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Abstract

Peer-to-peer live streaming systems allow a bandwidth-
constrained source to broadcast a video feed to a large
number of users. In addition, a design with high link uti-
lization can achieve high stream rates, supporting high-
quality video. Until now, only tree-based designs have been
shown to achieve close-to-optimal rates in real-life condi-
tions, leaving the question open as to the attainable effi-
ciency of completely unstructured mesh-based approaches.

In this paper we answer that question by showing that
a carefully-designed mesh-based system can achieve close-
to-optimal stream rates. Specifically, we implement and
evaluate a design based on a mesh-based algorithm called
DP/LU. Contrary to tree-based designs, DP/LU uses an un-
structured overlay, which is easier to construct and is highly
resistant to churn. In addition, we introduce mechanisms
for overlay rewiring and source scheduling that lead to sig-
nificant performance improvements.

Our experimental evaluation shows that our design
achieves 95% of the maximum achievable stream rate in a
static environment, and 90% under high churn. This demon-
strates that mesh-based designs are an excellent choice for
scalable and robust high-quality peer-to-peer live stream-

ing.

1. Introduction

Live video streaming services are spreading quickly over
the Internet. Video sharing websites such as YouTube at-
tract millions of users per day, and a large number of TV
channels are already available on the Internet or through
IPTV services provided by ISPs. However, centralized sys-
tems require costly high-bandwidth links at the server. For
instance, YouTube spends $1 million a day for the huge
bandwidth needed by its servers [19].

Peer-to-peer live video streaming, or P2PTV [1, 2, 3, 4,
5, 6], greatly reduces the bandwidth requirements of the
source by making users serve part of the stream to other
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peers downloading the same content. However, many ex-
isting P2PTV systems provide limited video quality (poor
resolution, image freezes, etc.), while others require high-
bandwidth proxies to achieve a high QoS. This poor quality
is due to the limited capacity of most peers, but also to the
use of simple streaming protocols which underutilize the
clients’ uplinks, wasting available bandwidth. This problem
will become more serious as users will soon demand high
definition video, increasing the required stream bitrate.

Motivated by these issues, recent research has focused on
designing systems that achieve close-to-optimal rates [13,
15, 9]. However, most efforts have been directed towards
tree-based approaches, while mesh-based ones have re-
ceived less attention. Indeed, trees can result in highly ef-
ficient designs. Their main advantage is that multiple con-
secutive packets are pushed down the tree along the same
paths, resulting in predictable traffic flows and low control
traffic. Conversely, in a mesh-based system peers typically
make different scheduling decisions for each packet, e.g.,
based on the number of packets already downloaded by the
peer’s overlay neighbors. As a result, per-packet paths and
delivery times are highly variable. Designing a mesh algo-
rithm that achieves high rates and meets playback deadlines
despite such variability is a challenging task.

It is therefore not surprising that tree-based designs are
becoming increasingly widespread. GridMedia [13], a
widely deployed system, achieves near-optimal rates using
a scheme that constructs a set of trees out of an unstructured
overlay. CoolStreaming [1], another popular system, has
recently switched from a mesh to a tree-based design sim-
ilar to that of GridMedia. Furthermore, a recent Planetlab-
based study [10] has even concluded that a mesh-based al-
gorithm called DP/RU, which is analytically shown to be
rate-optimal, cannot achieve high rates in real-life condi-
tions. All this leads to the following question: will tree-
based designs replace mesh-based ones for high-quality live
video streaming?

We believe that the answer is no. To support this, we per-
form a study which shows that a carefully-designed mesh-
based system can achieve near-optimal rates and low dif-
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fusion delays. Specifically, we implement and evaluate
a design based on the DP/LU algorithm, which was re-
cently shown, along with other algorithms, to reach close-
to-optimal streaming rates in a simulation-based study [9].
In the process, we identify some optimizations that increase
the performance of our prototype, and which are applica-
ble to other mesh-based designs. We perform an extensive
experimental evaluation in an emulated environment of up
to 640 nodes. Our measurements show that our prototype
reaches 95% of the maximum achievable rate, that is, a per-
formance equal to or higher than that achieved by other non-
mesh near-optimal designs [13, 15]. Furthermore, we show
that our design is highly scalable and churn tolerant.

