
A Local Distributed Peer-to-Peer Algorithm Using Multi-Party Optimization
Based Privacy Preservation for Data Mining Primitive Computation

Kamalika Das, Hillol Kargupta∗

University of Maryland Baltimore County
Baltimore, MD-21250

{kdas1,hillol}@cs.umbc.edu

Kanishka Bhaduri
MCT Inc. at NASA Ames Research Center

Moffett Field, CA-94040
Kanishka.Bhaduri-1@nasa.gov

Abstract

This paper proposes a scalable, local privacy-preserving
algorithm for distributed peer-to-peer (P2P) data aggrega-
tion useful for many advanced data mining/analysis tasks
such as average/sum computation, decision tree induc-
tion, feature selection, and more. Unlike most multi-party
privacy-preserving data mining algorithms, this approach
works in an asynchronous manner through local interac-
tions and therefore, is highly scalable. It particularly deals
with the distributed computation of the sum of a set of
numbers stored at different peers in a P2P network in the
context of a P2P web mining application. The proposed
optimization-based privacy-preserving technique for com-
puting the sum allows different peers to specify different
privacy requirements without having to adhere to a global
set of parameters for the chosen privacy model. Since dis-
tributed sum computation is a frequently used primitive,
the proposed approach is likely to have significant impact
on many data mining tasks such as multi-party privacy-
preserving clustering, frequent itemset mining, and statis-
tical aggregate computation.

1 Introduction

Privacy-preserving data mining (PPDM) is a require-
ment in increasing number of multi-party applications
where the data is distributed among many nodes in a net-
work. Web mining applications in Peer-to-Peer (P2P) net-
works [7][2] and cross-domain network threat management
systems for analyzing cyber-terrorism trends1 are some ex-
amples where data privacy is an important issue. In such
large distributed environments, PPDM algorithms are un-
likely to work unless they can offer scalability and hetero-
geneous privacy-models. Local algorithms are the ones in

∗Also affiliated to AGNIK LLC, MD, USA
1http://www.agnik.com/PursuitFlyer.pdf

which the communication overhead is bounded by a con-
stant or slowly growing polynomial [2] and are usually scal-
able for large asynchronous networks. Some of the ex-
isting methods for privacy preservation in multi-party en-
vironments include the SMC protocols [12] which fail to
scale to large networks. More recently, Karguptaet al. [5]
present a game theoretic solution for dealing with the collu-
sion problems in large distributed environments. Since pri-
vacy is usually a social issue, different parties might have
different privacy requirements. Therefore, a heterogeneous
privacy model gives parties the autonomy to optimize their
privacy cost requirements. This paper takes a step toward
developing such a model for privacy preserving data aggre-
gation in a P2P network. The main contributions of this
work are two-fold: (1) multi-objective optimization-based
heterogeneous privacy model, and (2) a local asynchronous
algorithm for distributed data aggregation in a large network
for client-side web mining [2, 7].

Data analysis in such heterogenous environments calls
for a genre of algorithms which perform the analysis in a
distributed fashion. One possibility is distributed data min-
ing (DDM) which deals with the problem of data analy-
sis in environments with distributed data, computing nodes,
and users. This area has seen considerable amount of re-
search during the last decade. For an introduction to the
area, interested readers are referred to [6]. P2P data mining
has recently emerged as an area of DDM research, specif-
ically focusing on algorithms which are asynchronous,
communication-efficient, and scalable. Dattaet al. [3]
presents an overview of this topic.

This paper explores the problem of computing the sum
of a collection of numbers distributed in a P2P network in
a privacy-preserving manner. We develop a distributed av-
eraging technique that uses secure sum computation as a
building block for scalable data aggregation useful for many
advanced data mining tasks. The algorithm is provably cor-
rect. Unlike most secure multi-party computation proto-
cols, our algorithm does not assume semi-honest adversary
[1]. However, we prove that this algorithm, though not se-

cure, is privacy preserving in a well-defined way. This pa-
per also proposes a new multi-objective optimization-based
privacy model for a heterogenous distributed environment
where each node defines its own privacy requirement. Each
user can specify its own set of parameters for the chosen
privacy model. Under this proposed model, each peer gets
to choose its own privacy and the algorithm guarantees that
the privacy requirement of each peer is satisfied at the end
of the protocol. We discuss ranking a set of web advertise-
ments as a client-side web mining application of the pro-
posed algorithm.

The rest of the paper is organized as follows. In the next
section (Section 2) we present an illustrative applicationfol-
lowed by necessary background material in Section 3. Sec-
tion 4 first describes the optimization-based privacy model
and then presents the privacy preserving distributed sum
computation algorithm. We analyze the algorithm in Sec-
tion 5 and demonstrate its empirical performance in Section
6. Finally, we conclude the paper in Section 7.

2 Illustrative Application

Consider a designer shoe manufacturing company that
wants to study the market in South Asia before finaliz-
ing their advertising campaign for that geographical region.
They plan to use the web for aiding their market research.
They buy some web-advertisements designed for collecting
user preference-statistics at a popular web-portal and inks
in a deal with a web-analytics company to provide business
intelligence by combining the click-stream data from the
web-advertisements along with user background informa-
tion collected through the IP address-based mapping of the
geographical location and other related techniques. Among
other things, the business intelligence provider company
counts the geographic distribution of clicks on different
parts of the advertisements from different IP addresses.
This is how it works today. However, growing concerns for
online privacy protection is creating technology for protect-
ing the identity of the user. For example, use of anonymiz-
ing networks such as TOR2 may prevent web-servers to
collect any meaningful information regarding any query in-
volving the geographical location of the users. In this case,
the IP address associated with a click may come from ran-
domly selected node in the TOR network. As a result the
web-analytics may give completely misleading information.
How do we solve this problem—protect privacy of the user
but still be able to rip the benefit of the web mining technol-
ogy?

