
A Measurement Study of the Wuala On-line
Storage Service

Thomas Mager, Ernst Biersack, and Pietro Michiardi
EURECOM

Sophia Antipolis, France
{mager,erbi,michiardi}@eurecom.fr

Abstract—Wuala is a popular online backup and file sharing
system that has been successfully operated for several years.
Very little is known about the design and implementation of
Wuala. We capture the network traffic exchanged between the
machines participating in Wuala to reverse engineer the design
and operation of Wuala. When Wuala was launched, it used
a clever combination of centralized storage in data centers for
long-term backup with peer-assisted file caching of frequently
downloaded files. Large files are broken up into transmission
blocks and additional transmission blocks are generated using
a classical redundancy coding scheme. Multiple transmission
blocks are sent in parallel to different machines and reliability is
assured via a simple Automatic Repeat Request protocol on top of
UDP. Recently, however, Wuala has adopted a pure client/server
based architecture. Our findings and the underlying reasons are
substantiated by an interview with a co-founder of Wuala. The
main reasons are lower resource usage on the client side, which
is important in the case of mobile terminals, a much simpler
software architecture, and a drastic reduction in the cost of data
transfers originating at the data center.

I. INTRODUCTION

Storing personal data online using cloud-based storage ser-
vices such as Amazon S3 [1], Google Docs [2], and DropBox
[3] has become business and an effective solution for the needs
of a growing number of users. As a complement to cloud-
based solutions, online storage systems based on a peer-to-peer
(P2P) design have been investigated in academia to cope with
problems related to cost for long-term storage [4], security [5]
and data lock-in [6].

In this work, we focus on a popular online backup and
file sharing system, called Wuala1, that has been successfully
operated for several years. Wuala is particularly interesting
because when it was launched in 2008 it had adopted a hybrid
design, making use of servers in a data center as well as
leveraging resources of the participating peers. However, not
much is known about the design of Wuala. In this work we
present some of the salient features of Wuala and discuss its
recent evolution.

In summary, the goal of this paper is to
• Characterize the infrastructure of Wuala such as the

number of servers involved in the operation of Wuala
and estimate the number of peers

• Determine the data placement adopted by Wuala to
understand the mechanisms used to decide where data
is stored

1See http://www.wuala.com/.

• Understand if and how coding techniques are used to
assure the availability and durability of the data in case
of node failures

• Determine the transport protocol used to move data
between peers and servers

• Describe the evolution Wuala has undergone between
2010 and 2012.

Our findings indicate that Wuala uses a simple, yet clever
system design. Data availability – i.e., making sure that files
are accessible at any time – and durability – that is ensuring
that files are never lost – are achieved by relying on servers
located in a data center, instead of using peers. This simpli-
fies the software architecture and avoids costly maintenance
operations to cope with peer churn. In Wuala, user data is
first interleaved and encoded before it is transmitted via a
UDP-based transport protocol, which allows for parallel data
transfers to improve transfer performance. Our results also
reveal that in Wuala peers are only used as distributed caches
that off-load the servers when delivering frequently-accessed
data.

Recent measurements show that Wuala has evolved towards
a pure client-server model: peer resources are no longer used
and data storage is offered as a cloud-based service addressing
mainly business customers.

The remainder of this paper is organized as follows. In
Section II we explain our experimental methodology used. In
Section III we overview the Wuala architecture, followed by a
discussion on how data is managed in Section IV. We describe
the anatomy of uploading and downloading files, respectively
in Section V and VI. In Section VII we describe the reliable
transport protocol of Wuala. We finally give some details on
recent changes to Wuala and discuss why peer-to-peer based
systems seem to be getting out of fashion before we conclude
the paper.

II. GENERAL EXPERIMENTAL SETUP

We perform a series of experiments and measurements to
elucidate the design and operation of Wuala. This is necessary
since the Java bytecode is obfuscated [7], which prevents
the analysis of Wuala by studying its source code. For our
experiments, we run several Wuala clients in our Lab and
capture all the network traffic between our Wuala clients and
the rest of the Internet. We use two tools to analyze the traffic:

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication
in the IEEE P2P 2012 proceedings

978-1-4673-2862-3/12/$31.00 ©2012 IEEE 237

• Wireshark [8] to inspect and analyze the content of
individual packets or a sequence of packets that are
exchanged between two machines.

