in- tion problem by scaling up the data of each peer by the total
volving the geographical location of the users. In this case number of peers.

the IP address associated with a click may come from ran-
domly selected node in the TOR network. As a result the
web-analytics may give completely misleading information
How do we solve this problem—protect privacy of the user
but still be able to rip the benefit of the web mining technol- L&t 1, P, ..., Py be the set of peers connected to each
ogy? other by an underlying communication infrastructure. The
This paper offers a solution to this type of problems. It Network can be viewed as a graph = (V,£), where
offers a P2P framework where the user identity is protected ¥ = {P1, P,, ..., Py} denotes the set of vertices afidie-

and the web-mining task is accomplished using distributed "0tes the set of edges. LEf ., denote the set of neighbors
of P; at a distance ok from P, and|T'; ,,| denote the size of

2htt p: // wwwy. t or pr oj ect . or g/ this seti.e. the number of neighbors in theneighborhood.

2 lllustrative Application

3.1 Notations




Further, let®;« 4 denote the connectivity matrix or topol-
ogy matrix ofG representing the network where

1ifi,jeE&i#]

Gij = —|Dia|ifi,jeE&i=]
0 otherwise
Let Ay, As, ..., A, denote an ordered set of advertise-

ments common to all peers and ki, X, ..., X, denote
the real-valued data vectors of sizér each peer. For peer
P;, z;; denotes the number of clicks of advertisement
i.e. x;; is thejth element of the data vectdt;. Let X be
the random variable for the distribution of;. LetS; de-
note the global sum of thg-th data element;;. Finally,
let n} denote the size of the ring that pe@rforms for the
secure sum computation.

3.2 Distributed Averaging

In distributed averaging, the objective is to compute the

global average\ ; 5 Zle x;; where every peeP; has
a real number;; andd is the size of the network. In the

Yij = (Yi—1; + 245) MOdN = (R + Z;Zl Zqj) MOdN,

wherey;; is the perturbed version of local valug; to be
sent to the next peér+ 1. P, performs the same step and
sends the resuliy; to P;. Then peetP;, which knowsR,
can subtrack from y,; to obtain the actual sum. This sum
is finally broadcast to all other users.

The secure sum protocol is highly synchronous and is
therefore unlikely to scale for large networks. Combining
a newer variation of the distributed averaging (Section 4.5
with the secure sum protocol in a small neighborhood of
a peer, we propose an privacy-preserving sum computation
algorithm which (i) asymptotically converges to the cotrec
result and (2) being only locally synchronous, scales well
with the network size.

4 Privacy-Preserving Distributed Sum Com-
putation

In this section we present the model of privacy in a het-
erogenous computing environment and show how the global

naive solution, all the peers can exchange information to SUm can be computed while satisfying the different privacy
compute the correct sum. However, this solution is highly requirements of different users.

synchronous and does not scale well for large P2P networks.

Distributed approaches include the LTI approach proposed4.1 Privacy Protection as Optimization

by Scherber and Papadopoulos [10]. The basic idea of all

these approaches is to maintain the current estimatk; of

Privacy is a social concept. In a distributed data min-

(Zi(t)) and exchange messages with its immediate neighbordng environment different peers have different notions and

to updatez". As iterationt — oo, 2"’ — A,, i.e. the
system asymptotically converges to the correct average.

requirements of privacy. Due to sharing of private informa-
tion in the process of computation, privacy of the usersadat

The distributed averaging problem, as proposed in [10], is threatened. Every user in the network has a prior belief

is not privacy-preserving. Moreover it works only for sym-
metric topologies. Our multi-objective optimization fram

work requires asymmetric network topology. To handle

this, we present a modified protocol in Section 4.5.
3.3 Secure Sum Protocol

Secure sum computation [1] computgs = > | x;;
without disclosing the local value;; of any user. It has

