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Abstract—Multi-view peer-to-peer (P2P) live streaming sys-
tems have recently emerged, where a user can simultaneously
watch multiple channels. Previous work on multi-view P2P
streaming solves the fundamental inter-channel bandwidth com-
petition problem at the individual peer level, and thus can be
used with very limited types of streaming protocols. In this
paper, we propose a new protocol for multi-view P2P streaming,
called Divide-and-Conquer (DAC), which efficiently solves the
inter-channel bandwidth competition problem using a divide-and-
conquer strategy at the channel level, and thus is flexible to work
with various streaming protocols. This makes DAC more suitable
for upgrading current single-view P2P live streaming systems to
multi-view P2P live streaming systems. Our extensive packet-
level simulations show that DAC is efficient in allocating the
overall system bandwidth among competing channels, is flexible
in working with various streaming protocols, and is scalable in
supporting a large number of users and channels.

I. INTRODUCTION

Peer-to-peer (P2P) live streaming systems have been ex-
tensively studied [1], and most of the earlier works focus on
single-view P2P live streaming, where a user can subscribe to
and watch only one channel at a time. Multi-view1 P2P live
streaming has recently emerged, where a user can simultane-
ously subscribe to and watch multiple channels. For example,
PPStream [2] supports a limited multi-view capability with the
picture-in-picture feature.

In general, multi-view P2P streaming can be used in two
types of applications: 1) Multi-View Internet TV Applications:
Fig 1 illustrates a possible case where a user can enjoy a
high-quality movie channel shown in a large window, while
still being able to monitor the weather information on another
channel displayed in a small window. 2) Multi-Camera Live
Streaming Applications: Fig 2 illustrates a possible case where
a user can watch a stock-car race from several selected
cameras, such as a pit-box camera, a corner camera, and a
driver’s point-of-view camera.

A fundamental difference between single-view and multi-
view P2P streaming is that the latter has a unique inter-
channel bandwidth competition problem, which is how to
optimally allocate the upload capacity of a user among its
subscribed channels. This problem was first studied by Wu

1We use multi-view to refer to the case where a user can simultaneously
watch multiple different channels. These channels are not necessarily corre-
lated like in tele-immersive systems.

Fig. 1. Multi-View Internet TV ap-
plication.

Fig. 2. Multi-camera live streaming
of stock-car racing.

et al. [3] [4]. They proposed a protocol based on game
theory, where all users in a multi-view P2P streaming system
participate in a decentralized collection of bandwidth auctions
with the goal to optimally allocate the system bandwidth
among different channels. However, since the inter-channel
bandwidth competition problem is solved at the individual
peer level, it requires streaming protocols that can efficiently
use the bandwidth allocated for each pair of users, such as
network-coding-based streaming protocols [5].

While the inter-channel bandwidth competition problem
is important for multi-view P2P streaming, another equally
important problem is the choice of the streaming protocol used
within a channel (referred to as the intra-channel streaming
problem). A streaming protocol includes both an overlay
construction method and a block scheduling algorithm, and
it greatly influences the system streaming quality. Various
streaming protocols [1] have been well studied and tested in
the current single-view P2P streaming systems. Since most
commercial P2P streaming systems construct a mesh-based
topology which is resilient to peer churns, in this paper, we
also assume a mesh overlay topology and focus on various
block scheduling algorithms when studying streaming proto-
cols.

Wu et al. [4] solve both the inter-channel bandwidth com-
petition problem and the intra-channel streaming problem for
multi-view P2P streaming systems at the peer level (or in
other words, they solve both problems all at once, referred
to as AAO). Therefore, their solution limits the choices of
streaming protocols to those based on network coding. Even
though network coding has been proven to be feasible for P2P
live streaming [5], especially with relatively cheap GPU [6],
few (if any) commercial P2P streaming systems actually use
it due to various reasons (e.g. the implementation cost, new
hardware requirements at end users etc). More importantly,



since there is no single streaming protocol that is better than
all other streaming protocols in every aspect, commercial P2P
streaming systems actually use different streaming protocols
for different purposes. Therefore, in this paper, we are inter-
ested in the following problem: Can we design a protocol for
multi-view P2P live streaming that can efficiently solve the
inter-channel bandwidth competition problem and is flexible
to incorporate any streaming protocol?

The answer to this question is Yes with our proposed DAC
protocol. Inspired by the divide and conquer strategy, DAC
first divides the overall system problem into several small
channel problems, and then solves each channel problem
separately. Specifically, DAC first solves the inter-channel
competition problem to optimally allocate the bandwidth to
different channels, and then solves the intra-channel streaming
problem individually to achieve a good streaming quality for
each channel.

There are three design goals for DAC: 1) Flexibility: The
system should be able to incorporate various intra-channel
streaming protocols. 2) Efficiency: The system should achieve
a good overall streaming quality (e.g. packet delivery ratios)
for all users across all channels. 3) Scalability: The system
should be able to maintain a good overall streaming quality
in a large-scale system with a large number of channels and
users.

Flexibility and scalability are achieved by the divide and
conquer strategy, in that it solves the inter-channel bandwidth
competition problem and intra-channel streaming problem
separately and divides the large problem into several smaller
problems. Since DAC solves the inter-channel bandwidth com-
petition at the channel level, one challenge of using divide and
conquer strategy is how to effectively measure the information
of each channel (e.g. the total upload bandwidth demand and
supply), so as to achieve a reasonably good accuracy with
affordable measurement overheads. DAC uses the statistical
sampling method based on continuous-time random walk,
which satisfies the accuracy and overhead requirements.