This paper offers a solution to this type of problems. It
offers a P2P framework where the user identity is protected
and the web-mining task is accomplished using distributed

2http://www.torproject.org/

privacy-preservingdata mining algorithms. It provides a de-
centralized client-side solution for distributed privacypre-
serving data aggregation.

The web mining problem of advertisement ranking dis-
cussed here is only a representative application scenario and
the algorithm can be extended to solve a variety of data
aggregation tasks. Since the Internet can be viewed as a
connected network of users, we pose this as a data analy-
sis problem in a large P2P network. Every user (peer) in
the network has a predefined vector of fixed size where the
jth entry of the vector corresponds to the number of clicks
for thejth advertisement. In this environment, ranking the
advertisements can be framed as a global sum computation
problem. As the network of users converge to the global
sum for every entry in the data vector, they can locally sort
the vectors to get the correct global popularity based ranks
of the advertisements. Since web browsing information can
be privacy sensitive, it is important to do this sum compu-
tation in a privacy-preserving manner. This becomes par-
ticularly challenging in heterogeneous environments such
as the Internet, since different users might have differentre-
quirements of privacy. Therefore the problem that this paper
addresses is to compute the global sum of a data vector in a
distributed, asynchronous, and privacy-preserving manner.

3 Background

In this paper we propose a privacy-preserving distributed
sum computation technique. Since scalability is an im-
portant issue for any large distributed computing environ-
ment asynchronous solutions are preferred. To the best of
the authors’ knowledge, there does not exist any privacy-
preserving asynchronous algorithm for sum computation.
The secure sum protocol [1] solves a similar problem but
is highly synchronous. There exist several solutions to
asynchronous distributed averaging, but are not privacy-
preserving such as [10]. The algorithm proposed here uses
distributed averaging for privacy preserving sum computa-
tion in a locally synchronous fashion. Note that the average
computation problem can be converted to a sum computa-
tion problem by scaling up the data of each peer by the total
number of peers.

3.1 Notations

Let P1, P2, . . . , Pd be the set of peers connected to each
other by an underlying communication infrastructure. The
network can be viewed as a graphG = (V , E), where
V = {P1, P2, . . . , Pd} denotes the set of vertices andE de-
notes the set of edges. LetΓi,α denote the set of neighbors
of Pi at a distance ofα from Pi and|Γi,α| denote the size of
this seti.e. the number of neighbors in theα-neighborhood.

Further, letΦd×d denote the connectivity matrix or topol-
ogy matrix ofG representing the network where

φij =







1 if i, j ∈ E & i 6= j

− |Γi,1| if i, j ∈ E & i = j

0 otherwise

Let A1,A2, . . . ,Ap denote an ordered set of advertise-
ments common to all peers and letX1, X2, . . . , Xp denote
the real-valued data vectors of sizep for each peer. For peer
Pi, xij denotes the number of clicks of advertisementAj ,
i.e. xij is thejth element of the data vectorXi. Let X be
the random variable for the distribution ofxij . Let Sj de-
note the global sum of thej-th data elementxij . Finally,
let n∗

i denote the size of the ring that peerPi forms for the
secure sum computation.

3.2 Distributed Averaging

In distributed averaging, the objective is to compute the
global average∆j = 1

d

∑d

i=1 xij where every peerPi has
a real numberxij andd is the size of the network. In the
naive solution, all the peers can exchange information to
compute the correct sum. However, this solution is highly
synchronous and does not scale well for large P2P networks.
Distributed approaches include the LTI approach proposed
by Scherber and Papadopoulos [10]. The basic idea of all
these approaches is to maintain the current estimate of∆j

(z(t)
i) and exchange messages with its immediate neighbors

to updatez(t)
i . As iterationt → ∞, z

(t)
i → ∆j , i.e. the

system asymptotically converges to the correct average.
The distributed averaging problem, as proposed in [10],

is not privacy-preserving. Moreover it works only for sym-
metric topologies. Our multi-objective optimization frame-
work requires asymmetric network topology. To handle
this, we present a modified protocol in Section 4.5.

3.3 Secure Sum Protocol

Secure sum computation [1] computesSj =
∑n

i=1 xij

without disclosing the local valuexij of any user. It has
been widely used in privacy-preserving distributed data
mining as an important primitive. The secure sum proto-
col requires the existence of a ring topology (or an over-
lay ring network) connecting the usersi.e. for peers2
throughd − 1, Γi,1 = {Pi−1, Pi+1}, Γ1,1 = {Pd, P2} and
Γd,1 = {Pd−1, P1}. Let eachxij ∈ {0, 1, 2, . . .m}. It is
known that the sumSj =

∑d

i=1 xij (to be computed) takes
an integer value in the range[0, N − 1]. Assuming peers
do not collude,P1 generates a random numberR uniformly
distributed in the range[0, N − 1], which is independent of
its local valuex1j and transmits(R+x1j) modN to P2. In
general, fori = 2, . . . , d, peerPi executes:

yij = (yi−1j + xij) modN = (R +
∑i

q=1 xqj) modN,

whereyij is the perturbed version of local valuexij to be
sent to the next peeri + 1. Pd performs the same step and
sends the resultydj to P1. Then peerP1, which knowsR,
can subtractR from ydj to obtain the actual sum. This sum
is finally broadcast to all other users.