To summarize, the contributions of this paper are: 1) we
provide experimental evidence that a mesh-based design
can achieve near-optimal rates while tolerating high churn,
concluding that mesh architectures are strong alternatives
to tree-based ones for high-quality video streaming; 2) we
identify some optimizations which help increase the rate
performance of mesh-based designs; 3) we derive a gen-
eral lower bound for the diffusion delay in heterogeneous
capacity networks, and provide insights on how to optimize
such delay in real live streaming designs.

The remainder of this paper is as follows: Section 2
presents related work. Section 3 describes bounds on de-
lay and rate performance of any scheme. It then presents
two efficient mesh-based algorithms, DP/RU and DP/LU.
Section 4 discusses our design optimizations, and Section 5
shows our evaluation results. Section 6 concludes the paper
and discusses future work.

2. Related work

Early work on peer-to-peer streaming [24, 27, 28] pro-
duced several designs based on single-tree, self-organizing
overlays, showing that application-layer multicast was a
valid alternative to native IP multicast. The main drawback
of these systems was their vulnerability to churn, as well as
a suboptimal link utilization. Thus, subsequent efforts fo-
cused on producing more robust and efficient architectures,
typically dividing the stream into multiple substreams, and
pushing each of them through a different tree. These multi-
tree designs differ mainly in the way they construct the over-
lay. SplitStream [22] relies on Pastry [30], a structured rout-
ing algorithm used in Distributed Hash Tables. Conversely,
Bullet [29] and Chunkyspread [23] construct trees out of an
unstructured overlay.

More recently, a large number of tree-less (also known
as mesh-based) systems have been widely deployed over
the Internet [17, 4, 2, 3, 5] and studied in academic re-
search [26, 25]. These designs are based on unstructured
overlays in which no parent-child relationships exist be-
tween nodes. As a result, the overlay is easier to maintain
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and is highly resistant to churn. In fact, the unstructured
overlay resembles that of file-sharing systems such as Bit-
Torrent [12] and Gnutella [7], known to tolerate high levels
of churn. However, unlike file-sharing applications, these
systems employ algorithms which are designed for real-
time delivery.

Despite the widespread deployment of mesh designs, re-
cent efforts to optimize link utilization have focused on
tree-based overlays. GridMedia [13] and CoolStream-
ing [1] both employ push-pull protocols that seek highly
efficient, stable parent-child relationships. Another recent
algorithm [15] has been shown to achieve high rates by
spreading chunks over a set of n + 1 spanning trees of
limited depth. Given the cost of all-to-all communications,
scalability is ensured by organizing the overlay into a hierar-
chy of small clusters, each acting as a source for lower-level
clusters [16].

While these studies have shown that tree-based designs
can achieve close-to-optimal rates in real-life conditions,
the rate efficiency of mesh-based designs has only been es-
tablished through analysis or simulations [18, 9]. One of the
contributions of this paper is to experimentally show that
mesh-based systems can also achieve near-optimal stream-
ing rates.

3. Optimal mesh-based algorithms

The main goal of live streaming is to deliver stream data
to all clients before their playback deadline. Design effi-
ciency is essentially characterized by the streaming rate that
can be sustained, and by the delay it takes for data to reach
clients from the source.

When the only bandwidth limitations are the uplink ca-
pacities, the maximum achievable streaming rate reads

Us + Z?:l ul}
n

Tmaz = min{us, , (1
where u; is the server’s uplink capacity, u; the capacity of
client 7, and n the number of clients (see Kumar et al. [14]).

In the case of homogeneous bandwidths (i.e., us = u;
u), it has been shown in [9] that for any algorithm, decen-
tralized or not, the delay D verifies D > u~!(logy(n) —
O(1)). In this expression, u is expressed in blocks per sec-
ond, where blocks (i.e., chunks) are the atomic data unit
exchanged between peers.

For heterogeneous environments, no simple characteri-
zation of the optimal delay is available to date. Therefore,
it is impossible to say with our current knowledge whether
any give scheme is delay-optimal or not.

We can however establish a general lower bound on the
maximal delay D of any scheme. This takes the follow-
ing form. Given arbitrary uplink bandwidths ug,u;,7 =



1,...,n, let G(t) denote the corresponding maximal num-
ber of block copies that can be spread in the system, given
that at time O only the source has one block. Then for any
algorithm, and any streaming rate r, the maximal delay D
verifies

D>min(d>0: G(d)—G(d—1/r) >n}. (2)
The detailed argument, with a formal definition of function
@, are provided in the appendix. One insight we learn from
the argument is that, to spread blocks at optimal speed G,
one must target fast peers preferentially to slower ones.

