
Modeling and Analysis of Bandwidth-Inhomogeneous Swarms in BitTorrent

M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, H.J. Sips
Parallel and Distributed Systems Group

Department of Computer Science
Delft University of Technology, The Netherlands

m.meulpolder@tudelft.nl

Abstract—A number of analytical models exists that capture
various properties of the BitTorrent protocol. However, until
now virtually all of these models have been based on the
assumption that the peers in the system have homogeneous
bandwidths. As this is highly unrealistic in real swarms,
these models have very limited applicability. Most of all,
these models implicitly ignore BitTorrent’s most important
property: peer selection based on the highest rate of reci-
procity. As a result, these models are not suitable for un-
derstanding or predicting the properties of real BitTorrent
networks. Furthermore, they are hardly of use in the design
of realistic BitTorrent simulators and new P2P protocols. In
this paper, we extend existing work by presenting a model
of a swarm in BitTorrent where peers have arbitrary upload
and download bandwidths. In our model we group peers with
(roughly) the same bandwidth in classes, and then analyze the
allocation of upload slots from peers in one class to peers in
another class. We show that our model accurately predicts the
bandwidth clustering phenomenon observed experimentally in
other work, and we analyze the resulting data distribution
in swarms. We validate our model with experiments using
real BitTorrent clients. Our model captures the effects of
BitTorrent’s well-known ‘tit-for-tat’ mechanism in bandwidth-
inhomogeneous swarms and provides an accurate mathemat-
ical description of the resulting dynamics.

I. INTRODUCTION

Over the last decade, P2P file-sharing systems have
become very popular and mathematical models of such
systems have been proposed in a variety of forms. Much
research has been focused on modeling the properties of
P2P file sharing systems in general, such as [1], [2],
[3], [4]. Other research has modeled specific applications,
strategies, or protocols, such as the BitTorrent protocol in
[5], [6], [7]. However, in virtually all of this work, math-
ematical descriptions have only been derived for systems
with homogeneous bandwidths of peers. While this is a
convenient assumption in theoretical analysis, it is com-
pletely unrealistic in practice. In this paper, we significantly
extend the existing line of work by providing a detailed
mathematical model for BitTorrent swarms with peers of
arbitrary bandwidths.

The BitTorrent protocol [8] is one of today’s most
popular P2P protocols used by millions of users worldwide.
The most essential properties of BitTorrent are: (i) peers
form swarms where pieces of the same file are exhanged;
(ii) pieces are exhanged in a tit-for-tat manner, where a peer
uploads pieces to those peers that return pieces with the
highest rate; (iii) peers employ rarest-first piece selection
to ensure efficient spreading of the file contents in the

swarm. The models that target BitTorrent in particular,
such as the well known model of Qiu et al. [7], assume
that all peers in a swarm have the same bandwidth. By
making this assumption, peer selection becomes arbitrary
and hence one of BitTorrent’s most essential properties
is rendered irrelevant. In the Internet, homogeneity can
obviously not be assumed. While some general P2P models
do assess arbitrary bandwidth configurations [2], [4], they
are not compatible with BitTorrent’s swarm based piece-
exchange mechanism. Legout et al. [9] have shown by
experiment that in BitTorrent swarms, clusters emerge of
peers with more or less the same bandwidth. However,
while they observe this experimentally they do not provide
a mathematical model that predicts the results a-priori.
Furthermore, strategies exist that specifically exploit the
rate-based peer selection of BitTorrent [10], yet can only
be assessed experimentally for lack of applicable models.

Our aim is to provide a model that enables the research
community to: (i) understand, assess, and predict the prop-
erties of BitTorrent systems in practice; (ii) create a layer of
abstraction in simulations of BitTorrent systems; (iii) design
new P2P protocols that improve the download rates and
‘fairness’ resulting from BitTorrent’s tit-for-tat mechanism.
In this paper, we provide the following contributions:

1) We extend the line of work in [7], [6] and provide a
fluid model that incorporates the dynamics of peers
with different bandwidths based on a detailed analysis
of BitTorrent’s unchoke policy.

2) We analyze the upload slot allocation in bandwidth-
inhomogenous swarms and show that our model the-
oretically predicts the bandwidth clustering in BitTor-
rent that was previously only observed experimentally
[9].

3) We show that the bandwidth clustering based on
upload slot allocation is not necessarily representative
for the actual data distribution in the swarm. While in
our scenarios fast peers allocate most of their upload
slots to other fast peers, they are still responsible for
most of the data downloaded by slower peers.

In our analysis, we group peers with (roughly) the same
bandwidth in classes. Then, we model the allocation of
the upload slots of the peers over the various classes.
For clarity, we start with analyzing a swarm with two
classes (i.e., fast peers and slow peers). We then generalize
our analysis to swarms with N classes, hence providing
a suitable approach to model any arbitrary swarm. We

IEEE P2P'09 - Sept. 9-11, 2009

978-1-4244-5067-1/09/$26.00 ©2009 IEEE 232

validate our model with experiments with real BitTorrent
clients. We show that for swarms with various proportions
of fast, respectively, slow peers, our theoretical predictions
very accurately match the real results. With our model, we
hope to open a range of new possibilities in the analysis,
simulation, and design of BitTorrent systems in practice.