For the efficiency goal, DAC allocates the upload bandwidth
to different channels according to their demands via our
proposed utility-based optimal resource allocation model. This
model is aware of the inter-channel bandwidth competition and
has a larger feasible region than [4] (refer to Sec III-B). We
evaluate DAC with extensive and carefully designed packet-
level simulations and the results show that DAC meets the
three design goals well.

The rest of this paper is organized as follows. Section II
briefly summarizes the related work. Section III describes im-
plementation details of our proposed DAC protocol. Section IV
evaluates the performance of DAC with extensive packet-level
simulations. Finally, we conclude the paper in Section V.

II. RELATED WORK

Related work on multi-view P2P streaming: There is very
little work on multi-view P2P streaming. Liang et al. [7]
present a general framework for future IPTV based on multi-
view P2P streaming, which supports content-based channel

TABLE I
THE COMPARISON OF THREE PROTOCOLS

Design DAC AAO ISO
Concerns
Rationale Divide-and All-At Direct

-Conquer -Once Exten-
-sion

Flexibility Yes No Yes
Efficiency Allocation Allocation No

with Relaxed with Tight
Constraints for larger Constraints for smaller

feasible region feasible region
Scalability Yes Yes Yes
Dynamics Pause DAC Use old values -

in high dynamics and loosely
synchronized

Convergence Yes, < 10 sec for Conditional, -
32 channels, < 10 sec, 4 cha-
20,000 peers nnels, 20,000 peers

selection, multi-channel view customization, and semantics-
aware bandwidth allocation. However, they only consider
how to allocate the download capacity of a user to different
channels. In contrast, our work focuses on how to allocate
the upload capacity of a user to different channels, since
the upload capacity is a more precious resource than the
download capacity in the current Internet. Wang et al. [8] study
the neighbor selection problem in multi-view P2P streaming
systems and propose a simple neighbor selection algorithm
based on peers’ subscribed channels and upload bandwidth.
However, they do not consider how to optimally allocate the
upload bandwidth of peers watching multiple channels.

The most related works are [3], [4] by Wu et al., which
tackle the inter-channel competition and intra-channel stream-
ing simultaneously via organizing decentralized collections of
bandwidth auctions at the peer level (AAO). Even though
the proposed protocol has been proved to achieve Nash-
Equilibrium and optimal allocation with tight constraints, it
requires network coding for intra-channel streaming, which
limits its flexibility of using the existing protocols. Compared
with [3], [4], we solve the two problems separately with the
goal of providing a flexible framework for existing protocols as
well as achieving a good overall performance for all channels.

In Table I, we compare the three protocols DAC, AAO 2 and
ISO. ISO is a direct extension from single-view systems and
different channels are always isolated from one another (refer
to Sec IV). Dynamics refer to the peer churn. AAO converges
quickly when the total bandwidth supply is greater than the
total bandwidth demand; while DAC always converges due to
the relaxed constraints.

There is also extensive research work on related applica-
tions, such as multi-party and multi-stream systems [9], [10],
which include multi-camera video conferencing and 3D tele-
immersion. These applications usually consider a small num-
ber of relatively stable users due to the real-time interactivity
constraint, whereas our multi-view P2P streaming applications
consider a large number of dynamic users.

2Note that AAO refers to the protocol designed by Wu et al. [3] thereinafter,
unless explicitly explained



Related work on intra-channel block scheduling: Since most
of the commercial P2P streaming systems deployed over the
Internet are mesh-based [2], which is resilient to peer churns,
in this subsection, we only briefly summarize various block
scheduling algorithms. Random scheduling is proposed, due
to its simplicity and high performance with proper configura-
tion [11]; Adaptive queue based chunk scheduling [12], mini-
cost scheduling [13], randomized decentralized broadcast-
ing [14] are examples of optimal scheduling algorithms to fully
utilize the resources and achieve the maximum streaming rate.
Other scheduling algorithms include rarest-first scheduling
(DONet/Coolstreaming [15]), Chainsaw [16], PRIME [17] etc.
Network-coding-based streaming protocols, originated from
information theory, enhance the traditional block scheduling
algorithms mentioned above, since they allow information
mixture in peers, which simplifies the block scheduling and
increases the data diversity. Wang et al. [5] perform a reality
check for network coding and [18] proposed a market model
for applying network coding. However, few (if any) commer-
cial P2P streaming systems actually use network coding due
to various reasons (e.g. it requires extra computation at end
users for coding/decoding etc).

The coexistence of different block scheduling algorithms
implies that there is no single streaming protocol that is better
than all other streaming protocols in every aspect. Therefore,
the flexibility to incorporate various streaming protocols is one
of our primary design goals for DAC.