(assumption) about thtreatto its data privacy. The threat
that a peer’s data is exposed to can be considered as a mea-
sure of the lack of privacy of its data. Again, the amount of
resources available to a peer varies across the network and
hence, the cost (of computation and communication) a peer
can bear to ensure its data privacy also varies. In this paper
we assume that each peer has the same privacy model, but
a different value of the parameters which satisfy its pivac
Therefore, every user in the network solves an optimization
problem locally based on its cost and threat threshicad,

been widely used in privacy-preserving distributed data how much threat the user is willing to bear and how much

m||n|ng as an rllmportant prlmfmve: The selzcure Sum proto- roqqrees it is willing to spend for ensuring that. Without
col requires the existence of a ring topology (or an over- |« of generality we consider a linear model for the objec-

lay ring network) connecting the usere. for peers2
throughd -1, Fi71 = {Pi—lapi+1}y Fl,l = {Pd,PQ} and
Ty1 = {Ps-1,P1}. Leteachr;; € {0,1,2,...m}. Itis
known that the sun$; = Z‘Z:l x;; (to be computed) takes
an integer value in the range, N — 1]. Assuming peers
do not collude P; generates a random numbeuniformly
distributed in the rang@, N — 1], which is independent of
its local valuex;; and transmit§ R+ ;) mod N to P». In
general, for = 2,...,d, peerP; executes:

tive function:
ffbj = wy; X threat — we; X cost

where thecost is the total cost of communication of peBr
within a neighborhood of size} andthreat is the privacy
breach thatP; assumes to be exposed to due to its partici-
pation in the data mining taskv;; andw,; are the weights
(importance) associated withreat andcost respectively.



These parameter values are local to each peer and are indgroposes a solution to privacy preservation in heterogenou
pendent of the values chosen by any other peer in the netenvironments and (2) it avoids creating a single large syn-
work. In order to measure threat, we need a way of measur-chronous ring for sum computation which makes the algo-
ing privacy in such heterogenous environments. One suchrithm scalable for large-scale distributed systems. The su

model is discussed in the next section. computation does not claim to be a secure protocol by get-
ting rid of the semi-honest assumption, but still is privacy
4.2 Bayes Optimal Privacy Model preserving. Before we describe the algorithm for doing the

distributed averaging based local secure sum, we introduce
The Bayes optimal model of privacy [8] uses prior and a measure of thtareatcomponent in the objective function

posterior distribution to quantify privacy breach. applicable to the secure sum protocol.
Let X be a random variable which denotes jhth data
value at each node. The value at ndéjés denoted byz; ;. 4.3 Threat Measure under Collusion

The prior probability distribution igrior = P(X = w;;)

Once the data mining process is executed, the participants The secure sum computation algorithm assumes semi-
can have some extra information. Given this, we define thehonest parties who do not collude. However, it has been
posterior probability distribution agosterior = P(X = sho_wn in the Ilterat_ure [5] thgt such an assumption is sub-
;| B), whereB models the extra information available to optimal and that rational parties would always try to codlud

the adversary at the end of computation. There are sever iIn the absence of a penalizing mechanism. In this paper
yat’ bu g Ave adapt the expression of threat developed in [5] to esti-
ways for quantifying the Bayes optimal privacy breach.

mate the threat component in our objective function. Each
peer forms a ring of size; (referred to as: in this sec-
tion for sake of simplicity) in our algorithm. Let us assume
. Jpostery ) that there aré (k > 2) nodes acting together secretly to
ity distribution of X. The p; — to — p, privacy breach achieveafraud(ulentpL)erose. Llétbegan %onest node V\yho
happens wherfyrior < p1 @nd fposterior > p2, WN€re s worried about its privacy. LeP,_; be the immediate pre-
0<pr<p2<l decessor of’; and P, be the immediate successorBf
We will only consider the case when— 1 > k£ > 2 and
the colluding nodes contain neith&_; nor P,11, or only
one of them, ther®; is disguised by, — & — 1 other nodes’
values. This can be represented as

Definition 1. [p1 — to — po-privacy breach[4]] Letfpior
and fposterior denote the prior and posterior probabil-

As noted in [8], any privacy definition which quantifies
the privacy breach in terms of principle 1 or 2, is known as
the Bayes optimal privacy model. However, this-to— ps
privacy model is applicable only when there is a single node
in the network. Below we extend this privacy framework for i (i
a distributed multi-party scenario. ; A D D