We now present two mesh-based algorithms which can
achieve optimal rates. More details can be found in refer-
ences [18, 9]. Note that there exist other optimal algorithms
which are not mesh-based [15, 14].

3.1. Most deprived peer, random useful
chunk

Massoulié et al. [18] have proposed an epidemic live
streaming algorithm, proven to be rate-optimal for fully
connected overlays and arbitrary node bandwidths. The al-
gorithm, called DP/RU (Deprived Peer / Random Useful),
spreads chunks through the overlay in an epidemic, random-
like fashion. Although the optimality proof assumes a com-
plete graph, simulations show that DP/RU also achieves
near-optimal rates when using a small-degree unstructured
overlay [9].

The algorithm can be described as follows: let P(u) de-
note the set of chunks that a node u has received at a given
time. A node u periodically selects its most deprived neigh-
bor, i.e., the neighbor which maximizes |P(u) \ P(v)| for
all v € S, where S is the set of neighbors of w. Then, it up-
loads a random useful chunk to that node. The term useful
indicates that the receiving node does not already possess
the chunk.

DP/RU is push-based: peers actively push chunks to
their neighbors whenever they can, i.e., when they have
a free upload slot and possess at least one useful chunk.
This is to be contrasted with pull-based systems, in which
clients send download requests to their neighbors. Exam-
ples of pull-based systems are BitTorrent [12] and the orig-
inal CoolStreaming algorithm [17].

In practice, P(u) is computed over a small set of chunks
which the peer is currently interested in downloading. If
seqplay indicates the sequence number of the last chunk
passed to the video player, the peer attempts to download
chunks in the range [segpiay + 1, S€piay +win]. This range
is called the download window, and is a configurable system
parameter. The download window length is typically set to
10-30 seconds worth of chunks.

Besides its proven rate optimality, DP/RU has the follow-
ing desirable properties. Its use with small degrees allows to
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scale to large groups; since it does not rely on trees or struc-
tured overlays, it is resilient to churn; scheduling decisions
are essentially done locally.

In contrast, the Adaptive Queue-based Chunk Schedul-
ing algorithm (AQCS [15]), also proven rate-optimal, re-
quires a fully connected overlay, limiting scalability of the
system. GridMedia and CoolStreaming construct a set of
trees, making the system more complex and more sensitive
to churn. Finally, the Hierarchically Clustered P2P Stream-
ing System [16] requires a centralized management node
that maintains a global view of the network in order to keep
clusters balanced.

That said, mesh-based systems such as DP/RU also have
their disadvantages. Overhead is typically higher compared
to other architectures due to frequent signaling traffic. In
fact, each client must periodically inform its neighbors of
the set of chunks that it possesses (this is known as the
buffer map), so that useful chunks can be selected for trans-
mission. Another problem, common to all push-based al-
gorithms, is due to the presence of collisions. A colli-
sion occurs when two clients concurrently push the same
chunk to the same node. This happens because the algo-
rithm does not coordinate pushes among clients. Unfortu-
nately, DP/RU is even more susceptible to collisions than
completely randomized algorithms, due to its strategy of se-
lecting the most deprived peer. Clearly, collisions should be
avoided as they result in wasted bandwidth from redundant
transmissions. In the next section we will see how to avoid
them completely by switching to a pull-token mechanism.

3.2. Most deprived peer, latest useful chunk

Although DP/RU is known to be rate-optimal, simula-
tions show that its delay performance is not satisfactory [9].
Furthermore, a Planetlab-based study [10] showed that a
practical implementation of DP/RU does not achieve high
streaming rates. The poor performance of DP/RU can be
explained by its random chunk selection, which does not
consider the chunk’s position with respect to the playback
deadline. This results in high delays, which in turn produce
high chunk misses when the download window is small.

However, simulations show that a slight modification to
the algorithm can significantly lower the propagation de-
lay [9]. In this new algorithm, peers select the most de-
prived neighbor as in DP/RU, but push the latest useful
chunk instead of a random useful one. Here latest means
the chunk with the highest sequence number, i.e., the one
most recently generated by the source. Following the same
name convention, the algorithm is called DP/LU. Given its
good rate and delay performance in simulations, we base
our design on the DP/LU mechanism, to which we bring
several improvements.



4. Optimizations

During the implementation and evaluation of our DP/LU
prototype we identified a number of optimizations which
were necessary to achieve high streaming rates. In this sec-
tion we discuss some of them which are not specific to our
design, and which may be useful to other mesh-based archi-
tectures.