The secure sum protocol is highly synchronous and is
therefore unlikely to scale for large networks. Combining
a newer variation of the distributed averaging (Section 4.5)
with the secure sum protocol in a small neighborhood of
a peer, we propose an privacy-preserving sum computation
algorithm which (i) asymptotically converges to the correct
result and (2) being only locally synchronous, scales well
with the network size.

4 Privacy-Preserving Distributed Sum Com-
putation

In this section we present the model of privacy in a het-
erogenous computing environment and show how the global
sum can be computed while satisfying the different privacy
requirements of different users.

4.1 Privacy Protection as Optimization

Privacy is a social concept. In a distributed data min-
ing environment different peers have different notions and
requirements of privacy. Due to sharing of private informa-
tion in the process of computation, privacy of the users’ data
is threatened. Every user in the network has a prior belief
(assumption) about thethreat to its data privacy. The threat
that a peer’s data is exposed to can be considered as a mea-
sure of the lack of privacy of its data. Again, the amount of
resources available to a peer varies across the network and
hence, the cost (of computation and communication) a peer
can bear to ensure its data privacy also varies. In this paper
we assume that each peer has the same privacy model, but
a different value of the parameters which satisfy its privacy.
Therefore, every user in the network solves an optimization
problem locally based on its cost and threat threshold,i.e.
how much threat the user is willing to bear and how much
resources it is willing to spend for ensuring that. Without
loss of generality we consider a linear model for the objec-
tive function:

f
obj
i = wti × threat − wci × cost

where thecost is the total cost of communication of peerPi

within a neighborhood of sizen∗
i andthreat is the privacy

breach thatPi assumes to be exposed to due to its partici-
pation in the data mining task.wti andwci are the weights
(importance) associated withthreat andcost respectively.

These parameter values are local to each peer and are inde-
pendent of the values chosen by any other peer in the net-
work. In order to measure threat, we need a way of measur-
ing privacy in such heterogenous environments. One such
model is discussed in the next section.

4.2 Bayes Optimal Privacy Model

The Bayes optimal model of privacy [8] uses prior and
posterior distribution to quantify privacy breach.

Let X be a random variable which denotes thej-th data
value at each node. The value at nodePi is denoted byxij .
The prior probability distribution isprior = P (X = xij)
Once the data mining process is executed, the participants
can have some extra information. Given this, we define the
posterior probability distribution asposterior = P (X =
xij |B), whereB models the extra information available to
the adversary at the end of computation. There are several
ways for quantifying the Bayes optimal privacy breach.

Definition 1. [ρ1 − to − ρ2-privacy breach[4]] Letfprior

and fposterior denote the prior and posterior probabil-
ity distribution of X . The ρ1 − to − ρ2 privacy breach
happens whenfprior ≤ ρ1 and fposterior ≥ ρ2, where
0 < ρ1 < ρ2 < 1.

As noted in [8], any privacy definition which quantifies
the privacy breach in terms of principle 1 or 2, is known as
the Bayes optimal privacy model. However, thisρ1−to−ρ2

privacy model is applicable only when there is a single node
in the network. Below we extend this privacy framework for
a distributed multi-party scenario.

Definition 2. [Multi-party ρ1−to−ρ2 privacy breach] For
thei-th peerPi, privacy breach occurs iff i

prior ≤ ρ1i and
f i

posterior ≥ ρ2i. Multi-party ρ1 − to − ρ2 privacy breach
occurs when the constraints are violated for any peer in the
network i.e.∀i, f i

prior ≤ ρ1i andf i
posterior ≥ ρ2i, where

0 < ρ1i < ρ2i < 1.

In the definition, the posterior probabilities of each peer
can either be dependent or independent of each other. If the
peers share the extra information (B), their posterior distri-
butions are also related. Since in our framework each peer
solves the optimization problem locally, the dependence
or the independence of the posterior probabilities does not
change the privacy requirements.

Since in a distributed environment, different peers have
different privacy requirements, it is difficult to achieve the
distributedρ1 − to − ρ2 privacy using a single secure sum
since theρ1 − to − ρ2 privacy is achieved in terms of the
number of participants of the ring (as shown in Section 4.3).
So our proposed algorithm uses multiple local sum compu-
tation protocols with different ring sizes, one for each node
in the network. This approach addresses two issues: (1) it

proposes a solution to privacy preservation in heterogenous
environments and (2) it avoids creating a single large syn-
chronous ring for sum computation which makes the algo-
rithm scalable for large-scale distributed systems. The sum
computation does not claim to be a secure protocol by get-
ting rid of the semi-honest assumption, but still is privacy
preserving. Before we describe the algorithm for doing the
distributed averaging based local secure sum, we introduce
a measure of thethreatcomponent in the objective function
applicable to the secure sum protocol.

4.3 Threat Measure under Collusion

The secure sum computation algorithm assumes semi-
honest parties who do not collude. However, it has been
shown in the literature [5] that such an assumption is sub-
optimal and that rational parties would always try to collude
in the absence of a penalizing mechanism. In this paper
we adapt the expression of threat developed in [5] to esti-
mate the threat component in our objective function. Each
peer forms a ring of sizen∗

i (referred to asn in this sec-
tion for sake of simplicity) in our algorithm. Let us assume
that there arek (k ≥ 2) nodes acting together secretly to
achieve a fraudulent purpose. LetPi be an honest node who
is worried about its privacy. LetPi−1 be the immediate pre-
decessor ofPi andPi+1 be the immediate successor ofPi.
We will only consider the case whenn − 1 > k ≥ 2 and
the colluding nodes contain neitherPi−1 nor Pi+1, or only
one of them, thenPi is disguised byn− k − 1 other nodes’
values. This can be represented as

n−k−1∑

q=1

xqj

︸ ︷︷ ︸

denoted by Y

+ xij
︸︷︷︸

denoted by X

= Sj −
i+k∑

q=i+1

xqj

︸ ︷︷ ︸

denoted by W

,

whereW is a constant and known to all the colluding nodes.
The posterior probability ofxij is:

fposterior(xij) =
1

(m + 1)(n−k−1)

r∑

q=0

(−1)q
(n − k − 1

q

)