• Tstat [9] to compute the relevant information about all the
connections observed such as the total number of bytes
exchanged in each direction, duration of the exchange,
round trip time, loss rate (in case of TCP connections),
etc. Tstat allows us to identify all the other machines
our Wuala client communicates with, the amount of data
exchanged, and the transfer rates achieved.

The Wuala application creates some directories on the local
client. We observe the content of these directories and record
when files are created, modified, or deleted as well as their
size.

Furthermore, by parsing the monitoring interface provided
by the Wuala application on port 33333 we are able to obtain
additional information on the application state such as the
current on-line status as well as events related to incoming
transmission blocks.

Our setup is summarized in Figure 1.

Packet
Analyzer

Wireshark / Tstat

Internet

Vantage Point

TCP / UDP
Tra!c

PeersServers

Wuala Software

Monitoring
Interface

Local
Folders

Data
Collection

Scripts

Figure 1. Experimental Setup

Our client machines are located in France. Most of the
experiments were carried out in mid 2010. However, we
performed new experiments in late 2011 and in early 2012
and we comment in Section VIII on the changes Wuala has
undergone since 2010.

III. WUALA NETWORK ARCHITECTURE

As outlined in [10], the Wuala infrastructure consists of
servers, running in a data center, and client machines, which
we refer to as peers. Such a hybrid architecture attenuates the
impact of the volatility of peers, which may join and leave the
system at any time.

In Wuala, users can select two distinct modes of operation
for their peers: casual peers, which do not contribute any
storage to the network, or storage peers, that trade local
storage for increased storage space within the application2.

As we will see in Section V, whenever a file is uploaded
from a client, a complete copy is first transferred to the Wuala
servers in the data center. In addition, depending on the file
size, some more data may be stored on storage peers.

In order to discover the Wuala network setup, we use three
distinct machines:

2In this paper we do not study the incentive mechanisms used by Wuala.

• Two machines act as storage peers, each offering 100 GiB
of local storage to Wuala. These machines stay on-line
for a period of two months.

• A third machine acting as a casual peer downloading 452
public files (20 GiB in total) over a period of four days.

These three machines are connected via a 100 Mbit/s link to
the Internet. The utilization of this link is low, so our results
should not be affected by access bandwidth limitations.

Based on the output of Tstat, we find that servers use an
immutable port in the range 50012, 51012, . . . , 59012 while
peers – in general – listen on a port in the range 7100, 7101,
. . . , 7600, chosen at random.

In 2010, we identified 295 different IP addresses of Wuala
servers: 293 IP addresses were located in four subnetworks
that belong to Hetzner Online AG [11] in Germany, which is
an Internet hosting service, and 2 IP addresses were located in
Switzerland. Recent measurements at the end of 2011 showed
that the number of IP addresses has further increased: We find
412 servers in Germany, 3 in France, and 3 in Switzerland.

While it is beyond the scope of the paper to estimate the
total size of Wuala, it is still interesting to see the geographical
distribution of the peers. We can get a glimpse by geolocating
all the IP addresses our three test clients had seen in 2010: We
observed 19,078 unique IP addresses of peers running Wuala.
Using Maxmind [12], we obtained the following geographical
distribution for the IP addresses: Germany (36%), Switzerland
(16%), United States (7%), France (7%), Spain (6%), Italy
(3%), and Austria (3%); the remaining 22% were spread across
more than 100 countries.

In the following we try to understand how data is stored in
the Wuala system.

IV. DATA MANAGEMENT IN GENERAL

We now discuss several techniques related to data manage-
ment in Wuala. This includes encoding and encryption of data
as well as data placement.

A. Erasure Coding
Since Wuala uses error correcting codes to produce redund-

ant data for larger files, we first provide a brief overview on
the basics of erasure coding techniques [13].