The remainder of this paper is organized as follows.
In Section II, we provide an overview of the BitTorrent
protocol and in particular its unchoke policy. In Section III,
we present our model and derive equations that describe the
effects of BitTorrent’s unchoke policy in detail. In Section
IV, we use our model to analyze the clustering and data
distribution in BitTorrent swarms, and compare this with
experimental results published in the literature. In Section
V, we validate our model for two classes of peers based on
experiments with real BitTorrent clients. Finally, we discuss
related work and present our conclusions.

II. THE BITTORRENT PROTOCOL

In this section we provide an overview of the BitTorrent
protocol with a detailed description of its unchoke policy.

A. Swarms

In BitTorrent, a swarm is a collection of peers that are
downloading and/or sharing one particular file. Peers that
are in the download process are called leechers, while peers
that are sharing a complete copy are called seeders. Real
swarms in the Internet usually contain peers with a variety
of upload and download bandwidths.

B. Unchoke policy

Every peer has a number of upload slots available
(usually 4-7), and divides its upload bandwidth equally
over each of these. Peers that are allocated an upload slot
at a peer to download pieces from that peer are called
unchoked at that peer, while the rest of the peers are
choked. One of the most crucial aspects of the protocol
is the unchoke policy, which defines how the upload slots
of a peer are allocated to those peers that are interested in
pieces from that peer. As numerous BitTorrent clients have
been developed over the last decade, implementations of the
unchoke policy may vary in some specific details. However,
most reliable clients follow the protocol specification of
BitTorrent’s designer, Bram Cohen, which is implemented
in the official BitTorrent mainline client [11]. We base
our analysis on the protocol followed by mainline client
Version 4.0.0 and later. In general, the unchoking of peers is
performed in rounds of length τ . In practice, τ is usually set
to 10 seconds. At each round, the allocation of upload slots
is determined. The unchoke policy is different for leechers
and seeders.

1) Leecher unchoke policy: In every round, a leecher
unchokes those interested peers that have recently recip-
rocated with the highest speed. To do so, it computes a
moving average of the rate with which it receives data from
all of the peers that upload to it. In addition to this, every
three rounds one random interested peer is unchoked as

well, picked in a round-robin fashion from the interested
peers. This gives new peers a chance to obtain their first
pieces, and provides the unchoking peer with a mechanism
to discover faster peers.

2) Seeder unchoke policy: As reciprocity is not relevant
for the seeders, their unchoke policy is different. In early
versions of BitTorrent, seeders simply uploaded to the peers
that downloaded the fastest. Since Version 4.0.0 however, a
more sophisticated unchoke policy is in place to make the
seeding process more ‘fair’ and to reduce freeriding based
on available seeding capacity. In this policy, a certain num-
ber ν of random unchokes is spread over three consecutive
rounds, again performed in a round-robin fashion. For a
particular peer, this number is computed as follows:

ν =
⌊u+ 2

3

⌋
, (1)

where u is the number of upload slots of the peer. For
example, if u = 4, a total of two unchokes are spread over
three rounds, i.e., a pattern of 1-1-0 unchokes is followed
repeatedly. During each round, the seeder allocates its
remaining upload slots in the following order: first, all
peers that went from choked to unchoked during the last
two rounds remain unchoked; second, the left over slots
are allocated to the fastest remaining leechers (based on a
moving average of their download rate).

The above policy ensures that every three rounds, ν new
peers are unchoked, and that a peer that is unchoked will
stay unchoked for at least three rounds.

C. Tracker

Peers in BitTorrent find each other through a central
tracker, which provides them with a subset of the peers in
the swarm. Standard BitTorrent trackers provide this subset
at random. In our model we therefore assume that all peers
encounter a random and therefore representative selection
of other peers.

III. MODEL

In this section we will derive a model of a BitTorrent
swarm where peers have different bandwidths. We present a
system of differential equations that describes such a swarm
in steady state. We then analyze the slot allocations in a
system with two classes and extend this analysis to a system
with N classes. Finally, we provide an explicit equation for
the download speed of peers in such general systems.

A. General approach and assumptions

We follow a similar fluid modeling approach and notation
as Qiu et al. [7]. In this approach the discrete quantities of
numbers of leechers and seeders in a swarm are modeled as
continuous variables, and a set of differential equations is
derived that describes the dynamics of peers arriving and
departing. In steady state, these equations then allow the
derivation of the effective download speed of a leecher
in the swarm. While the work in [7] is restricted to
homogeneous bandwidths, we incorporate the dynamics of
having peers with different bandwidths. In our analysis,

233

we group peers with (roughly) the same bandwidth into a
class, and we analyze the dynamics of the data exchange
within and between classes according to the BitTorrent
protocol and its unchoke policy discussed above. Note that
our grouping in classes is done for modeling purposes; we
do not make any a-priori assumptions about possible biases
of peers towards classes. However, later on in our paper we
will show that it emerges from the BitTorrent protocol that
peers mostly unchoke peers with the same bandwidth, a
phenomenon that has been called clustering in other work,
e.g., [9].

