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ABSTRACT
We perform a probabilistic analysis of onion routing. The
analysis is presented in a black-box model of anonymous
communication that abstracts the essential properties of onion
routing in the presence of an active adversary that controls a
portion of the network and knows all a priori distributions
on user choices of destination. Our results quantify how
much the adversary can gain in identifying users by exploit-
ing knowledge of their probabilistic behavior. In particular,
we show that a user u’s anonymity is worst either when the
other users always choose the destination u is least likely to
visit or when the other users always choose the destination u
chooses. This worst-case anonymity with an adversary that
controls a fraction b of the routers is comparable to the best-
case anonymity against an adversary that controls a fraction√
b.
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1. INTRODUCTION
Every day, thousands of people use the onion-routing net-

work Tor [6] to anonymize their Internet communication.
However, the effectiveness of this service, and of onion rout-
ing in general, is not well understood. The approach we
take to this problem is to model onion routing formally all
the way from the protocol details to the behavior of the
users. We then analyze the resulting system and quantify
the anonymity it provides. Key features of our model in-
clude i) a black-box abstraction that hides the underlying
operation of the protocol and ii) probabilistic user behavior
and protocol operation.

Systems for communication anonymity generally have at
most one of two desirable properties: provable security and
practicality. Systems that one can prove secure require as-
sumptions that make them impractical for most communica-
tion applications. Practical systems are ultimately the ones
we must care about, because they are the ones that will
actually be used. However, their security properties have
not been rigorously analyzed or even fully stated. This is
no surprise, because practical anonymity systems have been
deployed and available to study for perhaps a decade, while
practical systems for communications confidentiality and/or
authenticity have been in use almost as long as there have
been electronic communications. It often takes a while for
theory and practice to catch up to each other.

Of the many anonymous-communication design proposals,
onion routing [9] has had notable success in practice. Several
implementations have been made [9, 27, 6], and there was
a similar commercial system, Freedom [1]. As of January
2007, the most recent iteration of the basic design, Tor [6],
consists of over 800 routers, collectively processing an av-
erage of 100MB/s, with an estimated total user population
of 200,000 [17]. Because of this popularity, we believe it is
important to improve our understanding of the protocol.

Onion routing is a practical anonymity-network scheme
with relatively low overhead and latency. It provides two-
way, connection-based communication and does not require
that the destination participate in the anonymity-network
protocol. These features make it useful for anonymizing
much of the communication that takes place over the In-
ternet today, such as web browsing, chatting, and remote
login. Thus, formal analysis and provable anonymity results
for onion routing are significant

In a recent paper [7], we took a first step toward bridging
the gap between provability and practicality by presenting
a formal I/O-automata model of onion routing and prov-
ing anonymity guarantees. In the present paper, we ab-



stract away from that model and treat the network simply
as a black box to which users connect and through which
they communicate with destinations. The abstraction cap-
tures the relevant properties of a protocol execution that
the adversary can infer from his observations - namely, the
observed users, the observed destinations, and the possible
connections between the two. In this way, we abstract away
from much of the design specific to onion routing so that
our results apply both to onion routing and to other low-
latency anonymous-communication designs. The executions
described in [7] disappear from the analysis done herein.

Our previous analysis in the I/O-automata model was pos-
sibilistic, a notion of anonymity that is simply not sensitive
enough. It makes no distinction between communication
that is equally likely to be from any one of a hundred senders
and communication that came from one sender with proba-
bility .99 and from each of the other 99 senders with prob-
ability .000101. An adversary in the real world is likely to
have information about which scenarios are more realistic
than others. In particular, users’ communication patterns
are not totally random. When the adversary can determine
with high probability, e.g., the sender of a message, that
sender is not anonymous in a meaningful way.

Using this intuition, we add a probability measure to the
I/O-automata model of [7]. For any set of actual circuit
sources and destinations, there is a larger set that is con-
sistent with the observations made by an adversary. The
adversary can then infer conditional probabilities on this
larger set using the measure. This gives the adversary prob-
abilistic information about the facts we want the network to
hide, such as the initiator of a communication.

The probability measure that we use models heteroge-
neous user behavior. In the onion-routing protocol specified
in [7], each user chooses a circuit to a destination. We make
this choice probabilistic and have each user choose a desti-
nation according to some probability distribution, allowing
this distribution to be different for different users. We as-
sume that the users choose their circuits by selecting the
routers on it independently and at random.

After observing the protocol, the adversary can in princi-
ple infer some distribution on circuit source and destination.
He may not actually know the underlying probability mea-
sure, however. In particular, it doesn’t seem likely that the
adversary would know how every user selects destinations.
In our analysis, we take a worst-case view and assume that
the adversary knows the distribution exactly. Also, over
time he might learn a good approximation of user behav-
ior via the long-term intersection attack [4]. In this case,
it may seem as though anonymity has been essentially lost
anyway. However, even when the adversary knows how a
user generally behaves, the anonymity network may make it
hard for him to determine who is responsible for any specific
action, and the anonymity of a specific action is what we are
interested in.

We analyze relationship anonymity [19, 25] in our onion
routing model. Relationship anonymity is obtained when
the adversary cannot identify the destination of a user. In
terms of the conventional subject/action specification for
anonymity [19], we can take the action to be communica-
tion from a given user u and the subject to be the destina-
tion. Suggested probabilistic metrics for anonymity applied
to this case include probability assigned to the correct des-
tination [21], the entropy of the destination distribution [5,

23], and maximum probability within the destination dis-
tribution [29]. We will use the probability assigned to the
correct destination as our metric. In part, this is because it
is the simplest metric. Also, any statements about entropy
and maximum probability metrics only make loose guaran-
tees about the probability assigned to the actual subject,
a quantity that clearly seems important to the individual
users.