4.1. Overlay management

In an overlay with limited degree, distributing high-
capacity nodes uniformly across the system is crucial to de-
liver high streaming rates to all peers. Otherwise, the over-
lay could become unbalanced, leading to lower streaming
rates and deadline misses in low-capacity regions.

We avoid this problem using an overlay management al-
gorithm in which nodes select a set of neighbors according
to their uplink capacities. The scheme works as follows: for
simplicity, all peers have the same maximum degree d. Let
us assume that each peer knows the uplink capacity u; of its
neighbor ¢, with 1 < ¢ < d. Each peer computes the average
value Uy of all u;. We call Uy the average neighborhood
upload capacity of a peer. Intuitively, for the overlay to be
bandwidth-balanced, all peers should have a similar value
of Uy. If the source generates a constant bit-rate stream,
we can use the stream rate r as a reference value for Uy,
since 7 is known by all peers. Thus, each node periodically
compares its Uy to r. If Ug < r, the peer picks the slow-
est neighbor, and replaces it with another randomly chosen
node. Conversely, if Uy > r, the fastest neighbor is re-
placed. Thus, this scheme attemps to bring Uy close to r
for all peers.

Note that this scheme balances the overlay even if the
mean capacity of the system is different than r, as all nodes
compare their Uy to the same reference value. However, it
can also produce unnecessary disconnections by constantly
rewiring the overlay. Two optimizations can reduce the
number of disconnections: first, estimating the mean capac-
ity ¢ of the entire network, and comparing Uy to ¢ instead
of r; second, replacing neighbors only if Uy — ¢| > ac,
with 0 < a < 1 (i.e., using a threshold).

In our current implementation, rewiring is based on nom-
inal uplink bandwidths, that peers declare to their neighbors
when establishing a connection. The nominal bandwidth of
a peer represents the uplink limit specified by the user (most
existing peer-to-peer applications allows users to specify
this). An alternative could consist in making rewiring de-
cisions on the basis of measured download rates. We leave
the evaluation of such alternative schemes for future work.
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Uplink (kbps) | Fraction of nodes
class 1 4000 0.15
class 2 1000 0.25
class 3 384 0.4
class 4 128 0.2

Table 1. Uplink capacity distribution.

4.2. Source scheduling algorithm

During our initial experiments, we found that modify-
ing the source strategy to give preference to faster peers in-
creased the system performance. Moreover, our analysis of
the minimum diffusion delay (see Section 3 and Appendix)
suggests that spreading chunks preferentially to fast nodes
produces delays close to the optimum. Based on these ob-
servations, we have implemented a source push strategy in
which the number of chunks that a peer receives from the
source is proportional to its upload capacity.

Similarly to the rewiring mechanism presented in the
previous section, peers declare their nominal bandwidth to
the source, which uses this information to make scheduling
decisions. Note that this assumes that peers are honest, i.e.,
they do not try to free-ride the system by declaring a false
capacity to the source. Other designs also make similar as-
sumptions regarding peer-source exchanges [15]. Relaxing
this assumptions is left for future work.

4.3. Pull mechanism

In their experimental study of DP/RU, Liang et al. [10]
have pointed out the problem of collisions in push-based
systems (cf. Section 3.1), and provided a solution based on
a pull token mechanism. We implement a similar technique,
which works as follows : let A be a peer which wishes to
push data to one of its neighbors. First, A selects a neigh-
bor B according to the most deprived policy. Then, it sends
a pull token message to B, indicating that it is willing to
transmit up to k chunks, where k depends on the A’s avail-
able uplink bandwidth. Upon receiving the token, B iden-
tifies the latest useful chunks that it can download from A,
and sends back a pull request message containing up to k
chunk sequence numbers. Finally, A sends the chunks that
B requested.

In some cases, a node B receiving a pull token from A
may determine that A has less than & useful chunks. In this
case, B replies with ¢ chunk requests, where ¢ < k. We say
that the remaining k — ¢ chunk transfers have been waived
by B. Upon receiving the reply, node A immediately issues
a new pull token offering the & — ¢ chunk transfers waived
by B to another peer.

The main difference between our scheme and that of
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than 960 kbps.