Table I contains the notation in our model, which is
consistent with the notation in [6], [7]. In our model, every
peer has u upload slots. The available upload bandwidth
per peer is divided equally over its upload slots, as is the
default in standard BitTorrent implementations. We assume
that the number of peers per class is large with respect to
u. Furthermore, we assume that the download bandwidth of
peers is not a bottleneck and that the number of download
slots is arbitrary; peers can in principle download pieces
from as many other peers they know, as long as these peers
have the right pieces. As shown in [7], the efficiency of file
sharing in a BitTorrent swarm η (i.e., the likelihood that a
peer finds sufficient peers to exchange pieces with) is very
close to 1 for files with a high number of pieces. In our
model we therefore assume that η = 1. Additionally, we
assume that when a leecher has finished its download, all
its upload slots are freed and it ‘re-enters’ the swarm as a
seeder for a given period of time. Finally, for convenience
of notation, we define πi(t) as the fraction of the leechers
that is in class i, i.e.:

πi(t) :=
xi(t)∑
j xj(t)

.

B. General fluid model

We assume the peers in a swarm are grouped in N
classes, where we can regard the bandwidth of peers in
a single class to be the same. The number of downloads
completed per second in class i is determined by the total
upload bandwidth that class i receives from all classes in
the swarm, divided by the file size. We can describe the
evolution of xi(t) and yi(t) as follows:

dxi

dt
(t) = λi −

∑
j Uji(t)
F

,

dyi

dt
(t) =

∑
j Uji(t)
F

− γiyi(t) . (2)

As the total upload bandwidth of class j allocated to
class i consists of the upload bandwidth of the seeders and
the upload bandwidth of the leechers, we derive Uji(t) as
follows:

Uji(t) =
(
ωji(t)xj(t) + σji(t)yj(t)

)
µj (3)

The core of our multiple class model lies in the derivation
of ωji(t) and σji(t), as these depend on the specifics
of BitTorrent’s unchoke policy. Before we derive these

µi the upload bandwidth of a peer in class i.
xi(t) number of leechers in class i at time t.
yi(t) number of seeders in class i at time t.
λi the arrival rate of leechers in class i.
γi the rate at which seeders in class i leave the system.
∆i the time a seeder in class i stays in the system.
ωij(t) the fraction of upload slots of the leechers in class i

that is allocated to leechers in class j at time t.
σij(t) the fraction of upload slots of the seeders in class i that

is allocated to leechers in class j at time t.
Uij(t) the total upload bandwidth in class i allocated to

leechers in class j at time t.
u number of upload slots of a peer.
τ the time interval for optimistic unchoking.
F the size of the file being downloaded.

Table I
THE NOTATION IN THE MULTIPLE CLASS MODEL.

quantities, we first analyze the properties of a general
system in steady state.

C. Steady state analysis

We assume the swarm is in steady state, i.e., while peers
are arriving and departing, the total numbers of leechers
and seeders in each class are constant. In steady state, it
holds that:

dxi

dt
=
dyi

dt
≡ 0 (4)

We denote the equilibrium values of xi(t), yi(t), and Uji(t)
by xi, yi, and U ji, respectively. Likewise, in the remainder
of this paper we denote the equilibrium values of σij(t),
ωij(t), and πi(t) by σij , ωij , and πi, respectively. We can
reduce the system of Eq. (2) to:

λiF =
∑

j

U ji , γiyiF =
∑

j

U ji . (5)

It follows from Eq. (5) that yi = λi/γi. Furthermore, as the
arrival rate of seeders in steady state is equal to the arrival
rate of leechers, we can apply Little’s Law to the number
of seeders, yielding yi = λi∆i. In a steady state system, it
therefore has to hold that ∆i = 1/γi. Combining this with
Eqs. (3) and (5) yields the following system:

λiF =
∑

j

(
ωjixj + σjiλj∆j

)
µj i = 1, . . . , N. (6)

Little’s Law applied to the number of leechers yields
xi = λiTi with Ti the download time of a leecher in class i.
In a homogeneous swarm (i.e., with only one class) where
all upload bandwidth is utilized, the system of Eqs. (6)
reduces to λF = (x+ λ∆)µ = λ(T + ∆)µ. This yields a
download time T of:

T =
F

µ
− 1
γ
, (7)

which is consistent with the model in [7] for general file
sizes.

234

Figure 1. The allocation of upload slots in a swarm with two classes.

Figure 2. The allocation of upload slots during the lifetime of a fast
seeder in a steady state swarm.

D. Two class model

In order to derive the slot fractions σij and ωij we first
analyze the unchoke policy for a swarm with two classes.
After this we will generalize our analysis to swarms with
N classes.

In the two class model, a swarm consists of a class
of slow peers with upload bandwidth µs and a class of
fast peers with upload bandwidth µf , where µf > µs. In
Figure 1, a schematic overview is given of the distribution
of upload slots in such a swarm.

1) Analysis of seeders: We first analyze the upload
slot allocation of the seeders. As seeders do not depend
on reciprocity, at this point in our analysis there is no
difference between slow and fast seeders. (Note however
that in the overall steady state model, the lifetime of slow
seeders can be different from that of fast seeders, and
a distinction should be made.) At points of choice we
arbitrarily use the case of a fast seeder in our analysis.