We look at the value of this anonymity metric for a choice
of destination by a user. Fixing a destination by just one
user, say u, does not determine what the adversary sees,
however. The adversary’s observations are also affected by
the destinations chosen by the other users and the circuits
chosen by everybody. Because those variables are chosen
probabilistically under the measure we added, the anonymity
metric will have its own distribution. Several statistics about
this distribution might be interesting; in this paper, we look
at its expectation.

The distribution of the anonymity metric for a given user
and destination depends on the other users’ destination dis-
tributions. If their distributions are very different, the ad-
versary may have an easy time separating out the actions of
the user. If they are similar, the user may more effectively
hide in the crowd.

We begin by providing a kind of worst-case guarantee to
a user with a given destination distribution by finding the
maximum expectation over the possible destination distri-
butions of the other users. Our results show that the worst
case is when every other user either always visits the desti-
nations the user is otherwise least likely to visit or always
visits his actual destination. Which one is worse depends on
how likely he was to visit his destination in the first place.
If he is unlikely to visit it, it is worse when everybody else
always visits his otherwise least-likely destination, because
the adversary can generally infer that he is not responsible
for communication to that destination. When he is likely to
visit it, the adversary considers him likely to be the culprit
whenever the destination is observed, and so observing that
destination often causes the adversary to suspect the truth.
We give an approximation to the user’s anonymity in these
worst cases for large user populations that shows that on
average it decreases by about the fraction of the network
the adversary controls.

We then consider anonymity in a more typical set of user
distributions. In the model suggested by Shmatikov and
Wang [25], each user selects a destination from a common
Zipfian distribution. Because the users are identical, every
user hides well among the others. As the user population
grows, the anonymity loss in this case tends to the square of
the fraction of the network that is compromised.

1.1 Related Work
Ours is not the first formalization of anonymous commu-

nication. Earlier formalizations used CSP [22], graph theory
and possible worlds [11], and epistemic logic [28, 10]. These
earlier works focused primarily on formalizing the high-level
concept of anonymity in communication. For this reason,
they applied their formalisms to toy examples or systems
that are of limited practical application and can only provide
very strong forms of anonymity, e.g., dining-cryptographers
networks. Also, with the exception of [10], they have at
most a limited ability to represent probability and proba-
bilistic reasoning. We have focused in [7] on formalizing a



widely deployed and used, practical, low-latency system.
Halpern and O’Neill [10] give a general formulation of

anonymity in systems that applies to our model. They
describe a “runs-and-systems” framework that provides se-
mantics for logical statements about systems. They then
give several logical definitions for varieties of anonymity. It
is straightforward to apply this framework to the network
model and protocol that we give in [7]. Our possibilistic
definitions of sender anonymity, receiver anonymity, and re-
lationship anonymity then correspond to the notion of “min-
imal anonymity”as defined in their paper. The other notions
of anonymity they give are generally too strong and are not
achieved in our model of onion routing.

Even earlier formalizations of substantial anonymous com-
munication systems [2, 16] have not been directly based on
the design of deployed systems and have focused on prov-
ability without specific regard for applicability to an im-
plemented or implementable design. Also, results in both
of these papers are for message-based systems, rather than
systems that create a cryptographic circuit prior to commu-
nication. Thus, while illuminating, they are not likely to be
applicable to low-latency communications, and, despite the
title of [2], are not analyses of onion routing.

In this paper, we add probabilistic analysis to the frame-
work of [7]. Other works have presented probabilistic analy-
sis of anonymous communication [21, 24, 30, 3, 4, 15, 13]
and even of onion routing [27]. The work of Shmatikov
and Wang [25] is particularly similar to ours. It calculates
relationship anonymity in mix networks and incorporates
user distributions for selecting destinations. However, with
the exception of [24], these have not been formal analyses.
Also, whether for high-latency systems such as mix net-
works, or low-latency systems, such as Crowds and onion
routing, many of the attacks in these papers are some form
of intersection attack. In an intersection attack, one watches
repeated communication events for patterns of senders and
receivers over time. Unless all senders are on and sending all
the time (in a way not selectively blockable by an adversary)
and/or all receivers receiving all the time, if different senders
have different receiving partners, there will be patterns that
arise and eventually differentiate the communication part-
ners. It has long been recognized that no system design
is secure against a longterm intersection attack. Several of
these papers set out frameworks for making that more pre-
cise. In particular, [3], [4], and [15] constitute a progression
towards quantifying how long it takes (in practice) to reveal
traffic patterns in realistic settings.

We are not concerned herein with intersection attacks.
We are effectively assuming that the intersection attack is
done. The adversary already has a correct distribution of
a user’s communication partners. We are investigating the
anonymity of a communication in which a user communi-
cates with one of those partners in the distribution. This
follows the anonymity analyses performed in much of the
literature [13, 16, 21, 27], which focus on finding the source
and destination of an individual communication. Our anal-
ysis differs in that we take into account the probabilistic
nature of the users’ behavior.

We expect this to have potential practical applications.
For example, designs for shared security-alert repositories
to facilitate both forensic analysis for improved security de-
sign and quicker responses to widescale attacks have been
proposed [14]. A participant in a shared security-alert repos-

itory might expect to be known to communicate with it on
a regular basis. Assuming reports of intrusions, etc. are ad-
equately sanitized, the concern of the participant should be
to hide when it is that updates from that participant arrive
at the repository, i.e., which updates are likely to be from
that participant as opposed to others.