×

(n − k − 1 + (r − q)(m + 1) + t − 1

(r − q)(m + 1) + t

)

wherezj = W − xij andz ∈ {0, 1, . . . , m(n − k − 1)}.
r = ⌊

zj

m+1⌋, andt = zj − ⌊
zj

m+1⌋(m + 1). Note that here
we assumexij ≤ W , otherwisefposterior(xij) = 0. This
posterior probability can be used to measure the threat faced
by a peer while participating in the secure sum computation
protocol, if there is collusion:

threat = Posterior − Prior = fposterior(xij)−
1

m + 1
(1)

Note that using uniform distribution as the prior belief is a
reasonable assumption because it models the basic knowl-
edge of the adversaries. This assumption was also adopted
by [11] where a Bayes intruder model was proposed to as-
sess the security of additive noise and multiplicative bias.

It can be observed from this threat measure that (1) ask

increases, the posterior probability increases, and (2) asn

increases, the posterior probability decreases. This implies
that as the size of the network involved in the secure sum
computation increases, the threat decreases for a fixed size
of the colluding group. Therefore, the privacy of the data of
the users in the secure sum depends on the initiator’s choice
of the size of the group (n). The choice ofn can vary be-
tween 1 and the total number of nodesd. As the value of
n increases, the threat to a user’s data due to collusion de-
creases, assuming a constant percentage of colluding nodes
in the network. However, increasingn increases the over-
all communication cost and synchronization requirements
of the algorithm. Since the communication cost increases
linearly with the size of the secure sum “ring”, the objective
function that is optimized by every peer in the network can
be written as:

max
n

[wti × threat(n) − wci × cost(n)]

subject to the following constraints:cost < ci and
threat < ti wherethreat(n) is given by Equation 1 and
cost(n) = wc × g×n. g is the proportionality constant and
ci and ti are constants for every peer and denote the cost
threshold and privacy threshold that each peer is willing to
withstand. This is a multi-objective optimization problem
where the threat increases while the cost decreases with in-
creasingn. Below is a solution to this optimization prob-
lem. Let

h(n) =
r∑

q=0

(−1)q
(n − k − 1

q

)(n + t − k − 2 + (r − q)(m + 1)

(r − q)(m + 1) + t

)

It can be observed thath(n) ≥ 1. Now, using the constraint
threat ≤ ti we get

wt

(m + 1)(n−k−1)
× h(n) ≤ ti

⇒ n ≥ 1 + k +
log(wti)− log(ti)

log(m + 1)
(2)

Similarly, using the constraint on cost, we get

wci × g × n ≤ ci ⇒ n ≤
ci

wci × g
(3)

Using Equations 2 and 3, we get the optimal value ofn
(denoted asn∗

i in accordance with the rest of the paper):

1 + k +
log(wti) − log(ti)

log(m + 1)
≤ n∗

i ≤
ci

wci × g
(4)

Now, depending on its personal preference, each peer can
choose the number of nodes (n∗

i) for computing the sum in
a privacy preserving fashion, even in the presence of collud-
ing parties. Recall from Section 4.2, for the posterior dis-
tribution, the extra information (B) in the secure sum proto-
col is only the sum of the colluding nodes (W). Note that
this is independent of the total sum since, secure multiparty
computation protocol guarantees that no extra information
is revealed by the sum other than its own inputs [1].

4.4 Threat Measure for Multiple Rings

The above expression for threat only gives us a measure
of the same when there is only one ring. In the presence of
multiple rings, a colluder can infer more knowledge about
an honest node’s data. In this section, we derive an expres-
sion for the threat in the presence of multiple rings. For
simplicity, we consider the situation of only two intersect-
ing rings. The case for multiple rings can be analogously
derived.

Let there bem nodes in ring 1 andn nodes in ring 2. The
values at the nodes for the two rings be arranged as follows:

Ring 1:
common

︷ ︸︸ ︷
x1,j → · · · → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xa,j → xa+1,j → · · · → xg,j

Ring 2:
common

︷ ︸︸ ︷
x1,j → · · · → xc−1,j → xc,j →

not common
︷ ︸︸ ︷
xb,j → xb+1,j → · · · → xh,j

For ring 1, let the colluding nodes be
xc−1,j , xc,j, xa,j , xa+1,j . Similarly, for the other ring,
xc−1,j , xc,j, xb,j , xb+1,j are the colluding nodes. Denoting
the sum of the rings byC1 andC2, and subtracting we can
write,

xa,j + · · · + xg,j − (xb,j + · · · + xh,j) = C1 − C2

Moreover, since the sum of the colluding nodes is known to
all colluders, we can write:

xa+2,j + · · · + xg,j − (xb+2,j + · · · + xh,j) = C

Without loss of generality, let the node whose value is at
threat bexg,j . Thus, we can write,

xg,j
︸︷︷︸

Z

= C +







xb+2,j + · · · + xh,j
︸ ︷︷ ︸

denoted byX







−







xa+2,j + · · · + xg−1,j
︸ ︷︷ ︸

denoted byY







Now sinceC is a constant, it can be shown that,

P (Z = z) = P (X − Y = z)

=

(g−a−2)m
∑

y=0

P (X = y + z)P (Y = y)

Using the expressions forP (X = z + y) andP (Y = y)
from the previous section, we can easily write the expres-
sion forP (Z = z).