We define Sff (t) as the number of slots a seeder has
allocated to fast peers at time t. First, we look at the slot
allocation right after the arrival of the seeder at t = 0.
When the seeder has just arrived, it does not yet have
information about the speed of other peers; it only acquires
this information after it has unchoked some random peers
for some time. Therefore, the slot allocation at t = 0 is fully
random. Stochastically, this implies that Sff (0) = πfu.

On the other hand, when the seeder is long enough in
the system to know enough fast peers, it will hold that
Sff (t) = (u − ν) + πfν = u − πsν. This follows from

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300

fr
ac

tio
n

seeder lifetime

fast to fast
fast to slow

Figure 3. The average fraction of upload slots σff = σsf of a seeder
allocated to fast and slow leechers in a steady state swarm.

the unchoke policy explained in Section II; during a period
of three rounds, exactly ν random peers are unchoked and
the remaining slots are allocated to the fastest downloaders.
We define the time at which this state is reached as t = T1.

The slot allocation between t = 0 and t = T1 can
be understood in the following way. As ν ‘new’ peers
are ‘tried out’ every three rounds, on average πfν/3 fast
peers are discovered per round. Therefore, the Sff (t) will
increase linearly from Sff (0) to Sff (T1). This is visualized
in Figure 2. We can express the number of slots Sff (t) as:

Sff (t) = min
(
πfu+

πfν

3
t

τ
, u− πsν

)
. (8)

It follows that:

T1 = 3
(u− ν
πfν

+
ν − u
ν

)
. (9)

In our model, we are interested in the overall fraction
of upload slots all seeders combined have allocated to
fast, respectively, slow leechers in steady state. In steady
state, the ages of the seeders in the system are uniformly
distributed over the time interval [0,∆f]. Therefore we
can compute the fraction of upload slots allocated to fast
leechers by computing the relative area of B in Figure 2:

σff = σsf =
B

A+B
=

1
∆fu

∫ ∆f

0

Sff (t)dt. (10)

Obviously, Sfs +Sff = u and σfs = 1− σff . Summariz-
ing, using Eq. (10) the distribution of upload slots of the
seeders over the two classes can explicitly be computed.
As an example, in Figure 3 we have plotted the value of
σff for different values of ∆f in a swarm where 75% of
the peers are fast with u = 4 and τ = 10. Clearly, σff

converges to (u− πsν)/u, which is 0.875 in this case.

2) Analysis of leechers: The fast leechers stay in the
system as a leecher until their download is finished. We
denote the download time of the fast leechers by Tf . Due to
the ‘tit-for-tat’ policy, a leecher only continues uploading to
another leecher as long as it can continue downloading from
that leecher. The upload slot allocation of a fast leecher
ωff can therefore be derived in a similar way as that of
the seeders. In the case of a leecher, only one random peer
is unchoked every three rounds, and so, analogous to Eq.

235

(8), we can derive the number of upload slots allocated by
fast leechers to fast leechers Dff as:

Dff (t) = min
(
πfu+

1
3
πf

t

τ
, u− πs

)
. (11)

Consequently, the fraction ωff in steady state can be
derived as:

ωff =
1
Tfu

∫ Tf

0

Dff (t)dt. (12)

Just as with the seeders, it is obvious that Dfs(t) +
Dff (t) = u and ωfs = 1− ωff .

Finally, we analyze the slot allocation of the slow leech-
ers. In total, xfDfs(t) slots are allocated from the fast
peers to the xs slow peers. Due to the tit-for-tat policy,
for every slot a fast peer allocates to a slow peer, a slow
peer allocates a slot to a fast peer (while not vice versa).
In addition, a slow peer also optimistically unchokes fast
peers. This implies that:

Dsf (t) =
xf

xs
Dfs(t) + πf . (13)

Note that when the slot allocation has stabilized it simply
follows that Dfs(t) = πs and hence Dsf (t) = 2πf .

Based on the above, Dss(t), ωsf , and ωss are known as
well.

E. N class model

Using the same approach as above, the model can be
extended for a general swarm with N classes.

We assume that there are N classes of peers in the swarm
with upload bandwidths µ1, . . . , µN . We order the classes
in such a way that µi < µj if and only if i < j. We first
analyze the number of slots a seeder in class i allocates to
leechers of class j, denoted by Sij(t). Analogously to the
two-class case, it holds stochastically that Sij(0) = πju.

Furthermore, as the peers in class N are the fastest peers,
there is a time TN such that for t ≥ TN :

Sij(t) = πjν,

SiN (t) = u− ν + πNν. (14)

Analogously to the two class model, it follows that:

σij =
1

∆iu

∫ ∆i

0

Sij(t)dt. (15)

We will now analyze the slot allocation between t = 0
and t = TN . Over every period of three rounds, a seeder
unchokes the u−ν fastest peers it knows. However, it only
knows the speed of a peer after this peer has been randomly
unchoked for some time. Therefore, at a certain time t ∈
(0, TN), the number of slots allocated to class i depends
on the number of faster peers that have been ‘discovered’
with the random unchokes before t.