2. TECHNICAL PRELIMINARIES

2.1 Model
We describe our analysis of onion routing in terms of a

black-box model of anonymous communication. We are us-
ing a black-box model for two reasons: First, it abstracts
away the nonessential details, and second, its generality im-
mediately suggests ways to perform similar analyses of other
anonymity networks. It models a round of anonymous com-
munication as a set of inputs owned by users and a set of
outputs owned by destinations. The adversary observes the
source of some of the inputs and the destination of some of
the outputs. This captures the basic capabilities of an ad-
versary in an onion-routing network that controls some of
the routers. In this situation, the adversary can determine
the source of messages when he controls the first router on
the source’s circuit and the destination of messages when he
controls the last router. In order for the adversary always
to be able to recognize when it controls the onion router
adjacent to the circuit source, we assume that the initiat-
ing client is not located at an onion-routing network node.
This is the case for the vast majority of circuits in Tor and
in all significant deployments of onion routing and similar
systems to date. We discuss this assumption further in sec-
tion 5. The black box system can also model a mix network
under attack by a global, passive adversary. Such a model
was used by Kesdogan et al. [12] in their analysis of an
intersection attack.

We add two assumptions to specialize this model to onion
routing. First, we assume that every user owns exactly one
input and is responsible for exactly one output in a round.
Certainly users can communicate with multiple destinations
simultaneously in actual onion-routing systems. However, it
seems likely that in practice most users have at most some
small constant number of active connections at any time,
and the smaller this constant is the fewer possibilities there
are that are consistent with the adversary’s observations.
Therefore, this assumption is a conservative one that gives
the adversary as much power to break anonymity as the
limited number of user circuits can provide. Second, we
assume the adversary can link together an input and output
from the same user when he observes them both. This is
another conservative assumption that is motivated by the
existence of timing attacks that an active adversary can use
to link traffic that it sees at various points along its path
through the network.

Let U be the set of users with |U | = n. Let ∆ be the set
of destinations. A round of communication C in a black-box
system is defined by a selection of a destination by each user,
CD : U → ∆, a set of users whose inputs are observed, CI :
U → {0, 1}, and a set of users whose outputs are observed,
CO : U → {0, 1}. The round C will also be referred to as a
configuration. A user’s input, output, and destination will
be called its circuit.

We include the probabilistic behavior of users by adding
a probability measure over configurations. Let each user u



select a destination d from a distribution pu over ∆, where
we denote the probability that u chooses d as pu

d . Every in-
put and output is independently observed with probability
b. This reflects the probability that the first or last router
of a user’s circuit is compromised when the user selects the
circuit’s routers independently and at random, and the ad-
versary controls a fraction b of the routers. The probability
of a configuration C is the joint probability of its events:

Pr[C] =
Y
u∈U

`
pu

CD(u)

´ “
bCI (u)(1− b)1−CI (u)

”
·
“
bCO(u)(1− b)1−CO(u)

” (1)

For any configuration, there is a larger set of configura-
tions that are consistent with the inputs and outputs that
the adversary sees. We will call two configurations indistin-
guishable if the sets of inputs, outputs, and links between
them that the adversary observes are the same.

Definition 1. Configurations C and C are indistinguish-
able if there exists a permutation π : U → U such that for
all u ∈ U :

1. CI(u) = 1 ∧ CO(u) = 1 ⇒
CI(u) = 1 ∧ CO(u) = 1 ∧ CD(u) = CD(u)

2. CI(u) = 1 ∧ CO(u) = 0 ⇒
CI(u) = 1 ∧ CO(u) = 0

3. CI(u) = 0 ∧ CO(u) = 1 ⇒
CI(π(u)) = 0 ∧ CO(π(u)) = 1 ∧ CD(u) = CD(π(u))

4. CI(u) = 0 ∧ CO(u) = 0 ⇒
CI(π(u)) = 0 ∧ CO(π(u)) = 0

Thus, two configurations are indistinguishable if they have
the same pattern of observed inputs, outputs, and destina-
tions, while allowing the identities of users with unobserved
inputs to be permuted. The adversary relation is an equiv-
alence relation, and, in particular, is symmetric, because,
if C and C are indistinguishable under π, then C and C
are indistinguishable under π−1. Therefore we use the no-
tation C ≈ C to indicate that configurations C and C are
indistinguishable.

2.2 Probabilistic Anonymity
A user performs an action anonymously in a possibilistic

sense if there is an indistinguishable configuration in which
the user does not perform the action. For example, under
this definition a user with observed output but unobserved
input sends that output anonymously if there exists another
user with unobserved input. The probability measure we
have added to configurations allows us to incorporate the
degree of certainty that the adversary has about the subject
of an action. After making observations in the actual con-
figuration, the adversary can infer a conditional probability
distribution on configurations. There are several candidates
in the literature for assessing an anonymity metric from this
distribution. The probabilistic anonymity metric that we
use is the posterior probability of the correct subject. The
lower this is, the more anonymous we consider the user.

We note that the calculation of posterior probabilities
in the black-box model carries down to the I/O-automata
model of [7]. Under a notion of indistinguishability of exe-
cutions, an assumption that all executions of a configuration

are equally likely, and an assumption that the adversary does
not block any circuits, the distribution of the posterior prob-
ability of an otherwise active adversary for any user action
that depends only on a configuration (e.g. that of relation-
ship anonymity) is identical to the one in the associated
black-box model. Thus, the black box is a valid abstraction
of our formal model of onion routing, and the results we
derive for it hold in that more detailed model.

2.3 Relationship Anonymity
We analyze the relationship anonymity of users and desti-

nations in our model. We measure the relationship anonymi-
ty of user u and destination d by the posterior probability
that u chooses d as his destination. The lower this is, the
more anonymous we consider their relationship.