III. THE DIVIDE AND CONQUER PROTOCOL (DAC)

In this section, we introduce the proposed DAC protocol
from the perspective of how DAC meets the three design goals.
We first focus on introducing the divide and conquer strategy
with examples in Sec. III-A, which is the key design rationale
of DAC to achieve flexibility and scalability. Sec. III-B de-
scribes the utility-based optimal bandwidth allocation model
and algorithms, which mainly contributes to the goal of
efficiency. In Sec. III-C and III-D, we discuss the statistical
sampling scheme for channel information measurement and
the distributed method for disseminating bandwidth alloca-
tion results to users, which makes DAC scale well. Finally,
Sec. III-E describes how DAC deals with network dynamics
(e.g. peer joining/leaving etc), which is a critical issue in all
P2P systems.

A. Divide and Conquer Strategy

We explain the basic idea of DAC with the example shown
in Fig 3. There are a total of three channels: A, B, and C.
Some users watch only a single channel, and some users watch
multiple channels. All users watching the same channel form
a single P2P overlay for the channel, and there are some
overlaps between different P2P overlays as shown on the left
side of Fig 3. We do not show the overlay topology for each
channel (i.e. how the users in a P2P overlay are connected to
each other), in order to emphasize that DAC has no specific
requirement on the topology of a P2P overlay.
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Fig. 3. DAC splits three physically overlapping P2P overlays into three
logically disjoint P2P overlays.

To achieve flexibility and scalability, DAC follows the
divide-and-conquer strategy to divide the overlapped overlays
into different independent overlays (corresponding to different
channels). Then, it solves the inter-channel competition at the
channel level, which is different from [3], [4], which solve
the problem at the peer level. Therefore, DAC does not have
any specific requirement for intra-channel streaming protocols.
For example, DAC splits three physically overlapping P2P
overlays into three logically disjoint P2P overlays as shown in
Fig 3. User U2 is split into two logical users UA

2 and UB
2 , each

of which has its own upload capacity and does not interfere
with one another. Note that the upload capacity of physical
user U2 is the sum of the upload capacities of logical users
UA

2 and UB
2 .

B. Optimal Bandwidth Allocation

To achieve the efficiency design goal, DAC properly allo-
cates the peers’ upload bandwidth to their subscribed channels
by considering competitions for upload bandwidth among
these channels due to their upload bandwidth imbalance [3].
As previously mentioned, DAC solves the bandwidth alloca-
tion at the channel level based on the divide and conquer
strategy. Therefore, we first describe how DAC efficiently
splits multiple physically overlapping P2P overlays into mul-
tiple logically disjoint P2P overlays by efficiently splitting
each physical user into multiple logical users, one for each
subscribed channel.

In order to use the divide and conquer strategy and achieve
better scalability, DAC makes the splitting decision for a
group of users who watch the same set of channels, instead
of considering the splitting decision for each individual user.
For example, in Fig 3, DAC considers the splitting decision
for both U5 and U6 together, since both of them watch
channels B and C. Let Θ denote the set of all channels.
For example, Θ = {A,B, C} for Fig 3. For a subset of
channels θ ⊆ Θ, let Sθ denote the set of users, who are
watching just the channels in channel set θ. As an example, if
θ = {B, C}, then user set Sθ (also written SBC) denotes
the set of users watching just channels B and C, and in
Fig 3, SBC = {U5, U6}. A streaming server is considered
as a special user who only contributes its upload capacity and
belongs to the corresponding user set.

For each user set Sθ, DAC considers how to optimally
allocate the total upload bandwidth of all users in Sθ to all
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Fig. 4. A resource allocation graph for a multi-view P2P streaming system
with three channels A, B and C.

channels c ∈ θ. Intuitively, a user set Sθ provides its upload
bandwidth to some channels and a channel c requests upload
bandwidth from some user sets, therefore, we call a user set a
bandwidth supplier and a channel a bandwidth consumer. The
relationship between suppliers and consumers can be described
by a bipartite resource allocation graph G = (S, D,E), where
vertex set S is the set of all suppliers (i.e., S contains Sθ for
any θ ⊆ Θ), vertex set D is the set of all consumers (i.e.,
D contains c for any c ∈ Θ), and edge set E represents the
supplier-consumer relationship (i.e., e = (θ, c) ∈ E iff c ∈ θ).
Fig 4 illustrates the bipartite graph with 7 suppliers and 3
consumers for a multi-view P2P streaming system with M=3
channels: A, B, and C. For example, supplier SBC allocates
its upload bandwidth to consumers B and C.

1) Optimal Bandwidth Allocation Model: With the resource
allocation graph G = (S,D, E), we can model the upload
bandwidth allocation problem as solving the global optimiza-
tion problem below

max
a≥0

∑

(θ,c)∈E

Uθ
c (aθ

c) (1)
subject to

∑

c∈θ

aθ
c ≤ Bθ ∀θ (2)

where Bθ is the total upload bandwidth of all users in Sθ,
and aθ

c is the bandwidth to be allocated from supplier Sθ to
consumer c. Uθ

c (·) is the utility function of c associated with
bandwidth obtained from Sθ. The constraint means that the
total allocated bandwidth from supplier Sθ cannot exceed its
total upload bandwidth.

Compared with [3], we relax the constraint that the total
allocated bandwidth should be greater than or equal to the
desired bandwidth by each consumer, in order to guarantee
the convergence of the algorithm in the case of bandwidth
fluctuations. The measurement of P2P networks [19] shows
that the upload bandwidth fluctuates frequently due to con-
gestion, jitter etc. of the underlying physical network and
peer dynamics (e.g. joining/leaving the overlay). Therefore,
the model for bandwidth allocation should consider the band-
width fluctuation. Otherwise, the convergence of the allocation
algorithm corresponding to the model will be affected when
the fluctuation causes violations to the constraints.