4.5 Distributed Averaging for Asymmet-
ric Topologies

In this section we present the iterative distributed algo-
rithm for computing the global sum of a set of data vectors.

Our solution is inspired by the distributed averaging algo-
rithms proposed in [10].

The distributed averaging technique that we are explor-
ing asymptotically converges to the global average. It can
easily be used to compute the sum if each peer multiplies its
data by the total number of peers in the network. Therefore,
for the given scenario, each peerPi contains a real num-
ber d × xij whered is the size of the entire network and
the objective is to compute∆j = 1

d

∑d

i=1 d × xij i.e. the
sum of the numbers. There exist several techniques in the
literature to estimate the network size. Examples include
the capture-recapture method proposed by Maneet al. [9].
Moreover at any time, the number of nodes in the network
can be estimated efficiently using heartbeat mechanisms or
retransmissions. From now on we assume that each entry
xij of the data has been multiplied by the total number of
peers so that distributed averaging gives the global sum and
not the global average.

Let xij denote thej-th data of peerPi. z(t)
j =

[

z
(t)
1j z

(t)
2j . . . z

(t)
dj

]T

denotes the estimate of the global sum

∆j = 1
d

∑d

i=1 xij by d peers at thet-th iteration. The ini-

tialization is z(0)
j = [x1jx2j . . . xdj]

T . The proposed al-
gorithm works as follows: at any iteration, each peerPi

gets the estimate from all of its neighbors (thez
(t−1)
ij ’s for

i ∈ Γi,1) and then generates the estimate for roundt (i.e.

z
(t)
ij) based on those received estimates and its local data.

This algorithm is asynchronous and local since each node
gets update from its neighbors only. The update rule used
is first order:z(t)

j = Wz(t−1)
j . Any choice ofW guarantees

asymptotic convergence ifW satisfies the following proper-
ties: (i)W.1 = WT .1 = 1, where1 denotes ad× 1 vector of
all ones and (ii) the eigenvalues ofW, λi when arranged in
descending order are such thatλ1 = 1 and|λi| < 1. Setting
W = I + ρΦ satisfies these conditions; whereρ is a small
number which determines the stability of the solution and
the convergence rate, andI denotes the identity matrix.

From Section 4.3, it is clear that depending on the so-
lution to the optimization problem, each peer can have a
different value ofn∗

i , i.e. number of nodes it wants to com-
municate with. This means that if peerPi chooses peerPj

to be part of its sum computation, it is not necessary that
Pj would choosePi to be part of its sum computation ring.
This implies that even ifPj is a neighbor ofPi, Pi need not
be a neighbor ofPi (in terms of adjacency matrix). This im-
plies that the resulting topology matrix is asymmetric. Note
that if we useW = I + ρΦ, the resultingW does not sat-
isfy the requirements stated above. Therefore, asymmetric
topology matrices cannot be directly used for generating the
update matrixW. Now, an asymmetric topology matrix can
be converted to a symmetric one as follows:Φ

′′

= Φ+ΦT ,
whereΦT is the transpose ofΦ. SinceΦ is a square matrix,

Φ
′′

, by definition, is a symmetric matrix. In order forW to
satisfy the properties stated above, it can be generated using
the transformationW = U+ρΦ

′′

where each entry ofUd×d

is such that

uii =

{
1 − ρ

∑d

j=1 φ
′′

ij

0 otherwise

In Section 5, we analyze the convergence and correctness of
this proposed distributed averaging algorithm. Based on the
above transformation, every peer updates its estimate of∆j

using an update rule that depends on the ring it forms. The
following lemma (Lemma 4.1) states the update rule for our
proposed distributed averaging problem (proof omitted due
to shortage of space).

Lemma 4.1. The update rule for any peer can be writ-
ten as z

(t)
ij = {1 − 2ρ |Γi,1| − ρ(n∗

i − |Γi,1|)} z
(t−1)
ij +

2ρ
∑

q∈Γi,1
z
(t−1)
qj + ρ

∑n∗

i −|Γi,1|
q=1 z

(t−1)
qj .

4.6 Overall Algorithm

In this section we present the overall algorithm. We have
two different algorithms: namely, the local ring formation
algorithm (L-Ring) which is executed only once, offline.
The second algorithm is the iterative local privacy preserv-
ing sum computation algorithm (L-PPSC).

4.6.1 Local Ring Formation Algorithm (L-Ring)

For distributed averaging, peerPi updates its current state
based on the information it gets from itsn∗

i neighbors. In
order to preserve privacy,Pi does not get the raw data from
its neighbors; rather a ring is formed amongn∗

i neighbors
and sum computation is performed in that ring. We call
this ring thelocal ring since each ring is only formed in a
peer’s neighborhood. This has the advantage that (1) the al-
gorithm is only synchronous in a peer’s local neighborhood
and (2) the communication is bounded due to local peer in-
teractions.

L-Ring takes as input the predefined values of cost and
threat threshold,i.e. ci andti. When the algorithm starts,
each peer solves a local optimization problem based on lo-
cal constraintsci and ti to choose a value ofn∗

i , the size
of the ring for sum computation. It then launchesn∗

i ran-
dom walks in order to selectn∗

i nodes uniformly from the
network to participate inPi’s ring. The random walk we
have used is the Metropolis-Hastings random walk which
gives uniform samples even for skewed networks. We do
not present the details here, interested readers are referred
to [2]. Whenever one random walk ends atPj , it first checks
if n∗

i < n∗
j . If this is true, it poses a potential privacy breach

for Pj . HencePj may choose not to participate inPi’s call
by sending aNAC message along with itsn∗

j . Otherwise

Pj sends anACK message toPi. If Pi has received any
NAC message, it computesmax(n∗

j) and checks if it vi-
olates its cost constraint. If the constraint is violated,Pi

chooses a different peerPq by launching a different random
walk. Otherwise, it then sends out all of themax(n∗

j) in-
vitations again which satisfies the privacy constraints of all
the participants. The pseudocode is presented in Alg. 1.