We will illustrate the resulting slot allocation with an
example of three classes: fast, medium, and slow. Let us
assume that the proportion of the sizes of these respective
classes is 1:4:5. It follows that a random unchoke has a
much higher chance to yield a medium peer, than to yield a
fast peer. Therefore, the u− ν slots at first rapidly fill with

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400

sl

ot
s

time

to fast
to medium

to slow

(a)

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500 600 700 800

fr
ac

tio
n

seeder lifetime

to fast
to medium

to slow

(b)

Figure 4. (a) The allocation of upload slots Sij(t) of a seeder in an
arbitrary class to leechers in slow, medium, and fast classes; (b) The
fraction of slots σij a seeder has allocated to the three classes, for various
lifetimes ∆i.

medium peers, and only slowly fill with fast peers. This
proceeds until all u−ν slots are filled by fast peers (which
happens at TN mentioned above). As a result, the average
number of slots allocated to medium peers first increases,
then decreases, and then reaches a fixed value. In Figure
4a we have plotted the number of slots Sij(t) a seeder
has allocated to each of the three classes; in Figure 4b the
corresponding fraction of slots σij for various lifetimes ∆i.

The derivation of the slot allocation of leechers Dij(t)
and ωij proceeds along the same lines as in the two-class
case. Just as with the seeders, after a certain time the
slot allocation will become stable. Due to tit-for-tat and
optimistic unchoking it holds that:

Dij(t) =
xj

xi
Dji(t) + πj , i < j. (16)

The allocation of a peer’s slots to equal or slower peers
depends on the number of slots not already allocated to
faster peers or by random unchoking to slower peers. After
the stabilization of the slot allocation, it therefore holds
that:

Dij(t) = u−
∑
k<j

πk −
∑
k>j

Dik(t), i ≥ j. (17)

Eq. (17) can be solved inductively, starting with DNN =
u− 1 + πN . For general i, j, this yields:

Dij(t) = 2πj , j > i

Dij(t) = πj , j < i

Dii(t) = u− 1 + πi −
∑

k>i πk.

(18)

236

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300

fr
ac

tio
n

leecher lifetime

fast to fast
fast to slow
slow to fast

slow to slow

Figure 5. The average fractions of upload slots ωff , ωfs, ωsf , ωss

of fast, respectively, slow leechers allocated to fast, respectively, slow
leechers in a steady state swarm with 75% fast and 25% slow peers.

When the values of Dij(t) are known, the fractions ωij can
be computed analogously to Eq. (12):

ωij =
1
Tiu

∫ Ti

0

Dij(t)dt. (19)

F. Download speed

If the values of xi and yi are explicitly known, and if
for simplicity we neglect the stabilization period right after
the arrival of a peer, the download speed of a peer in class
i is given by:

di =
1
xiu

(∑
j

(
Djixj + Sjiyj

)
µj

)
(20)

For any given swarm, the required values for Dij and
Sij can be easily determined using Eqs. (14) and (18).
Hence, we have hereby presented a method with which the
download speeds in any BitTorrent swarm with N classes
can be computed straightforwardly.

G. Solving the system when only arrival rates are known

In case the values of xi and yi are not explicitly known,
these can be computed by solving Eq. (6) and substituting
Eqs. (15) and (19) for σij and ωij . This yields a system
of N equations with N unknowns. The solutions can be
computed trivially using a computer. Depending on the
actual values of the various parameters (e.g., λi, ∆i, etc.)
some of the solutions can have negative values for one or
more xi. Obviously, these solutions correspond to steady
states that are not feasible in practice. In the case where
no feasible solution exist, a real system with the given
parameters would not reach a steady state.

IV. CLUSTERING AND DATA DISTRIBUTION ANALYSIS

We will now use our model to analyze bandwidth clus-
tering and data distribution in BitTorrent swarms.

A. Bandwidth clustering

Legout et al. [9] presented very interesting results that
indicated an emergent clustering in BitTorrent swarms
where peers “have a clear preference for peers with similar
upload capacities”. However, to understand the BitTorrent
protocol properly, it is essential to realize that the clustering
only implicitly follows from the unchoke policy. In fact, all
peers prefer to upload to the fastest peers possible, as long
as these reciprocate. Since the fastest peers only allocate a
few slots to slower peers, the slower peers only allocate a
few slots in return to faster peers. Hence, the slower peers
resort to allocating a large part of their slots to slower peers.
As a result, peers group around bandwidth.

Our model confirms the above effect. In Figure 5, the
slot allocation is displayed for a swarm with 75% fast peers
and 25% slow peers based on Eqs. (11), (12), and (13). The
fast peers clearly allocate most of their upload slots to fast
peers, while the slow peers as a result allocate most of their
upload slots to slow peers.

We have also used our model to explain the experimental
results of [9] for their main test scenario with three classes.
In this test scenario, a file of 113 MB is downloaded in
a swarm with peers of three different upload bandwidths:
peers 1 to 13 have a 20 KB/s upload bandwidth, peers 14 to
26 have a 50 KB/s upload bandwidth, peers 27 to 39 have a
200 KB/s upload bandwidth. In Figure 6a, the average slot
allocation of each peer to each other peer as computed by
our model is displayed. The allocation of a single peer to a
class is averaged over all peers in that class. The grouping
of peers with the same upload bandwidths is clearly visible.
In [9], the total number of unchokes during the lifetime
of the peer is displayed, which is obviously larger for the
slower peers than for the faster peers. In order to allow
comparison with their experiment, we normalized the slot
allocation with respect to the lifetime of the peers in Figure
6b. Just as in [9], a very interesting block-wise allocation is
visible and our model confirms their experimental results.