We determine the utility function as follows: the utility
obtained by each channel should be non-decreasing with
respect to the allocated bandwidth. To achieve the efficiency
goal, the solution to problem (1) should allocate bandwidth
based on the demand of each consumer (i.e. to solve the
competitions among different consumers). In order to make (1)
a computationally solvable problem, we follow [20] to assume

the utility function be an increasing and twice differentiable
concave function, which is also practical. The utility function
used in this paper is formulated as

Uθ
c (aθ

c) = Rc log(1 + aθ
c)

where Rc represents the c’s bandwidth demand and the utility
function is always non-negative. Moreover, due to the strict
concavity of the logarithmic function used in the above utility
function, the optimal bandwidth allocation strategy to convex
program (1) is proportionally fair [21], which means that
the solution to (1) allocates bandwidth based on each chan-
nel’s demand. Our proposed protocol DAC uses the sampling
method to determine Rc and Bθ, which is scalable and will
be described in following sections. In the next subsection, we
propose a distributed algorithm for the global optimization
problem (1) for a large-scale system.

2) Algorithms for Solving Convex Problem (1): The dis-
tributed solution to problem (1) is based on the standard dual
decomposition [22], which is referred to Dual-Algorithm in the
remaining of the paper. Before developing the Dual-Algorithm,
we first establish the Lagrangian of (1)

L(a, λ) =
∑

e∈E

Uθ
c (aθ

c) +
∑

θ

λθ(Bθ −
∑

c∈θ

aθ
c)

=
∑

e∈E

[Uθ
c (aθ

c)− λθaθ
c ] +

∑

θ

Bθλθ

=
∑

e∈E

Lc,θ(aθ
c , λ

θ) +
∑

θ

Bθλθ (3)

where e = (θ, c) is an edge in the resource allocation graph
indicating the bandwidth that c obtains from Sθ, λθ ≥ 0 is the
Lagrange multiplier (bandwidth price of multi-view user set
Sθ) associated with the linear capacity constraint (2) of Sθ, and
Lc,θ(aθ

c , λ
θ) = Uθ

c (aθ
c) − λθaθ

c is the Lagrangian associated
with the edge (θ, c) to be maximized on that edge by the
consumer c.

Based on the dual decomposition, each edge e ∈ E whose
starting vertex is c, for the given λθ, solves

a?θ
c (λθ) = arg max

a≥0
[Uθ

c (aθ
c)− λθaθ

c ] ∀c (4)

which is unique due to the strict concavity of Uθ
c (·). The

master dual problem which determines the bandwidth price
of Sθ, is

min
λ

g(λ) =
∑

c

gc(λ) + λT B (5)subject to

λ ≥ 0 (6)

where gc(λ) = Lc,θ(a?θ
c (λθ), λθ). The unique solution to (4)

indicates that the dual function g(λ) is differentiable and
therefore there exists a gradient method that updates the λθ at
each iteration

λθ(t + 1) = [λθ(t)− α(Bθ −
∑

(θ,c)∈E

a?θ
c (λθ(t)))]+ ∀θ (7)

where t is the iteration index, α > 0 is the step size, [·]+
represents the nonnegative orthant projection.



Theorem 1: The Dual-Algorithm solves the problem (1) in
a distributed manner.

Proof Sketch: Due to the concavity of the utility function,
the duality gap for problem (1) is zero. Therefore, the dual
variable λ(t) converges to λ? as t →∞. The solution to (4)
has a unique solution and the primal variable a?θ

c (λ(t)) will
converge to the primal optimal variable a?. Detailed proofs
for the convergence of concave maximizations are available
in [23]. Problem (4) can be independently solved on the edges
at each consumer and the gradient based update (7) can be
independently carried out at each supplier.

We summarize the algorithms carried out at the
consumers and suppliers at round t in Algorithm 1 and 2.

Wait for update messages of λθ1

foreach θ, such that edge (θ, c) ∈ E do2

Independently solve the problem (4) and submit3

the solution to corresponding Sθ

end4

Algorithm 1: Consumer c at round t

Wait for update messages of a?θ
c , ∀(θ, c) ∈ E1

Independently update λθ(t) with the λθ(t− 1) and2

the updated a?θ
c

foreach c, such that edge (θ, c) ∈ E do3

Send the new λθ(t) to consumer c4

end5

Algorithm 2: Supplier Sθ at round t

3) Discussions: What if there are a large number (i.e. M )
of channels and then a large number (i.e. 2M ) of suppliers?
Notice that each supplier Sθ with |θ| = 1 has only one
consumer, so it does not need to run the allocation algorithm 2
and it can directly allocate all of its bandwidth to the consumer.
Furthermore, in order to achieve better scalability, only if
a supplier has a large enough number of users, does it
run the bandwidth allocation algorithm (i.e. the set of users
has sufficiently large impact on the system performance).
Specifically, supplier Sθ runs allocation algorithm 2, only if
Nθ/N > α, where Nθ is the number of users in Sθ (i.e.
Nθ = |Sθ|), N is the total number of users across all channels
(i.e. N =

∑
θ⊆Θ Nθ), and α is a system parameter. Note

that this implies that there are at most 1/α suppliers running
the allocation algorithm. For example, if α = 0.001, then
there are at most 1/α = 1000 concurrent allocations in the
system. If supplier Sθ does not run an allocation, it directly
allocates its bandwidth to its consumers in proportion to their
corresponding streaming rates (i.e. rc for consumer c). For
a system with a large number of channels, this method can
significantly reduce the total number of concurrent allocations
while not greatly affecting the system efficiency (based on our
simulation, for 32 channels with 20,000 peers, it converges
within several seconds). The value of α is determined by
the required accuracy of the bandwidth allocation. Smaller α
provides better accuracy due to better approximation of the
bandwidth allocation in the system.