The relationship anonymity of u and d varies with the
destination choices of the other users and the observations
of the adversary. If, for example, u’s output is observed, and
the inputs of all other users are observed, then the adver-
sary knows u’s destination with probability 1. Because we
want to examine the relationship anonymity of u conditioned
only on his destination, we end up with a distribution on the
anonymity metric. We look at the expectation of this distri-
bution. Moreover, because this distribution depends on the
destination distributions of all of the users, we continue by
finding the worst-case expectation for a given user and des-
tination and then examine the expectation in a more likely
situation.

3. EXPECTED ANONYMITY
Because of space limitations, full proofs of some of the

results in this sections are omitted. They are included in
the journal submission, which is available in preprint form
from the authors.

Let the set C of all configurations be the sample space
and X be a random configuration. X is then distributed
according to Equation 1. Let Y be the posterior probabil-
ity of the event that u chooses d as a destination, that is,
Y (C) = Pr[XD(u) = d|X ≈ C]. Y is our metric for the
relationship anonymity of u and d.

3.1 Calculation and Bounds
Let N∆ represent the set of multisets over ∆. Let Π(A,B)

be the set of all injective maps A → B. Let ρ(∆0) be the
number of permutations of ∆0 ∈ N∆ that only permute
elements of the same type:

ρ(∆0) =
Y
δ∈∆

|{δ ∈ ∆0}|!

The following theorem gives an exact expression for the
conditional expectation of Y in terms of the underlying pa-
rameters U , ∆, p, and b:



Theorem 1.

E[Y |XD(u) = d] = b(1− b)pu
d + b2

+
X

S⊆U :u∈S

X
∆0∈N∆:|∆0|≤S

bn−|S|+|∆
0|(1− b)2|S|−|∆

0|

·

0@ X
T⊆S−u:|T |=|∆0|−1

X
π∈Π(T+u,∆0):π(u)=d

pu
d

Y
v∈T

pv
π(v)

+
X

T⊆S−u:|T |=|∆0|

X
π∈Π(T,∆0)

pu
d

Y
v∈T

pv
π(v)

1A2

· [ρ(∆0)]−1(pu
d)−1

0@ X
T⊆S:|T |=|∆0|

X
π∈Π(T,∆0)

Y
v∈T

pv
π(v)

1A−1

(2)

Proof. At a high level, the conditional expectation of Y
can be expressed as:

E[Y |XD(u) = d] =
X
C∈C

Pr[X = C|XD(u) = d]Y (C)

We calculate Y for a configuration C by finding the rel-
ative weight of indistinguishable configurations in which u
selects d. The adversary observes some subset of the cir-
cuits. If we match the users to circuits in some way that
sends users with observed inputs to their own circuits, the
result is an indistinguishable configuration. Similarly, we
can match circuits to destinations in any way that sends cir-
cuits on which the output has been observed to their actual
destination in C.

The value of Y (C) is especially simple if u’s input has
been observed. If the output has not also been observed,
then Y (C) = pu

d . If the output has also been observed, then
Y (C) = 1.

For the case in which u’s input has not been observed, we
have to take into account the destinations of and observa-
tions on the other users. Let S ⊆ U be the set of users s such
that CI(s) = 0. Note that u ∈ S. Let ∆0 be the multiset of
the destinations of circuits in C on which the input has not
been observed, but the output has.

Let f0(S,∆
0) be the probability that in a random con-

figuration the set of unobserved inputs is S and the set of
observed destinations with no corresponding observed input
is ∆0:

f0(S,∆
0) = bn−|S|+|∆

0|(1− b)2|S|−∆0
[ρ(∆)]−1

·
X

T⊆S:|T |=|∆0|

X
π∈Π(T,∆0)

Y
v∈T

pv
π(v)

Let f1(S,∆
0) be the probability that in a random configu-

ration the set of unobserved inputs is S, the set of observed
destinations with no corresponding observed input is ∆0,
the output of u is observed, and the destination of u is d:

f1(S,∆
0) = bn−|S|+|∆

0|(1− b)2|S|−∆0
[ρ(∆)]−1pu

d

·
X

T⊆S−u:|T |=|∆0|−1

X
π∈Π(T+u,∆0):π(u)=d

Y
v∈T

pv
π(v)

Let f2(S,∆
0) be the probability that in a random configu-

ration the set of unobserved inputs is S, the set of observed
destinations with no corresponding observed input is ∆0,

the output of u is unobserved, and the destination of u is d:

f2(S,∆
0) = bn−|S|+|∆

0|(1− b)2|S|−∆0
[ρ(∆)]−1pu

d

·
X

T⊆S−u:|T |=|∆0|

X
π∈Π(T,∆0)

Y
v∈T

pv
π(v)

Now we can express the posterior probability Y (C) as:

Y (C) =
f1(S,∆

0) + f2(S,∆
0)

f0(S,∆0)
(3)

The expectation of Y is a sum of the above posterior prob-
abilities weighted by their probability. The probability that
the input of u has been observed but the output hasn’t is
b(1− b). The probability that both the input and output of
u have been observed is b2. These cases are represented by
the first two terms in Equation 2.

When the input of u has not been observed, we have an
expression of the posterior in terms of sets S and ∆0. The
numerator (f1 + f2) of Equation 3 itself actually sums the
weight of every configuration that is consistent with S, ∆0,
and the fact that the destination of u is d. However, we must
divide by pu

d , because we condition on the event {XD(u) =
d}.

These observations give us the final summation in Equa-
tion 2.