——— denoted by X g
Definition 2. [Multi-party p; —to— p2 privacy breach] For denoted by Y y denoted by W
thei-th peerp;, privacy breach occurs if;rm < p1; and . )
i > .. Multi-par o — rivacy breach  Wherel is a constant and known to all the colluding nodes.
posterior = P2 party py — to — pp privacy : The posterior probability of ;; is:
occurs when the constraints are violated for any peer in the .
network |ev2, f;rio’r S pli andf;)OSterior Z in’ Where fPosterio'r(mij) = ﬁ Z(_l)q (n e 1)
0 < p1i < p2; < 1. (m+ 1) =0 q

In the definition, the posterior probabilities of each peer (n k- 2r+_(r)(_ q)(nf * 12 e 1)
can either be dependent or independent of each other. If the Dm+1)+
peers share the extra informatias)( their posterior distri- wherez; = W —uz;; andz %j.{o’ Lo..,m(n —k —1)}.
butions are also related. Since in our framework each peef [mtr) andt = z; — | 747 ] (m + 1). Note that here
solves the optimization problem locally, the dependence

we assume;; < W, otherwisef,osterior(zi;) = 0. This
or the independence of the posterior probabilities does notIOOSterIOr probability can be used to measure the threatface
change the privacy requirements.

by a peer while participating in the secure sum computation
Since in a distributed environment, different peers have

protocaol, if there is collusion:
different privacy requirements, it is difficult to achieveet  ;1,cqt = Posterior — Prior = foosterion(2ij) — _r (1)
distributedp; — to — ps privacy using a single secure sum m+1
since thep; — to — po privacy is achieved in terms of the Note that using uniform distribution as the prior belief is a
number of participants of the ring (as shown in Section 4.3). reasonable assumption because it models the basic knowl-
So our proposed algorithm uses multiple local sum compu-edge of the adversaries. This assumption was also adopted
tation protocols with different ring sizes, one for each@od by [11] where a Bayes intruder model was proposed to as-
in the network. This approach addresses two issues: (1) itsess the security of additive noise and multiplicative bias



It can be observed from this threat measure that () as 4.4 Threat Measure for Multiple Rings
increases, the posterior probability increases, and (2) as
increases, the posterior probability decreases. Thisiénpl The above expression for threat only gives us a measure
that as the size of the network involved in the secure sumof the same when there is only one ring. In the presence of
computation increases, the threat decreases for a fixed sizenultiple rings, a colluder can infer more knowledge about
of the colluding group. Therefore, the privacy of the data of an honest node’s data. In this section, we derive an expres-
the users in the secure sum depends on the initiator’s choicgion for the threat in the presence of multiple rings. For
of the size of the groupn). The choice of: can vary be-  simplicity, we consider the situation of only two intersect
tween 1 and the total number of nodésAs the value of  ing rings. The case for multiple rings can be analogously
n increases, the threat to a user’s data due to collusion dederived.
creases, assuming a constant percentage of colluding nodes Let there ben nodes in ring 1 and nodes in ring 2. The
in the network. However, increasingincreases the over-  values at the nodes for the two rings be arranged as follows:
all communication cost and synchronization requirements

of the algorithm. Since the communication cost increases common Ring 1: not common
linearly with the size of the secure sum “ring”, the objeetiv
function that is optimized by every peer in the network can “%9 77" 7 Femld 77 Feg 7 Fayg 7 Tatly Tt T L
be written as: Ring 2:
common not common
max [wy; X threat(n) — we; X cost(n)]

n Li,j = "7 Te=1,j = Le,j — Tb,j =7 Lo41,5 — 7 Thyj

subject to the following constraintsicost < ¢; and For ring 1, let the colluding nodes be

threat < t; wherethreat(n) is given by Equation 1 and o1 TessTass Tas1. Similarly, for the other ring,
cost(n) = w. X g X n. g is the proportionality constant and ’ R ’ th ludi des. Denoti