Algorithm 1 L-Ring
Input of peer Pi:

Threatti and costci that peerPi is willing to tolerate
Initialization:

Find the optimal value ofn∗

i usingti andci.
If Pi initializes a ring:

Contact the neighbors as dictated byn∗

i by launchingn∗

i

parallel random walks
When a random walk ends in nodePj :

Fetch the value ofn∗

i as sent byPi

IF (n∗

i < n∗

j) Send (NAC,n∗

j) to Pi ELSE SendACK to Pi

ENDIF
On receiving NAC, n∗

j from Pj :
IF replies received from everyone

IF n∗

j violates cost constraint
Contact different neighborPq

ELSE max = argmaxj{n
∗

j}; Setn∗

i = max

Send invitationI(n∗

i) to Pj with n∗

i value
ENDIF

ENDIF

Once the rings are formed offline, the local sum compu-
tations start.

4.6.2 Local Privacy Preserving Sum Computation Al-
gorithm (L-PPSC)

In the local privacy preserving distributed sum computation
algorithm (L-PPSC), initially all peers in the network have
a data vector of sizep which represents the number of clicks
for each of thep advertisements under consideration. The
j-th entry of this vector corresponds to the number of clicks
of advertisementAj . Below we discuss the algorithm with
respect to only one sum computation (a scalar quantity). In
practice, the secure sum will be computed over a vector of
sizep, the number of advertisements. Assuming that each
peer has agreed on a ring in its local neighborhood, each
initiator peer starts a round of sum computation based on the
secure sum computation. The message sent by the initiator
node for any sum computation contains: (1) the ID of the
initiator, (2) the data which needs to be added for the local
sum, (3) the size of the local ring that it has constructed for
the sum, and (4) which peer needs to multiply the data by 2
(according to Lemma 4.1).

This algorithm differs from traditional secure sum com-
putation protocol in the update rule and the enforcement of

the ring topology. In the traditional version, the initiator
sends its data masked by a random number while all oth-
ers in the ring add their numbers as is and pass the sum
on. Here, however, the initiator specifies in its message
the parameters of the update rule: the amount of scaling
that some of the peers might need to do to their data before
adding them to the received sum and passing them on. This
is essential to guarantee convergence of the algorithm to the
correct result, following Lemma 4.1.

These steps are executed by every peer in the system.
The algorithm is locally synchronous in that, during every
round of sum computation, the initiator has to wait for all
peers in its rings to complete their previous round. This is
essential since this algorithm is based on the working of first
order LTI systems where the update in thet-th round uses
data from the(t − 1)-st round. Algorithm 2 lists the steps
in a pseudo-code format.

Algorithm 2 Local Privacy Pres. Sum Comp. (L-PPSC)
Input of peer Pi:

Convergence rateρ, local dataxi, round, set ofn∗

i -local
neighbors arranged in a ring or{ringi,n∗}, random numberR,
and the max range of the sumN
Initialization:

Initialize {ringi,n∗}, ρ, xi; Setround← 1
Setj ← first entry of{ringi,n∗}
{ringi,n∗} ← {ringi,n∗} \ j

Send(R + xi, {ringi,n∗} , round) to j

On receiving a message (data, {ring}, rnd) from Pj :
IF {ring} = ∅

Updatez(round)
i using (data−R) and Lemma 4.1;

round← round + 1;
Setj ← first entry of{ringi,n∗}
{ringi,n∗} ← {ringi,n∗} \ j

Send
(

z
(round)
i , {ringi,n∗} round

)

to j

Check if any node is waiting on this peer
Send data to all such nodes

ELSE IF round < rnd Wait
ELSE

Sety = (data + zrnd
i)modN ; Setj ← first entry of

{ring}
{ring} ← {ring} \ j; Send(y, ring, rnd) to Pj

END

UsingL-PPSCalgorithm the peers can compute the sum
of the number of clicks for each advertisement in a privacy
preserving (not secure) fashion. Once that is done, ranking
them by popularity becomes a sorting problem which each
peer can solve independently.

5 Algorithm Analysis

In this section we analyze the properties theL-Ring and
L-PPSC algorithms. Due to shortage of space we do not

present the proofs.

5.1 L-Ring Running Time

The running time of L-Ring algorithm is
O(max(n∗

i , n
∗
j)), where n∗

i is the optimal value for
nodePi andn∗

j is the value required by nodePj wherePi

andPj belong to the same ring for the sum computation.
This can be easily proved by considering two cases: (1)
n∗

i < n∗
j and (2)n∗

i > n∗
j . In either case we need to count

the maximum number of times a peer needs to contact other
peers to satisfy its own privacy requirement.

5.2 L-PPSC Privacy

Lemma 5.1. For anyPi, theρ1i-to-ρ2i privacy is satisfied
in theL-PPSC protocol.

Lemma 5.1 proves that the privacy is satisfied for every
node in the network. Hence, using Definition 2, this proto-
col is privacy-preserving for the entire network.

In the L-PPSC algorithm, it is assumed that each ring
has fewer than (n∗

i − 2) bad nodes. If this condition is vi-
olated, then we know that privacy breach will surely occur.
Next we derive an expression for the probability of this hap-
pening and show that it is very low.