B. Data distribution

In Figure 7 we have displayed how the incoming data of
a peer originates from the different classes in the system, as
well as the peer’s slot allocation to these different classes.
In this scenario, fast peers have an upload bandwidth of
1024 KB/s and slow peers have an upload bandwidth of
128 KB/s. We assessed swarms with various proportions
of fast peers versus slow peers. In all cases, there are twice
as many leechers as there are seeders. It is interesting to
observe how much data the slow peers receive from fast
peers, despite the fact that they only unchoke a very limited
fraction of their upload slots to the fast peers. Therefore,
while peers clearly cluster in terms of how they allocate
upload slots to each other, the effect of this on the actual
amount of data transferred in the system is less dominant
than what would seem at first sight. When 90% of the
peers is fast, even though the fast peers only unchoke a
tiny fraction of their upload slots to slow peers (Fig. 7a),
they account for over 75% of the bandwidth received by
slow peers (Fig. 7b). Even when only 10% of the peers is

237

 0

 0.07

fr
ac

tio
n

of
 s

lo
ts

uploading peer ID (p)

do
w

nl
oa

di
ng

 p
ee

r
ID

 (
q)

 1 14 27 40

 1

 14

 27

 40

(a)

 0

 1

no
rm

al
iz

ed
 fr

ac
tio

n
of

 s
lo

ts

uploading peer ID (p)

do
w

nl
oa

di
ng

 p
ee

r
ID

 (
q)

 1 14 27 40

 1

 14

 27

 40

(b)

Figure 6. (a) The fraction of its upload slots peer p allocates on average to peer q according to the model; (b) The same fraction of slots, normalized
to the download time of peer p. A darker square indicates a higher fraction of slots. Peers 1 to 13 have a 20 KB/s upload bandwidth, peers 14 to 26
have a 50 KB/s upload bandwidth, peers 27 to 39 have a 200 KB/s upload bandwidth.

 0

 0.25

 0.5

 0.75

 1

 0 10 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

% of fast peers in the swarm

data from slow to fast
data from fast to fast

slots from fast to slow
slots from fast to fast

(a)

 0

 0.25

 0.5

 0.75

 1

 0 10 20 30 40 50 60 70 80 90 100

fr
ac

tio
n

% of fast peers in the swarm

data from slow to slow
data from fast to slow

slots from slow to slow
slots from slow to fast

(b)

Figure 7. The distribution of the data that a peer receives from different classes, as well as the fraction of slots this peer allocates to these classes, for
(a) a fast peer and (b) a slow peer, in swarms with different percentages of fast peers. We assume that a peers’ download bandwidth is not a bottleneck.

fast, they still account for more than 30% of the bandwidth
received by slow peers.

Summarizing, we conclude that a strong clustering in-
deed emerges in BitTorrent swarms both from theory and
from practice. However, for understanding the actual data
distribution within the system this clustering effect can be
misleading, and the actual bandwidth distribution of peers
is of crucial importance.

V. EXPERIMENTS

In this section we will describe the experiments with
which we have validated our model for two classes. We
have used real BitTorrent clients and compare our model
with the experimental results of various swarm configura-
tions.

A. Experimental setup

In order to obtain realistic results that are based on the
actual BitTorrent protocol, we have set up an experimen-
tal environment based on running real instances of the
BitTorrent mainline client [11]. We used Version 4.4.0 of
this client, which implements the policies as described in
Section II. In order to have full control over a swarm,
we have set up a local tracker and used a custom made
file of 100 MB with its associated torrent. In each of our
experiments, we execute a number of clients on a single
testing machine in various class configurations and monitor
their unchoke behavior and piece exchanges. In order not
to be constrained by disk writing bottlenecks, we slightly
altered the client code in such a way that no data are written
to disk or read from disk while downloading the file.

238

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800

sl

ot
s

time

fast
total

Figure 8. The upload slot allocation of a seeder in a swarm with 50%
slow peers and 50% fast peers.

σff = σsf

% fast peers model exp
30 0.65 0.6368
50 0.75 0.7443
70 0.85 0.8486

Table II
MODEL PREDICTIONS VERSUS EXPERIMENTAL VALUES OF THE

AVERAGE FRACTION OF SLOTS ALLOCATED TO FAST PEERS FOR A
SEEDER IN SWARMS WITH DIFFERENT FRACTIONS OF FAST PEERS.

With the resulting setup, it is feasible to run swarms of
up to 50 peers on our single test machine. We are planning
to extend our test environment and implement it on a multi-
processor supercomputer, so as to obtain results for larger
swarms with more than two classes.

In all of our experiments, slow peers have an upload
and download bandwidth of 5 KBps, while fast peers have
an upload and download bandwidth of 200 KBps. These
values are low, but allow for very precise measurements
and prevent memory speed from becoming a bottleneck on
our testing machine. Furthermore, we set the number of
upload slots per peer to 4 and the duration of a round to
the standard value of 10 seconds.