¢; andt; are constants for every peer and denote the cost?c—1.d>Te.j> Tb,j> Tb+1,5 areé (€ coliuding nodes. Lenoting
threshold and privacy threshold that each peer is willing to the sum of the rings bg'; andC>, and subtracting we can
withstand. This is a multi-objective optimization problem write,

where the threat increases while the cost decreases with in-

g%aSﬂg?z. Below is a solution to this optimization prob- Taj+ - Fxg;— (p;4 - +an)=C1—Cy

r k-1 _k_2 _ 1 Moreover, since the sum of the colluding nodes is known to
h(n):Z(—l)q(n ' )(n-i-t +(r—q)(m+ ))
q=0

(r—q)(m+1)+t all colluders, we can write:
It can be observed tha{n) > 1. Now, using the constraint Tat2;+ -+ Tg; — (XTog2,; + - +xn,;) =C

threat < t; we get ) ) )
Without loss of generality, let the node whose value is at
Wt

CEGE x h(n) <t threat ber, ;. Thus, we can write,
o n> 14 kg 29w —logt) @)
log(m +1) Tgj =C+ | Tpyoj+ - +Tpj | — | Tat2y + -+ Tg-1,
Similarly, using the constraint on cost, we get z denoted by denoted by
Wei X gxn<ei=n< — (3) Now sinceC is a constant, it can be shown that,
Wei X g
P(Z=z) = PX-Y=x2)

Using Equations 2 and 3, we get the optimal valuenof

(denoted as in accordance with the rest of the paper): (g—a=2)m
log(wy;) — log(t;) . ¢ = Z P(X =y+2)PY =y)
T4k4+ =2 =% << 2 () ¥=0
IOQ(m + 1) Wei X g

Now, depending on its personal preference, each peer cat/sing the expressions fdP(X = z +y) andP(Y = y)
choose the number of nodes;§ for computing the sum in from the previous section, we can easily write the expres-
a privacy preserving fashion, even in the presence of collud sion forP(Z = z).

ing parties. Recall from Section 4.2, for the posterior dis-

tribution, the extra informations) in the secure sum proto- 4.5 Distributed Averaging for Asymmet-

col is only the sum of the colluding node®/(). Note that ric Topologies

this is independent of the total sum since, secure multipart

computation protocol guarantees that no extra information  In this section we present the iterative distributed algo-
is revealed by the sum other than its own inputs [1]. rithm for computing the global sum of a set of data vectors.



Our solution is inspired by the distributed averaging algo- ", by definition, is a symmetric matrix. In order f@v to
rithms proposed in [10]. satisfy the properties stated above, it can be generated usi

The distributed averaging technique that we are explor- the transformatiokV = U+ p®" where each entry a8,
ing asymptotically converges to the global average. It canis such that
easily be used to compute the sum if each peer multiplies its —p Z &
data by the total number of peers in the network. Therefore, Ui = { J=1 i
for the given scenario, each peBr contains a real num-
berd x x;; whered is the size of the entire network and In Section 5, we analyze the convergence and correctness of
the objective is to computd; = % Zle d x xz;; i.e. the this proposed distributed averaging algorithm. Based en th
sum of the numbers. There exist several technigues in theabove transformation, every peer updates its estimate; of
literature to estimate the network size. Examples include using an update rule that depends on the ring it forms. The
the capture-recapture method proposed by Metrad. [9]. following lemma (Lemma 4.1) states the update rule for our
Moreover at any time, the number of nodes in the network proposed distributed averaging problem (proof omitted due
can be estimated efficiently using heartbeat mechanisms oto shortage of space).
retransmissions. From now on we assume that each entry
x;; of the data has been multiplied by the total number of -€MMa (4 1. The update rule for any peer car: 2? writ-
peers so that distributed averaging gives the global sum and€n as z;; {1-2p |Fz 1| = p(ny —[Tixl) } % +

not the global average. 2quer 1 (t D4 Py 1|F11| éz 1

0 otherwise

Let z;; denote thej-th data of peerp;. zgt)