Erasure coding has been widely used in storage systems
to increase data availability when storing data on unreliable
machines [14] and has also extensively been studied for
peer-to-peer storage systems [15]–[17]. Erasure coding takes
as input a set of k fragments, also referred to as original
fragments or originals for short, and outputs a set of k + h
fragments referred to as coding fragments. The ratio h

k is
referred to as the degree of redundancy. A code for which the
first k coding fragments are identical to the original fragments
is referred to as systematic code. Systematic codes have the
advantage that for reconstructing the original file, decoding
is only necessary if some of the original fragments are lost.
RAID disk arrays are a very prominent example for a storage
system that uses erasure coding. RAID arrays typically use
systematic codes with h = 1, which means a single coding

238

fragment is produced by doing a bit-wise XOR over the k
original fragments. When each of the k+1 fragments is stored
on a different disk, one disk failure can be tolerated without
affecting the data availability.

B. Encryption

Wuala uses encryption to protect user data and meta inform-
ation. As stated by the team of Wuala [10], a cryptographic
tree structure called Cryptree [18] is used.

In fact, we observe that a file enqueued for upload into
Wuala results in a new file of equal size in a local folder.
Since the binary representation of the new file is different from
the original file, we conclude that the file has been encrypted
locally.

Further, Wuala uses convergent encryption [19], which
means that the key for encrypting a file is derived from the
file content using hashing. If different users upload the same
file, the encrypted file will be byte by byte identical, which
allows Wuala to perform duplicate detection and store the
file only once. We confirm this behaviour by uploading two
identical files from two different machines and user accounts
in sequence: the second upload is skipped.

C. Data Placement

Since the encrypted copy of the file is stored in a temporary
folder on our local client, it is possible to compare the content
of the encrypted file with the data that are uploaded, in order
to see how a file is uploaded to the network. We upload files
of many different sizes into Wuala and capture all the network
traffic for analysis with Tstat and Wireshark.

Using this method, we observe that Wuala treats files
differently depending on their size. Also, this treatment is
independent of the operational mode, casual or storage peer,
of the client.

For “tiny files” (0 KiB - 4 KiB), the whole file is embedded
into metadata information and is transferred to a single server
using TCP. Instead, “small files” (4 KiB - 292 KiB) are
replicated twice and transferred to distinct servers via TCP.
“Medium files” (292 KiB - 1 MiB) are first erasure-coded
(using fragments of 10 KiB) and then transferred to a variable
number of servers using UDP. Finally, “big files” (exceeding
1 MiB) are encoded with the procedure described in the
following section, and transmitted to both, servers and peers
using UDP as transport protocol.

We are also able to determine the placement strategy for
all metadata (e.g. file names, folder structure, and file sizes):
A newly installed Wuala client does not open any connection
to another peer during log-in or while browsing directories in
the user interface. From this we conclude that metadata are
not stored in a distributed hash table on the peers but in a
centralized repository on the servers.

V. ANATOMY OF AN UPLOAD OPERATION

This section focuses on the upload of big files, which are
the only ones that are uploaded to both, Wuala servers and

peers. Before we present the details, we sketch the high level
steps that are executed when uploading a big file:

1) Store a local copy of the file, apply convergent encryption
[18], [19] and organize the content in transmission blocks
(see Section V-A);

2) Contact a coordinator server T to obtain a list of servers
A and upload transmission blocks to a subset S ✓ A of
servers (see Section V-C);

3) The uploaded file is indicated to the user as completely
uploaded;

4) Contact a coordinator server T to obtain a list of peers
B and upload additional transmission blocks to a subset
P ✓ B of peers (see Section V-D);

5) Update T with the list of peers P ✓ B that were selected
to store additional transmission blocks.

We see that Wuala prioritizes server uploads over client up-
loads: the operation is considered successful when a sufficient
number of transmission blocks is safely stored on servers in
the data center. The machines in a data center generally have
higher availability and more bandwidth than remote peers.

In the following, we present in more detail some of the steps
performed during the upload operation.

A. Generation of Transmission Blocks
In order to infer the coding procedure used by Wuala, we

compare the binary representation of a temporary encrypted
big file, which is stored locally, with the data finally transferred
to different machines. The results of this comparison reveal the
procedure presented in the following.