Lemma 5.2. Letθ be the probability of a node being good.
Then the probability that in a ring of sizen∗

i , there are at
most (n∗

i − 2) bad nodes is given by1 − (1 − θ)n∗

i −1.

The above expression shows that the probability of se-
lecting less thann∗

i − 2 bad nodes increases with increase
in the (1) probability of a good nodeθ, and (2) ring sizen∗

i .
Figure 1 (left) shows how the probability varies as a func-
tion of θ andn∗

i . As shown, the probability increases with
increasingθ. This is intuitive, since with increasingθ, there
is a higher chance that each contacted node is good. Also
for a fixedθ, asn∗

i , the ring size increases and the proba-
bility of contacting less thann∗

i − 2 bad nodes goes to 1
faster.

Now consider another scenario in which there is the pos-
sibility of a privacy breach. Consider two intersecting rings
which contains only one honest node. Now the probability
of this occurring is given byθ(1−θ)n∗

i +n∗

j−1, wheren∗
i and

n∗
j are the sizes of the two rings. Figure 1 (right) demon-

strates the variation of this expression withθ, n∗
i andn∗

j . As
seen in the figure, the probability is very low and decreases
with increasing size of the ring. Also, for a fixed ring size,
asθ increases, the probability decreases.

5.3 Correctness and Convergence

L-PPSC protocol is based on the distributed averaging
protocol proposed by Scherber and Papadopoulos [10]. The

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Probablility of good node (θ)

1−
(1

−
θ)

n i* −
1

n
i
*=5

n
i
*=10

n
i
*=15

n
i
*=20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Probability of good node (θ)

θ(
1−

θ)
n i* +

n j* −
1

n
i
*+n

j
*=5

n
i
*+n

j
*=10

n
i
*+n

j
*=15

Figure 1. The left figure demonstrates the
variation of θ(1 − θ)n∗

i +n∗

j−1 vs. θ, n∗
i and n∗

j .
The right figure shows the probability that
less than n∗

i − 2 nodes are bad in a ring of
size n∗

i .

correctness proof ofL-PPSC can be derived based on two
observations analogous to [10]: (1)W.1 = WT .1 = 1 and
(2) the eigenvalues ofW, λi when arranged in descending
order are such thatλ1 = 1 and|λi| < 1. We do not prove
these here, but leave it for an extended version.

Following similar arguments in [10], we can show that
the error (between the true average and the estimate at each
peer) tends to zero exponentially fast as the number of iter-
ations tend to infinity.

5.4 Locality

There are several definitions of locality proposed in the
literature. The locality concept proposed by Daset al. [2]
is characterized by two quantities — (1)α – which is the
number of neighbors a peer contacts in order to find answer
to a query and (2)γ – which is the total size of the response
which a peer receives as the answer to all the queries exe-
cuted throughout the lifetime of the algorithm.

In case ofL-PPSC, the choice ofα is guided by the opti-
mal solution of the objective function defined earlier. In the
worst case, a peer may chooseα to be equal to the size of
the entire network. Therefore,α = O(d) in the worst case.

It can be shown thatγ ≤ log(ǫ)−log(d)
log(λ2

max)

[

log(z
(t)
max) + n∗

i

]

,

wherez
(t)
max is the maximum of data values at any peer in a

ring at roundt andǫ is the error between the true sum (∆)
and the node estimates.

6 Experimental Results

To validate the performance of the proposedL-PPSC
algorithm, we have conducted experiments on a simulated
network of peers. The topology is generated using BRITE3.
We have used the Barabasi Albert (BA) model in BRITE
since it is often considered a reasonable model for the In-
ternet. In all our experiments, we have used the following
default values of the system and algorithm parameters: size
of the network (d) = 1000, the maximum range of the sum
for the secure computation (N) = xi×d andρ = maxi

1
|Φii|

.

6.1 Experiments on Synthetic Dataset

In this section we first discuss about the dataset and then
describe the convergence and scalability results.

As already noted, each peer agrees on a predefined set of
advertisements. We assume that there are 5 advertisements
A, B, C, D and E with arbitrary counts. The goal is to find
the sum of all the clicks on advertisements over all the peers.
A data set was generated consisting of tuples from different
random distributions. Each advertisement is generated from
a fixed uniform distribution (with a fixed range). Thus, there
are as many different distributions as the number of adver-
tisements. This centralized data set was then split among a
fixed number of neighbors such that each peer has a frac-
tion of the count of all the advertisements (0 if none exists).
Note that this requires a separate privacy-preserving sum al-
gorithm to be invoked for each advertisement/category. For
the rest of this section we will present our results with re-
spect to one sum computation only.

As shown in Figure 2 (top), the algorithm converges
to the correct sum with respect to a centralized algorithm,
where a centralized algorithm is one which has access to
all the data of all the peers. In this figure we have plotted
the estimate of all the peers at each time instancei.e. the
z(t)
j values for eacht. To start with, each peer is assigned

a data value which corresponds to the number of clicks of
a particular advertisement. Hence, initially the estimateof
each peer is close to its local data. As time progresses, the
peers slowly converge to the correct sum. Figure 2 (bottom)
demonstrates the number of messages per peer.

In Figure 3 (top), we show the correctness result of the
L-PPSC algorithm (in triangle) when the number of peers
vary from 100 to 2000. Also shown in the figure are the re-
sults computed by a centralized algorithm on the same data
(using the circles). The graph shows that our algorithm con-
verges to the correct result for varying sizes of the network.
The cost of the algorithm with increasing network size is
demonstrated in Figure 3 (bottom). It can be noted that the
number of messages per peer is almost a constant. Hence,
our algorithm is highly scalable.