4. 11 Algorith
[zﬁ)zéj). Z((zﬂ denotes the estimate of the global sum 6 Overa gorithm

Aj =4 Zizl x;; by d peers at the-th iteration. The ini- In this section we present the overall algorithm. We have
tialization is 25,0) = [z122; . _.Idj]T_ The proposed al-  two different algorithms: namely, the local ring formation
gorithm works as follows: at any iteration, each pggr  algorithm (-Ring) which is executed only once, offline.
gets the estimate from all of its neighbors (ﬂ)%_l)’s for The second algorl_thm is th_e iterative local privacy preserv
i € Ti1 ) and then generates the estimate for rouice. N9 Sum computation algorithni.{PPSC).

zi(;)) based on those received estimates and its local data. ) ) ) _
This algorithm is asynchronous and local since each node#-6-1 Local Ring Formation Algorithm (L-Ring)

gets update from its neighbors only. The update rule usedr; jistributed averaging, peét updates its current state
is first order:z§-” = Wz§-t’”- Any choice ofW guarantees  pased on the information it gets from it neighbors. In
asymptotic convergence\l satisfies the following proper-  order to preserve privacy, does not get the raw data from
ties: (Y)W.1=W'.1=1, wherel denotes @ x 1 vectorof jts neighbors; rather a ring is formed amomgneighbors
all ones and (ii) the eigenvalues\df, A\; when arranged in and sum computation is performed in that ring. We call
descending order are such that= 1 and|A;| < 1. Setting  thjs ring thelocal ring since each ring is only formed in a

W =1 + p® satisfies these conditions; wherés a small  peer's neighborhood. This has the advantage that (1) the al-
number which determines the Stablllty of the SOlU-tlon and gonthm is 0n|y Synchronous ina peer’s local neighborhood
the convergence rate, ahdenotes the identity matrix. and (2) the communication is bounded due to local peer in-

From Section 4.3, it is clear that depending on the so- teractions.
lution to the optimization problem, each peer can have a L-Ring takes as input the predefined values of cost and
different value oz}, i.e. number of nodes it wants to com- threat thresholdi.e. ¢; andt;. When the algorithm starts,
municate with. This means that if peBy chooses peeP; each peer solves a local optimization problem based on lo-
to be part of its sum computation, it is not necessary thatcal constraints; andt; to choose a value of}, the size
P; would chooseP; to be part of its sum computation ring.  of the ring for sum computation. It then launche&sran-
This implies that even iP; is a neighbor of?;, P, need not ~ dom walks in order to seleet! nodes uniformly from the
be a neighbor oF; (in terms of adjacency matrix). Thisim- network to participate inP;’s ring. The random walk we
plies that the resulting topology matrix is asymmetric. &lot have used is the Metropolis-Hastings random walk which
that if we useW = | + p®, the resulting/V does not sat-  gives uniform samples even for skewed networks. We do
isfy the requirements stated above. Therefore, asymmetrimot present the details here, interested readers areaéferr
topology matrices cannot be directly used for generating th to [2] Whenever one random walk endg3t it first checks
update matrixV. Now, an asymmetric topology matrix can if n; < nj. If thisis true, it poses a potential privacy breach
be converted to a symmetric one as follows: = & + &7, for P HenceP may choose not to participate ip’s call
where®” is the transpose a@b. Since® is a square matrix, by sendlng aNAC message along with its?. Otherwise



P; sends arACK message td®;. If P; has received any
NAC message, it computesax(n}) and checks if it vi-
olates its cost constraint. If the constraint is violatéd,
chooses a different pey, by launching a different random
walk. Otherwise, it then sends out all of thexx(n}) in-
vitations again which satisfies the privacy constraintslliof a
the participants. The pseudocode is presented in Alg. 1.