What if there is insufficient bandwidth for the system? In

case of insufficient bandwidth, the system either suffers a
degraded quality of service, if all the channels are considered
equally important, or provides differentiated quality of service
depending on the priorities of different channels. The proposed
bandwidth allocation program (1) has the potential to provide
differentiated QoS, in that we can change the order of utility
functions based on the priority of each channel. Therefore,
channels with higher priorities have the privileges to obtain
more bandwidth to sustain their service quality than those with
lower priorities.

How to implement the concurrent allocations? We require
that there will be a small group of dedicated allocation servers
in the system, each handling multiple suppliers. The total
number of allocation servers is proportional to the value
of 1/α. We expect that very few allocation servers will be
necessary for a small value of 1/α, such as 1000. Nevertheless,
additional allocation servers can provide better fault tolerance.
The tracker server (bootstrap server) of each channel can
act as the consumer for the channel. Since it only needs to
communicate with a small group of allocation servers for at
most 1/α allocations during each allocation round, we do not
expect that this would overload the tracker server.

C. Measuring System Information Required by the Allocations

In this section, we describe our design choices and imple-
mentation details on how to measure the system information
required by the bandwidth allocation.

1) Information to measure: To allocate its upload band-
width, supplier Sθ must know Bθ which is the total upload
bandwidth of all users watching just the channels in θ. To
determine whether to allocate it bandwidth, supplier Sθ must
know Nθ and N (i.e. whether Nθ/N > α), where Nθ is the
total number of users watching just the channels in θ and N
is the total number of users in the system. The consumer c
use formula Rc = Nc × rc × γ to determine the bandwidth
demand of channel c, which is used in the utility function,
where rc is the streaming rate of channel c and γ is a scalar
for considering the control overhead required by intra-channel
streaming protocols (e.g. random block scheduling achieves
near optimal performance with γ ≥ 1.1 [11]). Since rc and γ
are known for channel c, consumer c only needs to measure
Nc which is the total number of users watching channel c.

2) Design Choices: One straightforward method to measure
the above required information is to use a distributed informa-
tion management system, such as DHT-based RandPeer [24],
to keep track of the information of all users. This method
can accurately measure the required information. However,
in order to keep track of the information of dynamic users
(joining/leaving/failure), this method generates a significant
amount of traffic overhead between users and the information
management system. That is, it is not scalable to systems with
a large number of users and channels.

Instead of directly keeping track of the information of
all users, DAC adopts a sampling method that statistically
measures the information of all users with a reasonably
good accuracy and an affordable traffic overhead. Sampling



methods [25], [26], [27] have been studied recently for se-
lecting peers uniformly at random from a P2P overlay. The
difficulty lies in how to select peers uniformly at random
in a dynamic and heterogeneous P2P overlay, where peers
may join and leave the overlay and have different numbers of
neighbors. There are two types of unbiased sampling methods:
Metropolized Random Walk with Backtracking (MRWB) [26]
method based on Metropolis-Hastings method for Markov
Chains, and Sample and Collide (S&C) [27] method based
on Continuous Time Random Walk. While both the MRWB
method and the S&C method can be used to uniformly sample
the information of peers, the S&C method can also be used to
estimate the total number of peers in a group. Therefore, DAC
chooses the S&C method to measure the required information.

3) Implementation Details: Considering that Bθ = Nθ×bθ

where bθ is the average upload capacity of every user in Sθ,
DAC first measures Nθ and bθ, and then calculates Bθ as Nθ×
bθ. Overall, DAC needs to measure four types of information:
N , Nc for any c ∈ Θ, Nθ for any θ ⊆ Θ, and bθ for any
θ ⊆ Θ.

There are a few sampling servers in the system (for fault-
tolerant reasons), which are responsible for statistically mea-
suring all the required information, and periodically reporting
them to each consumer and each supplier. Below we first
explain how the sampling server measures N , and then explain
how it measures Nc, Nθ and bθ.

Every ∆t time interval, the sampling server uses the S&C
method [27] to measure N as described below.
• The sampling server randomly identifies a series of users

in the system as initiators.
• Each initiator initiates a continuous-time random walk,

which may cross different channels if a visited user
watches multiple channels. The random walk will finally
stop at a uniformly selected user.

• Each selected user reports its information such as its
unique user ID, its upload capacity, and its subscribed
channels to the sampling server.

• The sampling server keeps identifying new initiators until
it obtains the information of n selected users such that
there are exactly β pairs of equal user IDs among these
n selected users (called β collisions in [27]).