Liang et al. lies in the choice of k. In their mechanism
k is fixed, and depends on the node’s uplink capacity. Thus,
anode only issues a pull token when it has enough available
bandwidth to transmit &£ chunks. Conversely, in our design
the same sender may issue tokens with different values of k.
For instance, if a node waives w = k — ¢ chunks, the sender
will immediately reissue a new token with k' = k — ¢ to
another node. The rationale is that quickly reissuing tokens
may reduce the delay of the pull token mechanism, decreas-
ing the average propagation delay.

Our current prototype only implements our scheme with
variable k. Thus, we have not compared the efficiency of
the two pull token variants. Nevertheless, our measure-
ments show that our mechanism achieves almost full link
utilization even in the presence of a high number of waived
chunks.

5. Evaluation

We have developed a DP/LU implementation, including
the optimizations described in the previous section. The
prototype is written in C++ and has roughly 6000 lines of
code. We evaluate its performance by deploying it on a local
cluster of 10 PCs plus an emulator machine. In order to
increase the network size in our experiments we run up to
8 clients on each physical machine. Our machines are 2.0
GHz dual-Opterons, with a total of four cores per machine.
Each client takes less than 5% of CPU time, so the impact
of running several clients per core is negligible. We also
perform a 640-client experiment on a bigger cluster with
similar hardware, this time using 30 machines.

‘We emulate uplink capacities and wide-area latencies us-
ing Modelnet [8]. We set the uplink capacities according to
the distribution of Table 1, which is based on a recent mea-
surement study [11], and was also used by other authors to
evaluate various live streaming systems [15]. The average
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uplink capacity of this distribution is around 1 Mbps. The
downlink bandwidth is set to 10 Mbps for all nodes.

Unless otherwise noted, we use a base configuration of
80 clients and 1 source, which also works as tracker. The
maximum node degree is set to 20, except for the source
which is connected to all clients. The source’s uplink is set
to 1.1 Mbps, which yields a maximum sustainable stream
rate of 1040 kbps according to Equation (1). The stream
rate is set to 960 kbps, i.e., 90% of the maximum achievable
rate. The download window is set to 30 seconds, and the
chunk size to 10 KB. All nodes join simultaneously at the
beginning of each experiment, and we let the overlay stabi-
lize for 60 seconds. We then log for 5 minutes the number
of chunks received and missed by each client.

5.1. Delivery rate

In this first experiment we measure the average chunk
delivery rate for various stream rates. The delivery rate of
a client is computed as the total amount of stream data re-
ceived by the client, divided by the duration of the experi-
ment. We then compute the average rate for all clients.

Figure 1(a) shows that the delivery rate is almost perfect
for stream rates up to 960 kbps. At 1040 kbps, the maxi-
mum sustainable rate of the system, our prototype delivers
around 90% of the packets with a 15-second download win-
dow, and 95% with a 30-second window. The 10% and 5%
difference is due to chunk misses, i.e, chunks which are de-
livered to the clients after the playback deadline, and there-
fore are not useful to the video player. Clearly, increasing
the download window increases the time available for peers
to download a chunk, thus lowering the number of misses
(see also Section 5.3).

Besides from the average delivery rate, it is also im-
portant to know how chunk misses are distributed among
clients, and over time. For instance, if chunks misses are
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spread over time, then techniques such as erasure codes [21]
or multiple description coding [22] can be used to limit the
impact of chunk misses on video quality. Conversely, en-
coding techniques may not be effective if a client misses a
large number of consecutive chunks.

To determine the distribution of missed chunks, we mea-
sure the clients’ miss ratio within 10-second intervals. Fig-
ure 1(b) shows that faster clients do better than slower ones.
For instance, clients with 1 Mbps uplink miss less than 2%
of the chunks in 99% of the intervals, whereas 384 kbps
clients may miss up to 12%. There are two reasons behind
this effect: first, fast nodes receive more chunks from the
source than slow nodes, so the average propagation delay
from the source is lower; second, signaling packets (i.e.,
pull requests) experience higher delays in lower bandwidth
clients, increasing the chunk propagation delay. Notice that
4 Mbps clients do slightly worse than 1 Mbps clients. This
is due to the overlay rewiring algorithm, which disconnects
either the fastest or the slowest neighbor of a client, which
are usually 4 Mbps and 128 kbps nodes.