Algorithm 1 L-Ring
Input of peer P;:
Threatt; and cost; that peerP; is willing to tolerate
Initialization:
Find the optimal value of; usingt; andc;.
If P; initializes a ring:
Contact the neighbors as dictated/igyby launchingn;
parallel random walks
When a random walk ends in nodepP;:
Fetch the value of; as sent byP;
IF (n] < nj)Send NAC,n}) to P; ELSE SendACK to P;
ENDIF
On receiving NAC, n; from P;:
IF replies received from everyone
IF n} violates cost constraint
Contact different neighbaP,
ELSE max = argmax;{nj}; Setn; = max
Send invitation/ (n; ) to P; with n; value
ENDIF
ENDIF

Once the rings are formed offline, the local sum compu-
tations start.

4.6.2 Local Privacy Preserving Sum Computation Al-
gorithm (L-PPSC)

In the local privacy preserving distributed sum computatio
algorithm (-PPSC), initially all peers in the network have
a data vector of sizg which represents the number of clicks
for each of thep advertisements under consideration. The
j-th entry of this vector corresponds to the number of clicks
of advertisement;. Below we discuss the algorithm with

the ring topology. In the traditional version, the initiato
sends its data masked by a random number while all oth-
ers in the ring add their numbers as is and pass the sum
on. Here, however, the initiator specifies in its message
the parameters of the update rule: the amount of scaling
that some of the peers might need to do to their data before
adding them to the received sum and passing them on. This
is essential to guarantee convergence of the algorithneto th
correct result, following Lemma 4.1.

These steps are executed by every peer in the system.
The algorithm is locally synchronous in that, during every
round of sum computation, the initiator has to wait for all
peers in its rings to complete their previous round. This is
essential since this algorithm is based on the working df firs
order LTI systems where the update in thth round uses
data from theg(t — 1)-st round. Algorithm 2 lists the steps
in a pseudo-code format.

Algorithm 2 Local Privacy Pres. Sum Comp. (L-PPSC)
Input of peer P;:

Convergence ratg, local dataz;, round, set ofn;-local
neighbors arranged in a ring éring; »~ }, random number,
and the max range of the suw
Initialization:

Initialize {ring; n~ }, p, x:; Setround — 1

Setj « first entry of {ring; »~}

{ringin~} — {ringin-}\j

Send(R + z;, {ringin=},round) to j
On receiving a messagedata, {ring}, rnd) from P;:

IF {ring} =0
Updatez{"""" using @ata — R) and Lemma 4.1;
round «— round + 1;

Setj « first entry of {ring; n~}
{ringin-} < {ringin-}\j
Send(zgmund), {ringi =} round) toj
Check if any node is waiting on this peer
Send data to all such nodes

ELSE IF round < rnd Wait

ELSE
Sety = (data + z7™*)modN; Setj «— first entry of
{ring}
{ring} < {ring} \ j; Send(y, ring, rnd) to P;

respect to only one sum computation (a scalar quantity). In  END

practice, the secure sum will be computed over a vector of

sizep, the number of advertisements. Assuming that each ) ]
peer has agreed on a ring in its local neighborhood, each USingL-PPSCalgorithm the peers can compute the sum

initiator peer starts a round of sum computation based on the®f the number of clicks for each advertisement in a privacy
secure sum computation. The message sent by the initiatoPreéserving (not secure) fashion. Once that is done, ranking
node for any sum computation contains: (1) the ID of the them by popularity becomes a sorting problem which each
initiator, (2) the data which needs to be added for the local P€€r can solve independently.
sum, (3) the size of the local ring that it has constructed for
the sum, and (4) which peer needs to multiply the data by 25  Algorithm Analysis
(according to Lemma 4.1).

This algorithm differs from traditional secure sum com- In this section we analyze the properties thRing and
putation protocol in the update rule and the enforcement of L-PPSC algorithms. Due to shortage of space we do not



present the proofs.
5.1 L-Ring Running Time

The running time of L-Ring algorithm is
O(maz(n;,n})), where n; is the optimal value for
nodeP; andn;‘- is the value required by node; whereP;
and P; belong to the same ring for the sum computation.
This can be easily proved by considering two cases: (1)
n; <njand (2)n; > nj. In either case we need to count

the maximum number of times a peer needs to contact other
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Lemma 5.1. For any P;, the py;-to-ps; privacy is satisfied
in the L-PPSC protocol.