The expression for the conditional expectation of Y in
Equation 2 is complicated and unenlightening. It would be
nice if we could find a simple approximation. The proba-
bilistic analysis in [27] proposes just such a simplification by
reducing it to only two cases: i) the adversary observes the
user’s input and output and therefore identifies his destina-
tion and ii) the adversary doesn’t observe these and cannot
improve his a priori knowledge. The corresponding simpli-
fied expression for the expection is:

E[Y |XD(u) = d] ≈ b2 + (1− b2)pu
d (4)

This is a reasonable approximation if the final summation
in Equation 2 is about (1 − b)pu

d . This summation counts
the case in which u’s input is not observed, and to achieve a
good approximation the adversary must experience no sig-
nificant advantage or disadvantage from comparing the users
with unobserved inputs (S) with the discovered destinations
(∆0).

The quantity (1− b)pu
d does provide a lower bound on the

final summation. It may seem obvious that considering the
destinations in ∆0 can only improve the accuracy of adver-
sary’s prior guess about u’s destination. However, in some
situations the posterior probability for the correct destina-
tion may actually be smaller than the prior probability. This
may happen, for example, when some user v, v 6= u, com-
municates with a destination e, e 6= d, and only u is a priori
likely to communicate with e. If the adversary observes the
communication to e, it may infer that it is likely that u was
responsible and therefore didn’t choose d.

It is true, however, that in expectation this probability
can only increase. Therefore Equation 4 provides a lower
bound on the expected anonymity.

Theorem 2. E[Y |XD(u) = d] ≥ b2 + (1− b2)pu
d

Proof Sketch. As described in the proof of Theorem 1,

E[Y |XD(u) = d] =

b2 + b(1− b)pu
d + (1− b)E[Y |XD(u) = d ∧XI(u) = 0]



An application of the Cauchy-Schwartz inequality shows that
E[Y |XD(u) = d ∧XI(u) = 0] ≥ pu

d .

To examine the accuracy of our approximation, we look at
how large the final summation in Equation 2 can get as the
users’ destination distributions vary. Because this is the only
term that varies with the other user distributions, this will
also provide a worst-case guarantee on expected anonymity.
Our results will show that the worst case can occur when
the users other than u act as differently from u as possi-
ble by always visiting the destination u is otherwise least
likely to visit. Less obviously, we show that the maximum
can also occur when the users other than u always visit d.
This happens because it makes the adversary observe desti-
nation d often, causing him to suspect that u chose d. Our
results also show that the worst-case expectation is about
b + (1 − b)pu

d , which is significantly worse than the simple
approximation above.

As the first step in finding the maximum of Equation 2
over (pv)v 6=u, we observe that it is obtained when every user
v 6= u chooses only one destination dv, i.e. pv

dv
= 1 for some

dv ∈ ∆.

Lemma 1. A maximum of E[Y |XD(u) = d] over (pv)v 6=u

must occur when, for all v 6= u, there exists some dv ∈ ∆
such that pv

dv
= 1.

Proof. Take some user v 6= u and two destinations e, f ∈
∆. Assign arbitrary probabilities in pv to all destinations
except for f , and let ζ = 1−

P
δ 6=e,f p

v
δ . Then pv

f = ζ − pv
e .

Consider E[Y |XD(u) = d] as a function of pv
e . The terms ti

of E[Y |XD(u) = d] that correspond to any fixed S and ∆0

are of the following general form:

ti =
(αip

v
e + βi(ζ − pv

e) + γi)
2

δipv
e + εi(ζ − pv

e) + ηi

This is a convex function of pv
e :

t
′′
i =

2(γi(δi − εi) + βi(δiζ + ηi)− αi(εiζ + ηi))
2

(εi(ζ − pv
e) + δipv

e + ηi)3
≥ 0

The leading two terms of E[Y |XD(u) = d] are constant in
pv, and the sum of convex functions is a convex function, so
E[Y |XD(u) = d] is convex in pv

e . Therefore, a maximum of
E[Y |XD(u) = d] must occur when pv

e ∈ {0, 1}.

The following lemma shows that we can further restrict
ourselves to distribution vectors in which, for every user ex-
cept u, the user either always chooses d or always chooses
the destination that u is otherwise least likely to visit.

Lemma 2. Order the destinations d = d1, . . . , d|∆| such
that pu

di
≥ pu

di+1
for i > 1. Then a maximum of E[Y |XD(u) =

d] must occur when, for all users v, either pv
d1 = 1 or

pv
d|∆|

= 1.

Proof Sketch. Assume, following Lemma 1, that (pv)v 6=u

is an extreme point of the set of possible distribution vec-
tors. Let S 3 u be the set of users with unobserved inputs
and T ⊆ S be those that further have observed outputs. Let
sdk = |{s ∈ S : pu

dk
= 1}|. For 1 < i < j, let m = sdi + sdj .

Holding m constant and trading off sdi and sdj , the expres-
sion for the expectation of Y conditioned on S and T is maxi-
mized when sdi = 0. Therefore, a weighted sum over all such
sets S and T is maximized when |{v ∈ U−u : pv

di
= 1}| = 0.

E[Y |XD(u) = d∧XO(u) = 0] is equal to such a sum. Equa-
tion 2 shows that, whenXO(u) = 1, the conditional expecta-
tion doesn’t vary with the destination distributions pv.

Therefore, in looking for a maximum we can assume that
every user except u either always visits d or always visits
d|∆|. We can use the same idea with d and d|∆| as was used
with di and dj and consider E[Y |XD(u) = d] as we trade off
the number of users visiting them. Doing this shows that
a maximum is obtained either when all users but u always
visit d or when they always visit d|∆|. This is the worst-case
expected anonymity.