3http://www.cs.bu.edu/brite/

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

6

Time

E
st

im
at

io
n

of
 s

um

Estimate of peer
Actual sum

0 1000 2000 3000 4000
0.2

0.4

0.6

0.8

1

Time

M
es

sa
ge

s
pe

r
pe

er

Figure 2. Convergence to global sum and
communication cost per peer.

0 500 1000 2000
0

0.5

1

1.5

2
x 10

7

Number of peers

S
um

m
at

io
n

R
es

ul
t

Centralized
Distributed

100 500 1000 2000
0.1

0.2

0.3

0.4

0.5

Number of peers

M
es

sa
ge

s
pe

r
pe

er

Figure 3. Scalability of the algorithm as the
number of peers is increased: quality (top)
and cost (bottom).

6.2 Results on Real Dataset

Finally in this section we describe the results of the ex-
periments with a real data set. Volunteers at UMBC were
asked to search for the following five categories in the pop-
ular search engines: (1) digital camera, (2) auto insurance,
(3) cars, (3) laptop, and (4) gps systems. They were also
asked to store the web urls which they found as the clos-
est match for each of these categories. In the experimental

0 200 400 600 800 1000
0

5

10

15

20

25

30

Advertisements

V
al

ue
s

Distributed
Centralized

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Time

M
es

sa
ge

s
pe

r
pe

er

Figure 4. Results on the real advertisement
data set: relative orderings (top) and mes-
sages exchanged (bottom).

setup, we list all these links in a single file (for all cate-
gories) and for each link, count the number of times it has
been reported by the volunteer. In order to simulate the P2P
setup, we then divide this data file randomly among 100
peers, such that each peer contains only fraction of the data
— either links or count for each link. If a peer does not have
a link, it may add a value of zero in order to participate in
theL-PPSC protocol. In total there were 1000 links. Once
the rings were formed using theL-Ring protocol, we ran
1000 sum computations in parallel. Figure 4 shows the re-
sults of theL-PPSC protocol on this data set. Thex-axis
in the quality figure (top) refers to the 1000 links grouped
per category. They-axis shows the total count per link for
theL-PPSCprotocol (circles). Also shown in the figure are
the true counts per link (diamonds) which we call the cen-
tralized execution scenario. As easily verified, the counts
of the links in the distributed experiments is very close to
those found in the centralized situation. Similarly, the cost
figure (bottom) shows the number of messages exchanged
per peer per unit of time which varies between 0.5 and 1. A
value ofx at a particular time instance means that onlyx%
of all the peers send message at that time instance.

7 Conclusion

In this paper we have presented a local privacy-
preserving peer-to-peer data aggregation algorithm for do-
ing data mining in a large P2P setting. Due to the constant
communication complexity and locally synchronous nature
of the algorithm, it is highly scalable. We have framed
privacy and cost as a multi-objective optimization local to

each peer and shown that our proposed algorithm is privacy-
preserving according to this definition. To the best of the
authors’ knowledge, this is one of the first solutions which
blends in the concept of local asynchronous distributed av-
eraging with secure sum protocol to develop a scalable pri-
vacy preserving sum computation algorithm tailored to ac-
commodate every participant’s privacy and cost constraints.
This algorithm is, therefore, applicable for large scale het-
erogeneous distributed systems such as the Internet and has
various applications that require privacy preserving data
mining.

Acknowledgement

This research is supported by the NASA Grant
NNX07AV70G and the AFOSR MURI Grant 2008-11.

References

[1] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu.
Tools for Privacy Preserving Distributed Data Mining.ACM
SIGKDD Explorations, 4(2), 2003.

[2] K. Das, K. Bhaduri, K. Liu, and H. Kargupta. Distributed
Identification of Top-l Inner Product Elements and its Ap-
plication in a Peer-to-Peer Network.TKDE, 20(4):475–488,
2008.

[3] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kar-
gupta. Distributed Data Mining in Peer-to-Peer Networks.
IEEE Internet Computing, 10(4):18–26, 2006.

[4] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. InProc. of SIG-
MOD’03, San Diego, CA, June 2003.

[5] H. Kargupta, K. Das, and K. Liu. Multi-Party, Privacy-
Preserving Distributed Data Mining using a Game Theoretic
Framework. InProc. of PKDD’07, pages 523–531, 2007.

[6] H. Kargupta and K. Sivakumar.Existential Pleasures of Dis-
tributed Data Mining. Data Mining: Next Generation Chal-
lenges and Future Directions. AAAI/MIT press, 2004.

[7] K. Liu, K. Bhaduri, K. Das, P. Nguyen, and H. Kargupta.
Client-side Web Mining for Community Formation in Peer-
to-Peer Environments.SIGKDD Explorations, 8(2):11–20,
2006.

[8] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam.l-diversity: Privacy beyondk-anonymity. In
Proc. of ICDE’06, page 24, GA, April 2006.

[9] S. Mane, S. Mopuru, K. Mehra, and J. Srivastava. Network
Size Estimation In A Peer-to-Peer Network. Technical Re-
port 05-030, University of Minnesota, September 2005.

[10] D. Scherber and H. Papadopoulos. Distributed Computa-
tion of Averages Over ad hoc Networks.IEEE Journal on
Selected Areas in Communications, 23(4):776–787, 2005.

[11] M. Trottini, S. Fienberg, U. Makov, and M. Meyer. Addi-
tive Noise and Multiplicative Bias as Disclosure Limitation
Techniques for Continuous Microdata: A Simulation Study.
J. Comp. Methods in Sci. and Eng., 4(1,2):5–16, 2004.

[12] A. C. Yao. How to Generate and Exchange Secrets (Ex-
tended Abstract). InFOCS, pages 162–167, 1986.