Figure 1. The left figure demonstrates the
variation of §(1 — )" ™™ ~! vs. 6, n; and n.
The right figure shows the probability that
less than n} — 2 nodes are bad in a ring of
size n}.

Lemma 5.1 proves that the privacy is satisfied for every
node in the network. Hence, using Definition 2, this proto-
col is privacy-preserving for the entire network.

In the L-PPSC algorithm, it is assumed that each ring
has fewer tham(} — 2) bad nodes. If this condition is vi-
olated, then we know that privacy breach will surely occur.
Next we derive an expression for the probability of this hap-

pening and show that it is very low. correctness proof df-PPSC can be derived based on two

observations analogous to [10]: (#y.1=W”.1=1 and
(2) the eigenvalues oV, A\, when arranged in descending
order are such that; = 1 and|\;| < 1. We do not prove
these here, but leave it for an extended version.

The above expression shows that the probability of se-  Following similar arguments in [10], we can show that
lecting less tham; — 2 bad nodes increases with increase the error (between the true average and the estimate at each

in the (1) probability of a good nodg and (2) ring sizei;.  peer) tends to zero exponentially fast as the number of iter-
Figure 1 (left) shows how the probability varies as a func- ations tend to infinity.

tion of # andn}. As shown, the probability increases with

increasing. This is intuitive, since with increasirng there .

is a higher chance that each contacted node is good. Alsg?-4 Locality

for a fixed#, asn}, the ring size increases and the proba-

bility of contacting less tham; — 2 bad nodes goes to 1 There are several definitions of locality proposed in the
faster. literature. The locality concept proposed by Basl. [2]

Now consider another scenario in which there is the pos-is characterized by two quantities — (&)— which is the
sibility of a privacy breach. Consider two intersectingg$n  number of neighbors a peer contacts in order to find answer
which contains only one honest node. Now the probability to a query and (2 — which is the total size of the response
of this occurring is given by(1—6)™ =" ~*, whereny and  which a peer receives as the answer to all the queries exe-
n; are the sizes of the two rings. Figure 1 (right) demon- cuted throughout the lifetime of the algorithm.
strates the variation of this expression wittn; andn;. As In case oL-PPSC, the choice o is guided by the opti-
seen in the figure, the probability is very low and decreasesmg) solution of the objective function defined earlier. Ie th
with increasing size of the ring. Also, for a fixed ring size, \yorst case, a peer may choaséo be equal to the size of
asg increases, the probability decreases. the entire network. Therefore, = O(d) in the worst case.

It can be shown that < % [Iog(zfﬁzzz) + n;‘},

wherez{!), is the maximum of data values at any peerin a
L-PPSC protocol is based on the distributed averaging ring at round:t ande is the error between the true sumy)
protocol proposed by Scherber and Papadopoulos [10]. Theand the node estimates.

Lemma 5.2. Let# be the probability of a node being good.
Then the probability that in a ring of size;, there are at
most @ — 2) bad nodes is given by — (1 — )" ~1.

5.3 Correctness and Convergence



6 Experimental Results 2522

To validate the performance of the propode®#PSC
algorithm, we have conducted experiments on a simulated
network of peers. The topology is generated using BRITE
We have used the Barabasi Albert (BA) model in BRITE
since it is often considered a reasonable model for the In-
ternet. In all our experiments, we have used the following
default values of the system and algorithm parameters: size
of the network {) = 1000, the maximum range of the sum
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Time
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for the secure computatioN() = x; x d andp = max; ﬁ @0-8
;;o.e
6.1 Experiments on Synthetic Dataset ] kw
204
In this section we first discuss about the dataset and then o JWWM WWWM WWWM JDJDWWWM JDJ
describe the convergence and scalability results. % W xR o M

As already noted, each peer agrees on a predefined set of
advertisements. We assume that there are 5 advertisements Figure 2. Convergence to global sum and
A, B, C, D and E with arbitrary counts. The goal is to find communication cost per peer.
the sum of all the clicks on advertisements over all the peers
A data set was generated consisting of tuples from different
random distributions. Each advertisementis generateal fro x 10’

a fixed uniform distribution (with a fixed range). Thus, there
are as many different distributions as the number of adver-
tisements. This centralized data set was then split among a
fixed number of neighbors such that each peer has a frac-
tion of the count of all the advertisements (0 if none exists)
Note that this requires a separate privacy-preserving $um a be

gorithm to be invoked for each advertisement/category. For 0 %00 umber of peers 2000
the rest of this section we will present our results with re-
spect to one sum computation only.