• Finally, N can be estimated by solving the following
equation with the standard bisection search.

n−β−1∑

i=0

i

N − i
− β = 0 (8)

According to the theory of the S&C method, any user in the
system can be identified as an initiator, and it does not need to
be uniformly selected. Therefore, any standard P2P neighbor
selection method can be used to identify an initiator. However,
in practice for better accuracy, we try to identify users in
different channels and in different locations of the system.
Note that, the sampling server can identify a series of initiators
back to back, so that multiple continuous-time random walks
can be performed by different initiators simultaneously.

Parameter β is a system parameter determining the accuracy
of the estimation and the overhead of sampling traffic. The
larger the size of a P2P system, the bigger the value of β to
maintain a certain degree of accuracy. For example, based on
our simulation results, for a P2P system with 20,000 users,
β = 50 can achieve a good estimate with less than ±10%
error and a light-weight sampling traffic.

The information Nc, Nθ, and bθ can be measured simul-
taneously while the sampling server is measuring N . Recall
that the sampling server selects n users uniformly at random
in the system, and it knows all the information of these n
users. Therefore, Nc can be estimated by the product of N
times the percentage of n peers watching channel c, Nθ can
be estimated by the product of N times the percentage of n
users watching just the channels in θ, and bθ can be estimated
by the average upload capacity of all users (among these n
users) watching just the channels in θ. We can see that it does
not require any extra sampling traffic to measure Nc, Nθ, and
bθ.

D. Distributing Allocation Results to Users

Because there are at most 1/α concurrent allocations at
the suppliers, the proposed allocations converge very quickly.
Therefore, every ∆t time interval, DAC distributes only the
final allocation results (i.e. the results at the optimal point)
but not the intermediate results to users, in order to reduce the
overhead of control traffic. DAC encapsulates the final results
into a single packet, which is then distributed to all users in
the system by using any standard gossip-style protocol. Note
that the allocation servers do not have to directly distribute
the allocation results to all users; instead, it sends the results
to some randomly selected peers first and the selected peers
will spread the results with the epidemic style update, which
guarantees that all peers will receive the results in O(log(N))
(N is the total number of peers in the system) rounds with high
probability [28]. Even though this packet contains the result
of each allocation, its size is not very large since there are at
most 1/α concurrent allocations. When a user in Sθ receives
the packet, it checks whether the packet contains the result of
allocation Sθ. If so, it allocates its upload capacity among its
subscribed channels according to the received allocation result;
otherwise, it allocates its upload capacity among its subscribed
channels proportional to their corresponding streaming rates
(i.e. rc for channel c). When a new user joins the system
or when an existing user changes its subscribed channels, it
also allocates its upload bandwidth to its subscribed channels
proportional to their streaming rates until it receives a packet
containing the allocation results.

E. DAC Dynamics

An important feature of a real P2P system is user dynamics;
that is, a user may randomly join or leave the system, and
change its subscribed channels. In response to user dynamics,
DAC periodically performs the divide-and-conquer strategy to
divide the system into different sets of logically disjoint P2P
overlays at every ∆t time interval as illustrated in Fig 5. The
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Fig. 5. DAC periodically performs the divide-and-conquer strategy every ∆t
time interval in response to user dynamics.

response time period ∆t is a system parameter, which depends
on how long DAC takes to perform the divide-and-conquer
strategy, how much control overhead DAC generates, and how
dynamic the system is.

DAC sets ∆t on the order of minutes, for example 2 minutes
in our simulations, for the following reasons: 1) It takes only
a short time on order of seconds for DAC to perform the
divide-and-conquer strategy, and then it introduces only a
light-weight control overhead for performing DAC once every
∆t time interval which is on the order of minutes. 2) Recent
P2P measurement studies [29], [30], [15] show that a P2P
system is relatively stable over an interval of minutes, because
most users have a lifetime longer than a minute, and at any
time instant a significant percentage of users (e.g. > 70% on
average reported in [30]) even have a lifetime on the order
of hours. On average, the percentage change of a P2P system
population in a minute [29], [15] is usually less than 1%.
Therefore, we believe that a ∆t on the order of minutes is
fast enough for DAC to respond to user dynamics.

When a new user joins the system or when an existing
user changes its subscribed channels, it allocates its upload
bandwidth to its subscribed channels in proportion to their
streaming rates until it receives a divide-and-conquer result
from DAC. In the special cases when a large number of
users simultaneously join or leave a P2P overlay (e.g. at the
beginning and the end of a program), DAC can detect the sharp
population change and then temporarily pause the divide-
and-conquer strategy until the system population becomes
relatively stable. Therefore, even in these special cases, a
system with DAC should perform at least as good as a system
without DAC.

IV. SIMULATION RESULTS

In this section, we use packet-level simulations to evaluate
the performance of our proposed DAC protocol.

A. Simulation Setup

We have developed a multi-view P2P streaming simulator
based on the single-view P2P streaming simulator originally
developed by Zhang [31]. In addition to supporting multiple
channels and multiple views, the original simulator is also
enhanced so that it can simulate a much larger system with
up to 32 channels and 100,000 users at the packet level.

We simulate three protocols for the inter-channel compe-
tition problem in multi-view P2P streaming: 1) Our DAC
protocol based on the divide-and-conquer strategy; 2) The
protocol [3] by Wu et al. (referred to as AAO) based on the
all-at-once strategy; 3) A reference protocol in which each user
always allocates its upload capacity to its subscribed channels
in proportion to their streaming rates (referred to as ISO) so
that different channels are always isolated from one another.