B. Behavior of the seeders

We first validate the model for the unchoking behavior
of seeders, according to the policy as implemented in the
mainline client. As mentioned before, a seeder does not take
into account reciprocity. As a consequence, the unchoking
behavior of a seeder is independent of its upload and
download bandwidth. In our experiments, we have exe-
cuted different swarm configurations consisting of various
fractions of slow and fast leechers. We then executed a
single seeder and monitored its unchoking and uploading
behavior.

Figure 8 displays the number of slots unchoked during
the seeder’s lifetime, as well as the slots unchoked specif-
ically to fast leechers for a swarm configuration of 50%
slow peers and 50% fast peers. The effect of the protocol as
described in Section II is clearly visible as a certain number
of fast peers is always unchoked (here 2) while over the

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800

fr
ac

tio
n

time

avg frac fast
model

Figure 9. The average fraction σff of upload slots of a seeder allocated
to fast leechers over its lifetime.

remaining slots a round-robin-like random pattern emerges.
It follows from Eq. (1) with u = 4 that ν should be equal to
2. This is also visible in the figure, as the random unchokes
proceed over exactly two slots.

In Figure 9, the average fraction of slots unchoked to fast
peers over the lifetime of the seeder is plotted, together with
the prediction by our model. The actual measured value
stays very close to the predicted value and after some time
hardly fluctuates anymore.

We performed the above experiment also for other
configurations of the two classes. In Table II, the model
predictions as well as the converged experimental values are
displayed for fractions of 30%, 50%, and 70% fast leechers
in the swarm. For all configurations the deviation from the
model is minimal.

C. Behavior of the leechers

The unchoking behavior of a leecher is more com-
plicated, as it depends on reciprocity and is therefore
dependent on the behavior of other peers, the piece transfers
that are occuring at a specific moment in time, and the
availability of pieces at other peers. In our experiments, we
created a steady state with specific fractions of slow leech-
ers and fast leechers. We monitored the unchoking behavior
of both classes of leechers for all of the leechers in the
swarm. As a specific example of leecher behavior, Figure
10 displays the slot unchoking of a single fast leecher in
a swarm of 50% slow peers and 50% fast peers. Right
after the peer’s arrival, not all slots are unchoked. This is
due to the fact that during the first few rounds a peer has
(almost) no pieces to exchange. After some time all slots are
allocated and the identified pattern becomes visible. Note
however that this is just a single leecher instance. In order
to properly validate our model predictions, we averaged the
fractions of unchoked fast peers over all the monitored slow,
respectively, fast leechers. Figures 11 and 12 display the
average fraction of slots ωff of a fast leecher, respectively,
a slow leecher unchoked to fast leechers. In the early stages
of the download, there are some fluctuations, likely due to
specific piece exchange possibilities. After some time, the

239

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800

sl

ot
s

time

fast
total

Figure 10. The upload slot allocation of a particular leecher in a swarm
with 50% slow peers and 50% fast peers.

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800

fr
ac

tio
n

time

fast to fast
fast to fast model

Figure 11. The average fraction ωff of upload slots of fast leechers
allocated to fast leechers over their lifetime. The data is plotted with a
95% confidence interval.

measured value in both cases quite accurately converges to
the predicted value. For ωff however, the converged value
stays a little under the model prediction.

In Table III the results are displayed for fractions of 30%,
50%, and 70% fast leechers. It is visible that for higher
fractions of fast peers, our model seems more accurate.
For lower fractions of fast peers, the model predicts slightly
higher values for ωff and slightly lower values for ωsf . We
suspect that these differences are caused by probabilistic
effects that arise due to the limited scale of the swarms
in our experiments. When a certain class i has a small
number of peers, the unchoking of a number of peers from
that class significantly influences the number of remaining
peers in that class, and therefore affects the probability
distribution of a random unchoke in the future. For larger
classes this influence becomes negligible. Hence, in future
research we plan to perform large scale experiments on a
parallel-processor machine to further investigate this effect.

VI. RELATED WORK

A variety of generic and specific P2P models has been
proposed in earlier work. Gaeta et al. [3] provide a stochas-

 0

 0.5

 1

 0 100 200 300 400 500 600 700 800

fr
ac

tio
n

time

slow to fast
slow to fast model

Figure 12. The average fraction ωsf of upload slots of slow leechers
allocated to fast leechers over their lifetime. The data is plotted with a
95% confidence interval.

ωff ωsf

% fast peers model exp model exp
30 0.825 0.7612 0.075 0.1186
50 0.875 0.8349 0.125 0.1284
70 0.925 0.9040 0.175 0.1694

Table III
MODEL PREDICTIONS VERSUS EXPERIMENTAL VALUES OF ωff AND

ωsf FOR DIFFERENT FRACTIONS OF FAST PEERS.