Theorem 3. A maximum of E[Y |XD(u) = d] occurs when
either pv

d = 1 for all v 6= u or when pv
d|∆|

= 1 for all v 6= u.

Proof Sketch. Assume, following Lemma 2, that (pv)v 6=u

is such that pv
d = 1 or pv

d|∆|
= 1 for all v 6= u. Let S 3 u

be the set of users with unobserved inputs and T ⊆ S be
those that further have observed outputs. The expression
for the expectation conditioned on S and T is maximized
when |{s ∈ S − u : ps

d = 1}| is 0 or |S|. Which of the
two is the maximum does not depend on S or T , and so
a weighted sum over all such sets S and T is maximized
when |{v ∈ U − u : pv

d = 1}| is 0 or n − 1. E[Y |XD(u) =
d ∧ XO(u) = 0] is equal to such a sum. Equation 2 shows
that, when XO(u) = 1, the conditional expectation doesn’t
vary with the destination distributions (pv)v 6=u.

3.2 Asymptotic Anonymity
The exact value of the maximum of E[Y |XD(u) = d] is

not simple to express, but we can give a straightforward ap-
proximation for large user populations n. We focus on large
n, because anonymity networks, and onion routing in par-
ticular, are understood to have the best chance at providing
anonymity when they have many users. Furthermore, Tor
is currently used by an estimated 200,000 people.

Theorem 4. When pv
d|∆|

= 1, for all v 6= u,

E[Y |XD(u) = d] = b+ b(1− b)pu
d+

(1− b)2pu
d

 
1− b

1− (1− pu
d|∆|

)b
+O

 r
logn

n

!!
(5)

Proof. Let f(n) represent the conditional expectation
of the posterior probability in the case that u’s input and
output are not observed. Observe that in the case that u’s
output is observed Y = 1, because u is the only user that
visits d. Thus E[Y |XD(u) = d] = b+b(1−b)pu

d +(1−b)2f(n).
When u’s input and output are unobserved, the value of

Y depends on the number of other users with unobserved
inputs, s, and the number of those s users with observed



outputs, t. We can then express f as:

f(n) = E[Y |XD(u) = d ∧XI(u) = 0 ∧XO(u) = 0]

=

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!
sX

t=0

bt(1− b)s−t

 
s

t

!

·
pu

d

`
s
t

´
pu

d|∆|

`
s

t−1

´
+
`

s
t

´
=

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!
sX

t=0

bt(1− b)s−t

 
s

t

!

· pu
d(s− t+ 1)

pu
d|∆|

t+ s− t+ 1

Consider the inside sum. It is equal to the expected value

of g0(s, T ) =
pu

d (s−T+1)

pu
d|∆|

T+s−T+1
, where T ∼ Bin(s, b). As s gets

large, Chernoff bounds on the tails show that they contribute
little to the expectation. Let ε0(s) be the terms of the sum
for which t is more than

√
s log s from its expectation, µ0 =

bs:

ε0(s) =
X

t:|t−µ0|>
√

s log s

bt(1− b)s−t

 
s

t

!
g0(s, t)

≤
X

t:|t−µ0|>
√

s log s

bt(1− b)s−t

 
s

t

!
as g0 ≤ 1

≤ 2e−c0 log s/b for c0 < 1/2 and large s

by Chernoff’s inequality

= s−c1 for some c1 > 1/2

Now we look at how much the values of g0 inside the tail
differ from the value of g0 at its expectation. Let ε1(s, t) =
g0(s, t)−g0(s, µ0) be this difference. It can be shown through

direct calculation that ∂ε1
∂t

≤ 0 and ∂2ε1
∂t2

≤ 0. Therefore for

values of t that are within
√
s log s of µ0:

|ε1(s, t)| ≤
˛̨̨
ε1
“
s, µ0 +

p
s log s

”˛̨̨
= O

 r
log s

s

!
by direct calculation

Looking now at the outside sum we have:

f(n) =

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!
24 pu

d(s(1− b) + 1)

s
“
1−

“
1− pu

d|∆|

”
b
”

+ 1

+O(s−c1) +O

 r
log s

s

!#

This is the expectation of a function of a binomially dis-
tributed random variable with mean µ1 = (1−b)(n−1). Let
ε2(n) be the parts of this sum that are greater than k(n−1)

from µ1, k < min(b, 1− b):

ε2(n) ≤
X

s:|s−µ1|>k(n−1)

(1− b)sbn−1−s

 
n− 1

s

!

≤ 2e−c2k2(n−1)/(1−b) for some c2 > 0

by Chernoff’s inequality

= O(e−c3n) where c3 = c2k
2/(1− b)

Let g1 be the non-vanishing inner term of f(n):

g1(s) =
pu

d(s(1− b) + 1)

s
“
1−

“
1− pu

d|∆|

”
b
”

+ 1

As s grows it approaches a limit of:

g∗1 =
pu

d(1− b)

1−
“
1− pu

d|∆|

”
b

Let ε3(s) = g1(s)− g∗1 be the difference from this limit. Di-

rect calculation shows that dε3
ds

≤ 0 and d2ε3
ds2 ≥ 0. Therefore

for values of s within k(n− 1) of µ1:

|ε3(s)| ≤ ε3(µ1 − k(n− 1))

= O(1/n)

Now we can show the desired asymptotic expression for
the entire sum:

f(n) = O(e−c3n) +

µ1+k(n−1)X
s=µ1−k(n−1)

(1− b)sbn−1−s

 
n− 1

s

!

·

"
g∗1 + ε3(s) +O(s−c1) +O

 r
log s

s

!#
= g∗1 +O(e−c3n) +O(1/n) +O(n−c1)

+O

 r
logn

n

!