For all three protocols DAC, AAO, and ISO, we construct
an overlay with a mesh topology for each individual channel.
Since we are interested in the capability of DAC and AAO in
supporting various block scheduling algorithms other than net-
work coding, we simulate two blocking scheduling algorithms:
random scheduling representing simple scheduling algorithms,
and min-cost scheduling [13] representing optimization-based
scheduling algorithms.

In order to evaluate our proposed DAC protocol, we have to
configure three groups of parameters, which are different from
simulations in single-view systems [11]). The three groups of
parameters are: 1) the DAC protocol parameters; 2) the system
bandwidth information parameters; 3) the channel and peer
information parameters.

The DAC protocol parameters include the time interval ∆t
for running DAC (default value is 2 min), the system parameter
α for the maximal number of concurrent allocations (default
value is 0.001), the scalar γ for intra-channel streaming control
overhead (default value is 1.1 [11]), and the collision number
β for S&C sampling (default value is 50, selected based on
our Group I simulations).

The system bandwidth information parameters include the
streaming rate rc for each channel c (default value 300Kbps)
and the resource index for each channel (the total upload band-
width over the total required bandwidth [11] in that channel.
The resource index varies in each group of simulations and
will be provided separately). Note that the resource index for
each channel is calculated based on the ISO protocol, which
allocates multi-view peers’ upload bandwidth based on the
streaming rate of each subscribed channel. To achieve the
desired resource index, we change the fraction of peers with
upload bandwidth of 3 Mbps, 1Mbps, 784Kbps, 300Kbps, and
200Kbps. As in [4] [11], we assume that the peer’s download
bandwidth is enough for sustaining the channel’s streaming
rate.

The channel and peer information parameters include the
number of channels M , the total number of peers N , the
channel structure, and beta distribution parameters y, z. Beta
distribution is a general type of statistical distribution, with the
probability function P (x) = (1−x)z−1xy−1

B(y,z) , where B(y, z) is

the beta function defined as B(y, z) = (y−1)!(z−1)!
(y+z−1)! [32]. We

simulate a multi-view P2P system with one of the following
three types of channel structures illustrated in Fig 9: a) a
chain structure where a user can view only the feeds from
either a single camera or two consecutive cameras in a row
of cameras. b) a mesh structure where every user watches a
random number of channels, and c) a star structure where
there is one popular channel that every user watches. The
population of each channel set is determined as follows: we
first arrange the channel sets in lexicographical order and then
assign a channel set a fraction f of the total number of peers
N , which means the number of peers watching that channel set
is f ∗N . We use the beta distribution to determine the fraction.
Fig 6, 7, 8 illustrate the shapes of population distributions
for chain, mesh, and star channel structures simulated in this



paper with a small number of channels as an example. Since
the shape of the population distribution is determined by beta
distribution, we will give the channel structure with parameters
for the beta distribution in each group of simulations below.

Our simulation results fall into three categories based on
different evaluation motivations for DAC. Group I: we evaluate
the accuracy of sampling and then the impact of different
sampling parameters on DAC. This group of simulation is also
for selecting proper sampling parameter for Group II and III.
Group II: we evaluate the flexibility of DAC compared with
AAO using the two block scheduling algorithms. Group III:
the comprehensive performance evaluation of DAC compared
with ISO.

To compare the performance of DAC with ISO and AAO,
we measure the packet delivery ratio of the system. The packet
delivery ratio of a user for channel c is defined as the ratio of
the total number of packets of channel c received by the user
before the playback deadline to the total number of packets
sent by the streaming server of channel c. The packet delivery
ratio of channel c is defined as the average delivery ratio of
all users watching channel c. Finally, the packet delivery ratio
of the system is defined as the lowest delivery ratio among
all channels. Intuitively, this is because the satisfaction of a
user watching multiple channels is usually determined by the
channel with the worst quality.

B. Group I: Impact of the Sampling Method on DAC

1) Sampling accuracy: Fig 10 shows the impact of collision
number β on the sampling accuracy. We simulate a static
system with a total of 16,800 users, and with a chain channel
structure of 4 channels. We use beta function with parameters
(1,1), whose shape is shown in Fig 6. We can see that when
β is larger than 20, the estimated number of users is very
close to the actual result. DAC sets β to 50 by default, which
can achieve good sampling accuracy for systems with up to
100,000 users based on our simulation results. Fig 11 shows
the estimated number of users in a very dynamic system where
the total number of users first increases quickly from 10,000
to 60,000, and then drops to 20,000. Even in this case, the
sampling method still achieves good accuracy.

2) Impact on DAC: To study the impact of the sam-
pling method on the performance of DAC, we simulate two
protocols: DAC and Oracle (as a reference protocol). The
channel structure and the beta distribution is same as the above
simulations. Oracle is very similar to DAC, except that it has
the accurate information of the system and thus does not use
the sampling method as DAC. We simulate the same system
as the one simulated for Fig 10, where the total bandwidth of
the system is enough to support all channels, but different
channels have different resource indices with ISO. This is
likely to happen in a P2P system with multiple channels as
shown by a recent measurement study of PPLive [29]. The
resource index with ISO for four channels are: 0.9, 1.3, 1.0
and 1.3. Fig 12 shows the bandwidth satisfaction ratio (the
total allocated bandwidth over the total required bandwidth)
of each channel with DAC and Oracle. We can see that when

β is large enough (in this case 20), DAC with the estimated
information achieves very similar results as Oracle.