tic fluid model for general P2P resource exhanges, but do
not consider BitTorrent-like tit-for-tat mechanisms. Kumar
et al. [2] derive the minimum distribution time in systems
with equal peers, and in systems where one homogeneous
set of peers explicitly forwards bandwidth to another homo-
geneous set of peers (but not vice-versa). Mundinger et al.
[4] introduce a generic model with different upload capac-
ities of peers and present a mixed integer linear program
to determine the minimum distribution time, but they do
not consider tit-for-tat mechanisms. DeFigueiredo et al. [5]
provide performance bounds for the tit-for-tat strategy in
homogeneous systems. They assess the influence of coop-
eration in such systems and argue that there is a trade-off
with tit-for-tat between fairness and efficiency. Qiu et al. [7]
provide a fluid-based model of BitTorrent for homogeneous
bandwidth configurations, which we have extended in this
paper for inhomogeneous swarms. Furthermore, they ana-
lyze the piece distribution efficiency and recommend certain
improvements to the BitTorrent protocol. Parvez et al. [6]
extend the homogeneous model of [7] for analysis of on-
demand media streaming. Xiangying et al. [12] assess the
service capacity and role of resource policies in a similar
way based on homogeneous upload capacities. The authors
focus on a dynamic system and analyze both the transient
phase after the introduction of a file, and the stationary
phase when the performance has more or less stabilized.
Legout et al. [9] provide empirical evidence of bandwidth
clustering in BitTorrent swarms. We have compared their
results with the predictions of our model in Section IV.
Finally, Bendadis et al. [1] analyze bandwidth conservation

240

in systems under various rate requirements such as Video-
on-Demand. An equation for the performance in a tit-for-tat
system is provided under certain limited assumptions, but
further analysis and solutions are ommitted. None of all
these publications provide an accurate model for BitTorrent
swarms with arbitrary bandwidth configurations.

VII. CONCLUSIONS

In this paper, we have provided a generic mathematical
model of bandwidth-inhomogeneous BitTorrent swarms,
based on a detailed analysis of BitTorrent’s unchoke policy
for swarms which consist of N classes of peers with differ-
ent bandwidths. We used our model to analyze clustering
and data distribution in BitTorrent swarms, and showed that
our model accurately predicts the experimental evidence of
bandwidth clustering presented in other work. However,
we showed that this grouping of peers with the same
bandwidth might be misleading in understanding the actual
data distribution in the swarm. In our scenarios, slow
peers mostly unchoked other slow peers, but received most
of their data from fast peers. Furthermore, we validated
our model experimentally for swarms with two classes by
running controlled swarms of BitTorrent clients. In future
work, we plan to perform large scale experiments with more
than two classes to gain more insight into the properties of
bandwidth-inhomogeneous swarms.

ACKNOWLEDGEMENTS

This research was supported by the EU FP6 project P2P-
FUSION with project reference 035249 and by the EU FP7
project P2P-NEXT with project reference 216217.

REFERENCES

[1] F. Benbadis, F. Mathieu, N. Hegde, and D. Perino,
“Playing with the bandwidth conservation law,” in
P2P ’08: Proceedings of the Eighth IEEE Interna-
tional Conference on Peer-to-Peer Computing, 2008,
pp. 140–149.

[2] R. Kumar and K. Ross, “Optimal peer-assisted file dis-
tribution: Single and multi-class problems,” in Proc.
of IEEE Workshop on Hot Topics in Web Systems and
Technologies (HOTWEB’06), July 2006.

[3] R. Gaeta, M. Gribaudo, D. Manini, and M. Sereno,
“Analysis of resource transfers in peer-to-peer file
sharing applications using fluid models,” Performance
Evaluation, vol. 63, no. 3, pp. 149–174, 2006.

[4] J. Mundinger, R. R. Weber, and G. Weiss, “Analy-
sis of peer-to-peer file dissemination amongst users
of different upload capacities,” in SIGMETRICS’06:
Proceedings of the 2006 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of
computer systems. New York, NY, USA: ACM Press,
2006, pp. 5–6.

[5] D. DeFigueiredo, B. Venkatachalam, and S. F. Wu,
“Bounds on the performance of p2p networks using
tit-for-tat strategies,” in P2P ’07: Proceedings of the
Seventh IEEE International Conference on Peer-to-
Peer Computing. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 11–18.

[6] N. Parvez, C. Williamson, A. Mahanti, and N. Carls-
son, “Analysis of bittorrent-like protocols for on-
demand stored media streaming,” SIGMETRICS Per-
form. Eval. Rev., vol. 36, no. 1, pp. 301–312, 2008.

[7] D. Qiu and R. Srikant, “Modeling and performance
analysis of bittorrent-like peer-to-peer networks,” in
ACM SIGCOMM, Portland, OR, USA, August 2004.

[8] B. Cohen, “Incentives Build Robustness in BitTor-
rent,” in Workshop on Economics of Peer-to-Peer Sys-
tems, Berkeley, USA, May 2003, http://bittorrent.com.

[9] A. Legout, N. Liogkas, E. Kohler, and L. Zhang,
“Clustering and sharing incentives in bittorrent sys-
tems,” in SIGMETRICS ’07: Proceedings of the 2007
ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems. New
York, NY, USA: ACM Press, 2007, pp. 301–312.

[10] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “Do incentives build robust-
ness in bittorrent?” in NSDI’07, Cambridge, MA,
April 2007.

[11] “Bittorrent mainline client,”
http://www.bittorrent.com.

[12] X. Yang and G. de Veciana, “Performance of peer-to-
peer networks: service capacity and role of resource
sharing policies,” Performance Evaluation, vol. 63,
no. 3, pp. 175–194, 2006.

241