=
pu

d(1− b)

1−
“
1− pu

d|∆|

”
b

+O

 r
logn

n

!

Theorem 5. When pv
d = 1, for all v 6= u,

E[Y |XD(u) = d] = b2 + b(1− b)pu
d+

(1− b)
pu

d

1− (1− pu
d)b

+O

 r
logn

n

!
(6)

Proof. The proof of this theorem is similar to that of
Theorem 4.

Let f(n) represent the conditional expectation of the pos-
terior probability in the case that u’s input is not observed.
Thus E[Y |XD(u) = d] = b2 + b(1− b)pu

d + (1− b)f(n).



We can express f as:

f(n) = E[Y |XD(u) = d ∧XI(u) = 0]

=

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!

·
s+1X
t=0

bt(1− b)s+1−t

 
s+ 1

t

!
pu

d

`
s
t

´
+ pu

d

`
s

t−1

´`
s
t

´
+ pu

d

`
s

t−1

´
=

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!

·
s+1X
t=0

bt(1− b)s+1−t

 
s+ 1

t

!
pu

d(s+ 1)

s− (1− pu
d)t+ 1

As s gets large, Chernoff bounds on the tails of the inner
sum show that they contribute little to the expectation. Let

g0(s, t) =
pu

d (s+1)

s−(1−pu
d
)t+1

. Let ε0(s) be the terms of the inner

sum for which t is more than
√
s log s from µ0 = b(s+ 1):

ε0(s) =
X

t:|t−µ0|>
√

s log s

bt(1− b)s+1−t

 
s+ 1

t

!
g0(s, t)

≤ s−c1 for some c1 > 1/2

by Chernoff’s inequality

Let ε1(s, t) = g0(s, t)−g0(s, µ0). It can be shown through

direct calculation that ∂ε1
∂t

≥ 0 and ∂2ε1
∂t2

≥ 0. Therefore for

values of t that are within
√
s log s of µ0:

|ε1(s, t)| ≤ ε1
“
s, µ0 +

p
s log s

”
= O

 r
log s

s

!

Looking now at the outside sum we have:

f(n) =

n−1X
s=0

(1− b)sbn−1−s

 
n− 1

s

!

·

"
pu

d

1− (1− pu
d)b

+O(s−c1) +O

 r
log s

s

!#

Let ε2(n) be the parts of this sum that are greater than
k(n− 1) from µ1 = (n− 1)(1− b), k < min(b, 1− b):

ε2(n) ≤
X

s:|s−µ1|>k(n−1)

(1− b)sbn−1−s

 
n− 1

s

!

≤ 2e−c2k2(n−1)/(1−b) for some c2 > 0

by Chernoff’s inequality

= O(e−c3n) where c3 = c2k
2/(1− b)

Now we can show the desired asymptotic expression for

the entire sum:

f(n) = O(e−c3n)

+

(1−b+k)(n−1)X
s=(1−b−k)(n−1)

(1− b)sbn−1−s

 
n− 1

s

!

·

"
pu

d

1− (1− pu
d)b

+O(s−c1) +O

 r
log s

s

!#

=
pu

d

1− (1− pu
d)b

+O

 r
logn

n

!

To determine which distribution is the worst case for large
n, simply examine the difference between the limits of the
expressions in Theorems 4 and 5. It is clear from this that
the worst-case distribution is pv

d = 1, ∀v 6= u, only when

pu
d|∆|

≥ (1−b)(1−pu
d )2

pu
d
(1+b)−b

. This happens when pu
d ≥ 1/2 and

pu
d|∆|

is near 1− pu
d . For pu

d|∆|
small, which we would expect

as it must be less than 1/|∆|, the worst-case distribution
is pv

d|∆|
= 1, ∀v 6= u. In this case the expected assigned

probability is about b + (1 − b)pu
d . This can be viewed as

decreasing the“innocence”of u from 1−pu
d to (1−b)(1−pu

d).
It is also equal to the lower bound on anonymity in onion
routing when the adversary controls a fraction

√
b of the

network.

4. TYPICAL DISTRIBUTIONS
It is unlikely that users of onion routing will ever find

themselves in the worst-case situation. The necessary dis-
tributions just do not resemble what we expect user behavior
to be like in any realistic use of onion routing. Our worst-
case analysis may therefore be overly pessimistic. To get
some insight into the anonymity that a typical user of onion
routing can expect, we consider a more realistic set of users’
destination distributions in which each user selects a desti-
nation from a common Zipfian distribution. This model of
user behavior is used by Shmatikov and Wang [25] to analyze
relationship anonymity in mix networks and is motivated by
observations that the popularity of sites on the web follows
a Zipfian distribution. Our results show that a user’s ex-
pected assigned probability is close to b2 + (1 − b2)pu

d for
large populations, which is the best that can be expected
when there is a b2 probability of total compromise.

Let each user select his destination from a common Zip-
fian distribution p: pdi = 1/(µis), where s > 0 and µ =P|∆|

i=1 1/is. It turns out that the exact form of the distribu-
tion doesn’t matter as much as the fact that it is common
among users.

Theorem 6. When pv = pw, for all v, w ∈ U ,

E[Y |XD(u) = d] = b2 + (1− b2)pu
d +O(1/n)

Proof. Let p be the common destination distribution.



The expected assigned probability can be expressed as:

E[Y |XD(u) = d] = b2 + b(1− b)pu
d+

(1− b)

nX
s=1

bn−s(1− b)s−1

 
n− 1

s− 1

!
sX

t=0

(1− b)s−tbt

·

24 s− 1

t− 1

! X
∆∈Dt:∆1=d

tY
i=2

p∆iψ(s,∆) +

 
s− 1

t

! X
∆∈Dt

tY
i=1

p∆iψ(s,∆)

35
Here, s represents the size of the set of users with unob-

served inputs, t represents the size of the subset of those s
users that also have observed outputs, ∆ represents the t
observed destinations, and ψ(s,∆) is the posterior probabil-
ity.