Figure 1(c) shows the effective bitrate that would result
if erasure codes were applied to reconstruct missing chunks,
using a download window of 15 seconds'. The x-axis rep-
resents the percentage of fully-recoverable 10-second inter-
vals, i.e., a measure of the desired robustness of the sys-
tem. Clearly, higher resilience requires more redundancy,
reducing the effective bitrate. Note that for a resilience of
99.9%, the effective bitrate is higher when using a raw bi-
trate of 880 kbps instead of 960 kbps. The reason is that at
960 kbps, the worst 0.1% 10-second intervals exhibit a very
high loss-rate, due to the system working very close to its
maximal capacity. This suggests that in some cases where a
high level of robustness is required it may be better to use a

'We do not actually implement erasure codes. Instead, we assume cod-
ing is applied within 10-second intervals, and we calculate the necessary
redundancy needed to correct a given percentage of the stream.
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lower bitstream with a less redundant code.
5.2. Overlay rewiring

In this section we evalute the effectiveness of the over-
lay rewiring scheme. We compare three configurations: a
static overlay, a dynamic overlay with the standard rewiring
protocol, and the rewiring protocol with a 10% threshold
(i.e., « = 0.1). In all three cases, nodes initially connect
to 20 neighbors chosen at random. The rewiring interval is
set to 30 seconds, and peers use the streaming rate r as the
reference value for the neighborhood capacity Uy . We per-
form three runs for each case and compute the average and
maximum values of the miss ratio.

The bars in Figure 2(a) show the average miss ratio,
whereas the error bars indicate the worst miss ratio among
all clients. While all three cases achieve similar average
miss ratios, the worst miss ratio drops from 30% in the static
overlay to 10% in the dynamic one. With a static overlay, a
client may end up connected to a majority of low-capacity
neighbors, and thus be unable to download enough chunks
from them. The rewiring protocol avoids this situation, by
continuously adapting the overlay such that clients connect
to both fast and slow neighbors. Notice also that using a
10% threshold decreases the average miss ratio, thanks to a
lower number of disconnections.

The effect of the rewiring protocol can also be seen in
Figure 2(b), which compares the distribution of average
neighborhood capacities for the three cases at the end of
the experiment. In the static case, some nodes end up with
an average neighborhood capacity as low as 500 kbps. With
rewiring enabled, nodes get neighborhoods of at least 700-
800 kbps.

Finally, we evaluate the convergence speed of our
rewiring protocol in the worst case scenario, that is, by start-
ing with a completely unbalanced overlay where fast nodes
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are connected to other fast nodes only. Figure 2(c) shows
the maximum, minimum and average values of the neigh-
borhood capacities across the system over time. The system
converges to a steady state in around 300 seconds, that is,
10 rewiring intervals.

5.3. Impact of window length and source
strategy

First, we evaluate the effect of the download window
size. Figure 3 shows the minimum download window
needed to keep the miss ratio below 1%, 2% and 6%, for
three different stream rates. As we saw in Figure 1(a),
the miss ratio can be reduced by increasing the length of
the window. However, we also observe that lower stream
rates require smaller windows. In fact, lowering the stream
rate means that the clients’ uplink become underutilized.
This, in turn, reduces the transmission delay of a chunk, as
more bandwidth is available on each neighbor connection.
Smaller delays reduce the propagation delay, allowing for a
shorter download window.

Second, Figure 4 shows the effect of varying the source
push strategy. We run two experiments, one where the
source pushes chunks to randomly chosen peers, and the
other where faster nodes receive more chunks from the
source (cf. Section 4.2). The curve shows that favoring
faster nodes improves performance significantly.

As discussed in Section 4.2, modifying the source strat-
egy to favor fast peers brings our design closer to a delay-
optimal diffusion scheme. This suggests that delay perfor-
mance could be further increased by modifying the DP/LU
strategy implemented by peers, as the most deprived peer
selection does not consider uplink capacity. Thus, a possi-
ble optimization could consist in giving preference to de-
prived peers which also have high uplink bandwidths. We
leave such optimizations for future work.
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5.4. Scalability

We now evaluate the scalability of our design. First, we
increase the overlay size up to 640 peers and measure the
average miss ratio. Figure 5(a) shows that a near 10-fold
increase has a very low impact on the average miss ratio,
which increases from 0.6% to around 1.25%. This suggests
that the propagation delay of our design grows slowly with
the network size, a property which seems to be shared by
several epidemic algorithms similar to DP/LU [18, 9].

The figure also shows that there is a somewhat sharper
increase in the miss ratio from 320 to 640 clients. This
suggests that the average propagation delay for 640 nodes
is getting close to the 30-second download window. Thus,
for larger network sizes it may be necessary to increase the
download window accordingly.