C. Group II: Flexibility Evaluation DAC vs. AAO

We use two representative block scheduling algorithms as
intra-channel streaming protocols and compare DAC with
AAO. We vary three parameters to show that the perfor-
mances of the two block scheduling algorithms depend on the
flexibility of DAC and AAO. The three parameters are: the
average resource index, the maximum number of neighbors
and the streaming rate. By default, we generate 2000 peers
and 4 channels with a mesh structure (the parameters for beta
distribution is (2,2), whose shape is shown in Fig 7). The
resource indices with ISO for 4 channels are: 0.9, 1.3, 1.0 and
1.3. The default streaming rate is 300 Kbps. The simulation
time for all simulations is 1000 seconds.

From Figs 13, 14, 15, DAC always provides near optimal
performance with both streaming protocols. Compared with
DAC, AAO suffers bad performance, due to its inflexible
design. Fig 13 shows that AAO needs more bandwidth to
provide good performance for both streaming protocols. Fig 14
seems somehow counterintuitive. The reason is that AAO
requires network coding to control the utilization of allocated
bandwidth. Without network coding, the allocated bandwidth
to each neighbor is poorly utilized, when the number of neigh-
bors is large. Fig 15 shows that even with sufficient bandwidth
(average index is 1.15), AAO’s performance fluctuates with
different streaming rates. From the comparison of AAO and
DAC with the two intra-streaming protocols, we can conclude
AAO is not as flexible as DAC.

D. Group III: Performance Evaluation of DAC vs. ISO

1) Systems with a large number of users: We simulate a
system with a chain channel structure of 4 channels (param-
eters of beta distribution are (1,1)). Specifically, the resource
index with ISO is 1.2, 1.0, 1.0, and 0.9 for channels A, B,
C, and D, respectively. Fig 16 shows the packet delivery ratio
of the system for DAC and ISO as the total number of users
increases from 5000 to 20,000. Since the resource index of
channel D with ISO is only 0.9, ISO achieves a poor packet
delivery ratio. We can see that DAC outperforms ISO across
a wide range of system sizes, due to efficiently allocating
bandwidth among different channels. Fig 17 shows the results
with similar simulation setting, except that the system has a
mesh channel structure (parameters for beta distribution are
(2,2)). We can see that DAC also outperforms ISO for a mesh
channel structure.

2) Systems with a large number of channels: We simulate
a system with a star channel structure (parameters of beta
distribution are (0.8,0.8)). The number of channels varies
from 2 to 32. The total bandwidth of the system is enough
to support all channels, but different channels have different
resource indices with ISO. Specifically, the resource index
with ISO is 1.2 for half of the channels and 0.9 for the
other half of channels. The total number of users is 10,000.
Again, we can see that DAC outperforms ISO in a wide range
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Fig. 17. DAC outperforms ISO in systems with
a mesh channel structure when the number of peers
increases from an intermediate scale to a large scale.

of channel numbers, due to efficiently allocating bandwidth
among different channels.

3) Systems with a dynamic number of users: We simulate a
dynamic system with a mesh channel structure of 4 channels
(parameters of beta distribution are (2,2)). The average user
arrival rate is 3 users per second, and the average life time of a
user is 15 minutes. The average number of users is 20,000. The
total bandwidth of the system on average is enough to support
all channels, and the resource index with ISO on average is 1.2,
1.0, 1.0, and 0.9 for channels A, B, C, and D, respectively.
Fig 19 shows the packet delivery ratio of each channel for
DAC and ISO. ISO achieves a good packet delivery ratio for
channels A, B, and C, but not for channel D because channel
D has insufficient bandwidth with ISO. We can see that DAC
achieves a good packet delivery ratio for every channel.

4) Systems with insufficient bandwidth: We simulate a sys-
tem with a chain channel structure of 4 channels (parameters

of beta distribution are (1,1)). The total number of users is
20,000. But the total bandwidth of the system is insufficient
to support all channels. In this case, different channels are
assigned different priorities by changing Rc in the utility
function (e.g. RA is larger than RC , which means that channel
A has higher priority than channel C). Specifically, channels
A and B are assigned the highest priority. Channel C has
lower priority than A and B. Channel D is assigned the lowest
priority. Fig 20 shows the packet delivery ratio of each channel
measured every 10 seconds. We can see that channels A and
B achieve the highest delivery ratio and channel D achieves
the lowest delivery ratio.

V. CONCLUSIONS

In this paper, we propose a flexible, efficient and scalable
protocol called DAC for multi-view P2P streaming systems
using a divide-and-conquer strategy. To achieve flexibility and
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Fig. 20. DAC provides a better packet delivery
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upload bandwidth is insufficient.

scalability, DAC solves the inter-channel competition problem
at the channel level, compared with existing work AAO, which
solves the problem at the peer level. Moreover, DAC integrates
with the statistical sampling module to measure the system
information used by DAC, and achieves reasonably good ac-
curacy with affordable overheads. To meet the efficiency goal,
DAC allocates the upload bandwidth to different channels
according to their demands via our proposed utility based
optimal resource allocation model. Our extensive packet level
simulations show that DAC achieves the three design goals.
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