As shown in Figure 2 (top), the algorithm converges
to the correct sum with respect to a centralized algorithm,
where a centralized algorithm is one which has access to
all the data of all the peers. In this figure we have plotted
the estimate of all the peers at each time instareethe
z§t) values for eacht. To start with, each peer is assigned 100 500
a data value which corresponds to the number of clicks of
a particular advertisement. Hence, initially the estincfte
each peer is close to its local data. As time progresses, the
peers slowly converge to the correct sum. Figure 2 (bottom)
demonstrates the number of messages per peer.

In Figure 3 (top), we show the correctness result of the
L-PPSC algorithm (in triangle) when the number of peers
vary from 100 to 2000. Also shown in the figure are there- 6.2 Results on Real Dataset
sults computed by a centralized algorithm on the same data
(using the circles). The graph shows that our algorithm con-
verges to the correct result for varying sizes of the network
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Figure 3. Scalability of the algorithm as the
number of peers is increased: quality (top)
and cost (bottom).

Finally in this section we describe the results of the ex-
, e , _ 2" periments with a real data set. Volunteers at UMBC were
The cost of th_e a'go”thm with increasing network size is asked to search for the following five categories in the pop-
demonstrated in Figure 3 (bottqm). It can be noted that theular search engines: (1) digital camera, (2) auto insurance
number qf messages per peer is almost a constant. Hencetg) cars, (3) laptop, and (4) gps systems. They were also
our algorithm is highly scalable. asked to store the web urls which they found as the clos-
Shttp: // ww. cs. bu. edu/ brite/ est match for each of these categories. In the experimental
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Figure 4. Results on the real advertisement
data set: relative orderings (top) and mes-
sages exchanged (bottom).

setup, we list all these links in a single file (for all cate-
gories) and for each link, count the number of times it has

been reported by the volunteer. In order to simulate the P2P

setup, we then divide this data file randomly among 100

peers, such that each peer contains only fraction of the data

— either links or count for each link. If a peer does not have
a link, it may add a value of zero in order to participate in
theL-PPSC protocaol. In total there were 1000 links. Once
the rings were formed using tHeRing protocol, we ran
1000 sum computations in parallel. Figure 4 shows the re-
sults of theL-PPSC protocol on this data set. Theaxis

in the quality figure (top) refers to the 1000 links grouped
per category. Thg-axis shows the total count per link for
theL-PPSC protocol (circles). Also shown in the figure are
the true counts per link (diamonds) which we call the cen-
tralized execution scenario. As easily verified, the counts
of the links in the distributed experiments is very close to
those found in the centralized situation. Similarly, thetco

figure (bottom) shows the number of messages exchanged

per peer per unit of time which varies between 0.5and 1. A
value ofz at a particular time instance means that arfly
of all the peers send message at that time instance.

7 Conclusion

In this paper we have presented a local privacy-
preserving peer-to-peer data aggregation algorithm fer do
ing data mining in a large P2P setting. Due to the constant
communication complexity and locally synchronous nature
of the algorithm, it is highly scalable. We have framed
privacy and cost as a multi-objective optimization local to

each peer and shown that our proposed algorithm is privacy-
preserving according to this definition. To the best of the
authors’ knowledge, this is one of the first solutions which
blends in the concept of local asynchronous distributed av-
eraging with secure sum protocol to develop a scalable pri-
vacy preserving sum computation algorithm tailored to ac-
commodate every participant’s privacy and cost conssaint
This algorithm is, therefore, applicable for large scale he
erogeneous distributed systems such as the Internet and has
various applications that require privacy preserving data
mining.
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