In a second experiment, we scale up all bandwidths in the
system up to a factor of 10, i.e., uplink capacities as well
as the source stream rate. This allows us to evaluate the
performance of our design for streaming higher-definition
content through faster clients links such as FTTH (fiber-to-
the-tome). In this experiment we reduce the network size
to 40 nodes to avoid congesting our Modelnet core (whose
emulation precision degrades quickly beyond 600 Mbps of
aggregate traffic). Figure 5(d) shows that the average miss
ratio for a 4.8 Mbps stream (5x scaling) is comparable to
that observed at 960 kbps. At 9.6 Mbps (10x scaling), the
average miss ratio increases slightly but remains under 1%.
This shows that our design also scales well with respect to
network capacity.

5.5. Churn

Finally, we evaluate the performance of our system under
churn. First, we simulate continuous, steady-state churn by
killing and restarting a random node every 10 seconds.

Figure 5(b) shows that the average miss ratio always
stays below 2%, confirming the robustness of our unstruc-
tured overlay architecture. The gap and high miss ratios
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Figure 5. (a) Near 10-fold increase in size produces a minor performance drop. (b) (¢) High robustness under continuous churn
(1 join/leave every 10 seconds). (c) (f) Impact of flashcrowd at ¢ = 200. (d) Bandwidths can be scaled with little or no performance

drop (stream rate = 90% max).

observed in the first minute are due to initial node joins.
Notice that some nodes temporarily experience high miss
ratios throughout the experiment, as shown by the relatively
high standard deviation values. These spikes are due to
high bandwidth nodes disconnecting, which prevent some
of their old neighbors from receiving enough data until they
find a replacement neighbor.

Note that the system is working at 90% of its maximum
rate, so there is very little extra bandwidth to compensate
for node disconnections. Figure 5(e) shows the response to
churn when the stream rate is lowered to 800 kbps. We ob-
serve that the standard deviation has dropped significantly.
At this streaming rate nodes have some spare upload capac-
ity, which is used to help clients that are no longer receiving
chunks from disconnected nodes.

Finally, we evalute our system in a flashcrowd scenario.
Flashcrowds occur when a massive number of users join the
system concurrently. We set up an experiment in which 40
nodes simultaneously join an existing overlay of 40 nodes.
Figures 5(c) and 5(f) show the impact of a flashcrowd oc-
curring at t = 200. Although there is a noticeable increase
in the average miss ratio during the flashcrowd, the average
miss ratio stays below 6% for 960 kbps, and around 2% for
800 kbps.
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5.6. Comparison to other designs

We now discuss our prototype’s performance compared
to that of other two recently evaluated systems, AQCS and
GridMedia. The reader should keep in mind that we base
our discussion on measurements from similar, but different
studies. Therefore, the following is an indirect comparison
and should only be considered as indicative.

First, we have shown that the average delivery rate of
our prototype reaches 95% of the maximum achievable rate.
This rate performance is comparable to that achieved by the
AQCS algorithm in a recent experimental study [10], which
used the same bandwidth distribution and stream rates as
our evaluation. Compared to the GridMedia protocol, our
designs seems to deliver higher rates: their system required
overprovisioning bandwidth by 20% to keep the miss ratio
under 1% in a 409-node experiment [13]. Our prototype
achieves the same miss performance with only 10% over-
provisioning (cf. Figure 5(a)).

Second, although we have shown that our prototype
achieves reasonable diffusion delays, there seems to be a
small delay penalty compared to tree and fully connected
overlay designs. Using a 15-second window, AQCS showed
a 0% miss ratio at 960 kbps, whereas we observed a loss of
slightly over 1% for the same configuration. AQCS prob-



ably has a lower delay thanks to a maximum hop count of
two. However, its fully connected overlay limits scalability
to a few tenths of peers. The GridMedia study showed an
average delay of only 2 seconds for their tree-based pro-
tocol. However, their evaluation was less stressful than
ours: they overprovisioned total bandwidth by 20%, used
churn traces with a longer average peer online time (1500-
seconds), and employed a source over 6 times faster than
the stream rate. In particular, a high source capacity allows
multiple copies of a chunk to be pushed through several in-
dependent trees, significantly reducing the average delay. In
fact, measurements not included in this paper show that in-
creasing the source bandwidth from 1.1 to 6 Mbps allows us
to reduce the download window from 30 to 6 seconds with
no degradation of the delivery rate.