Let ∆d = |{x ∈ ∆ : x = d}|. The posterior probability ψ
can be expressed simply as:

ψ(s,∆) =
∆d(s− 1)|∆|−1 + pd(s− 1)|∆|

s|∆|

= (∆d + pd(s− t))/s

The sum
P

∆∈Dt:∆1=d

Qt
i=2 p∆iψ(s,∆) calculates the ex-

pectation for ψ conditioned on s and t. The expression for
ψ shows that this depends linearly on the expected value of
∆d. This expectation is simply 1 + pd(t − 1), because one
destination in this case is always t, and each of the other t−1
is d with probability pd. The sum

P
∆∈Dt

Qt
i=1 p∆iψ(s,∆)

similarly depends linearly on the expectation of ∆d, which
in this case is pdt.

With this observation, it is a straightforward calculation
to show that the inner sum over t is simply:

b
pd(s− 1) + 1

s
+ (1− b)pd

We insert this into the larger sum and simplify:

E[Y |XD(u) = d] = b2 + b(1− b)pu
d + (1− b)

·
nX

s=1

bn−s(1− b)s−1

 
n− 1

s− 1

!

·
»
b
pd(s− 1) + 1

s
+ (1− b)pd

–
= b2 + (1− b2)pu

d +O(1/n)

5. CONCLUSIONS AND FUTURE WORK
We expect each user of an anonymity network to have

a pattern of use. In order to make guarantees to the user
about his anonymity, we need to take this into account when
modeling and analyzing the system, especially in light of
previous research that indicates that an adversary can learn
these usage patterns given enough time.

We perform such an analysis on onion routing. Onion
routing is a successful design used, in the form of the Tor
system, by hundreds of thousands of people to protect their
privacy, but, because it was designed to be practical and
because theory in this area is still relatively young, the for-
mal analysis of its privacy properties has been limited. Our

analysis is ultimately based on a formal protocol specifica-
tion, but we show that it can be captured with a simple
black-box model that should lend itself to the analysis of
other anonymity protocols. We investigate the relationship
anonymity of users and their destinations in this model and
measure it with the probability that the adversary assigns
to the correct destination of a given user after observing the
network.

We first consider the worst-case set of user behaviors to
give an upper bound on anonymity. We show that a user’s
anonymity is worst either when all other users choose des-
tinations he is unlikely to visit, because that user becomes
unique and identifiable, or when that user chooses a destina-
tion that all other users prefer, because the adversary mis-
takes the group’s choices for the user’s choice. This worst-
case anonymity with an adversary that controls a fraction
b of the routers is comparable to the best-case anonymity
against an adversary that controls a fraction

√
b.

The worst case is unlikely to be the case for any users;
so we investigate anonymity under a more reasonable model
of user behavior suggested in the literature. In it, users se-
lect destinations from a common Zipfian distribution. Our
results show that, in this case and in any case with a com-
mon distribution, the expected anonymity tends to the best
possible, i.e. the adversary doesn’t usually gain that much
knowledge from the other users’ actions.

Future work includes extending this analysis to other types
of anonymity (such as sender anonymity), extending it to
other anonymity networks, and learning more about the be-
lief distribution of the adversary than just its mean. A big
piece of the attack we describe is in learning the users’ des-
tination distribution, about which only a small amount of
research, usually on simple models, has been done. The
speed with which an adversary can perform this stage of the
attack is crucial in determining the validity of our attack
model and results.

In response to analyses such as that of Øverlier and Syver-
son [18], the current Tor design includes entry guards by de-
fault for all circuits. Roughly, this means that, since about
January 2006, each Tor client selects its first onion router
from a small set of nodes that it randomly selects at ini-
tialization. The rationale is that communication patterns
of individuals are what need to be protected. If an entry
guard is compromised, then the percentage of compromised
circuits from that user is much higher. But, without en-
try guards, it appears that whom that user communicates
with and even at what rate can be fairly quickly learned by
an adversary owning a modest percentage of the Tor nodes
anyway. If no entry guard is compromised, then no circuits
from that user will ever be linked to him. However, if a
user expects to be targeted by a network adversary that can
control nodes, he can expect his entry guards ultimately to
be attacked and possibly compromised. If the destinations
he chooses that are most sensitive are rarely contacted, he
may thus be better off choosing first nodes at random. How
can we know which is better? Extending our analysis to in-
clude entry guards will allow us to answer or at least further
illuminate this question.

Our model also assumes that client connections to the net-
work are such that the initial onion router in a circuit can
tell that it is initial for that circuit. This is true for the over-
whelming majority of traffic on the Tor network today, be-
cause most users run clients that are not also onion routers.



However, for circuits that are initiated at a node that runs
an onion router, a first node cannot easily tell whether it
is the first node or the second—without resorting to other
attacks of unknown efficacy, e.g., monitoring latency of traf-
fic moving in each direction in response to traffic moving in
the other direction. Thus, that initiating edge of the black
box is essentially fuzzy. Indeed, this was originally the only
intended configuration of onion routing for this reason [9].
The addition of clients that do not also function as routers
was a later innovation that was added to increase usability
and flexibility [20, 26]. Similarly, peer-to-peer designs such
as Crowds [21] and Tarzan [8] derive their security even more
strongly from the inability of the first node to know whether
it is first or not. Thus, extending our model and analysis to
this case will make it still more broadly applicable.
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