6. Conclusions and future work

Recent work on peer-to-peer streaming has focused on
designing systems which maximize the achievable stream-
ing rate. Moreover, recent experimental studies have shown
that tree-based designs can reach close-to-optimal rates in
real-life conditions. However, until now, efficient mesh-
based designs have only been evaluated analytically or
through simulations.

In this paper we have presented an experimental study
which demonstrates that a pure mesh architecture can de-
liver near-optimal rates with low diffusion delays. In ad-
dition, we have identified some optimizations which help
increase the efficiency of mesh-based designs. In particular,
both analytical and experimental evidence suggests that giv-
ing preference to fast nodes can increase the performance of
a system.

Given these encouraging results, we plan to extend our
work and investigate a number of issues not covered in this
paper. First, we plan to further evaluate the use of source
coding (such as erasure codes or multiple description cod-
ing) to minimize the impact of chunk misses on image qual-
ity.

Second, we will look into mechanisms that determine
whether the overlay has enough aggregate uplink capacity
to deliver the stream with acceptable losses. An adaptive
system could enable high-bandwidth helper nodes (inde-
pendent from the source) when a capacity shortage is de-
tected.

Finally, we will study how we can modify algorithms
such as DP/LU to further increase their delay performance
by favoring high capacity nodes not only at the source, but
in all scheduling decisions.
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Appendix

In this section we derive a general lower bound for the
maximum diffusion delay D with arbitrary uplink band-
widths.

Let G(t) represent the largest number of packets that
nodes can send by time ¢, assuming that at time O only the
source node has any packet. Assume without loss of gen-
erality that the uplink bandwidths u1, ..., u, are sorted in
decreasing order: u; > ... > uy,.

The function G can be determined in an iterative manner,
introducing the functions G; which correspond to the same
uplink bandwidths ug, u1, ..., u;, but for which the uplink
bandwidths u; for j > 4 have been set to zero. One then
has the following relations:

Go(t)
Gi(t)

= Lustj,
= Gi_1(t) + [max(0, u;t — 7;),7 > 1],

where 7; = inf{t > 0: G;_1(t) > i}. Then G(t) = G,.(¢).

The proof of the lower bound (2) goes as follows. As-
sume there is a scheme that achieves successful delivery of
all packets to all users with a delay no larger than Dy =
D — € for some positive e. Consider successive packets
D 0,1,...,k generated at times 0,1/r,...,k/r. By
time Dy, by definition of GG, no more than G(Dy) copies
of such packets have been disseminated. By assumption, n
copies of packet 0 have been disseminated. Thus, at most
G(Dg)—n packets with labels 1 or higher have been spread.
By definition of D, G(Dy) —n < G(Dg—1/r). Let D, be
the smallest d > 0 such that G(d — 1/r) > G(Dy) — n. By
the previous inequality, D1 < Dy.
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Consider now the number of packets with label 1 or more
present in the system by time 1/7 4+ Dg. Then by the previ-
ous argument and the definition of G, this is no larger than
G(D1). Again, there are at most G(D) — n such packets
with label 2 or larger, which is smaller than G(D; — 1/r).
Iterating the argument, we find a decreasing sequence of
delays Dy > D1 > D5 ... such that the number of packets
with label ¢ or larger present in the system by time ¢ /r + Dg
is at most G(D;), with the inductive definition:

D;=inf{d >0:G(d—-1/r) > G(D;—1) — n}.
Let D, be the limit lim;_,~, D;. Then necessarily,
G(Ds) =inf{d>0:G(d—1/r) > G(Do) — n}.

Thus for all positive §, G(Doo +9 —1/1) < G(Doo +0) —
n. Recalling the definition of D, it therefore follows that
D, > D. This is however a contradiction, in view of the
condition D > Dy > D..

Here are a couple of remarks regarding this lower bound
on worst case delay.

e In the homogeneous case u; = us = u, and assuming
n = 2!, one has

G(t) = {

Thus under the rate feasibility condition (n +
Du > nr, it can be readily checked that the
bound provided by the proposition lies in the interval

[logy(n), logy(n) + 1].

olut] jf ¢ < 417,
n+ (n—+ 1)(ut — I) otherwise.

o At this stage we do not know if the bound is tight for
arbitrary heterogeneous profiles.

e A more involved argument, relying on Little’s formula
from queueing theory, can be made to show that for
any scheme, the average delay D is lower-bounded as

follows: o
D>D-— / G(s)ds.
D-1/r