Files of size S KiB are first partitioned into f = dS/100e
segments of 100 KiB size. Each of these segments is then
encoded independently using a systematic code. For this pur-
pose, a segment is broken into k = 100 original fragments of 1
KiB that are encoded to obtain n = k + h coding fragments
of 1 KiB each, which make up one coding block. In this
way, segment i, i 2 {1, . . . , f} results in n coding fragments
Ci,1, ..., Ci,n. For transmission over the network, the coding
fragments C1,j , ..., Cf,j for a given j, j 2 {1, . . . , n} are
all grouped into one transmission block Tj , j 2 {1, . . . , n}
according to a technique known as interleaving [20].

Therefore, the size of the transmission block is a function
of the size of the file. A file of size S KiB will consist of
f = dS/100e segments that will be transmitted to the servers
as n transmission blocks of f KiB each. Since the first 100
transmission blocks contain the unencoded content of a file,
we label them original transmission blocks, while successive
erasure coded transmission blocks are called additional trans-
mission blocks. Figure 2 illustrates this procedure in detail.

As the maximum file size in Wuala is currently limited to
14 GiB, the biggest transmission block can have a size of 140
MiB.

To reconstruct the content of a segment, the decoding
operation requires any 100 out of n coding fragments that
make up that segment. As we will see later in Section VII,
this fact is used in Wuala to greatly simplify the data transfer
protocol.

239

Transmission

Blocks

...

1.1 1.2 1.100

1.1

1.2

1.100

1.101

1.n

...

...

2.1 2.2 2.100

2.1

2.2

2.100

2.101

2.n

...

...

f.1 f.2 f.100

f.1

f.2

f.100

f.101

f.n

...

. . . .

1. 100 KiB Segment 2. 100 KiB Segment f. 100 KiB Segment

O
ri
g

in
a

l

C
o

d
in

g

F
ra

g
m

e
n

ts

E
ra

s
u

re
 C

o
d

e
d

C
o

d
in

g

F
ra

g
m

e
n

ts

f KiB

f KiB

f KiB

f KiB

f KiB

O
ri
g

in
a

l
A

d
d

it
io

n
a

l

Figure 2. Generation of Transmission Blocks

B. Use of Obfuscation

Inspecting the content of the data packets exchanged
between the client and the coordination server T shows that
the IP addresses of potential sinks are obfuscated. However,
since we know that many servers are located in the subnetwork
188.40.0.0/16, the first two bytes of the binary representation
of the IP address should rarely change. This knowledge allows
us to identify a simple obfuscation technique that consists
in a bitwise XOR operation of the IP addresses with the
sequence 0xb3b3b3b3 (as shown in Figure 3). This obfuscation
scheme is evident since subsequent connections to servers
match exactly the obtained IP addresses.

10111100.00101000.00111101.11101000

10110011.10110011.10110011.1011001100001111.10011011.10001110.01011011

Resulting IP Address
(188.40.61.232)

Received Data Obfuscation Bit Sequence

XOR

Figure 3. Obfuscating Procedure to Mask Server IP Addresses

C. Uploads to Servers

By inspecting the packet traces and repeatedly uploading the
same files from different peers at the same time, we discover
that the coordination server T uses – based on transmission
block identifiers – a simple hashing scheme for the server
selection. For this purpose, the uploading peer sends a batch
of 20 sequence numbers to the coordinator T, starting at 0.
These sequence numbers each identify one of the transmission
blocks to be uploaded. Subsequently, the server T replies with
a list of 20 obfuscated server IP addresses. Since the server
T deterministically chooses these servers, we assume that the
transmission block identifiers are hashed together with the

file hash. The resulting hash can be used for lookup in a hash
table on server T to determine the placement of transmission
blocks on servers. However, due to the limited number
of servers, hashing can result in collisions, which in our
case means that the coordination server will assign multiple
transmission blocks to the same server. Storing more than
one transmission block on the same server does not improve
the availability as does storing each transmission block on a
different server. Therefore, the upload of transmission blocks
to servers is done in two phases, as described in the following.

Upload of Original Transmission Blocks: The inspection of
datagrams transferred indicates that the upload to servers
begins by uploading original transmission blocks in parallel:
first two concurrent connections are established; if the
available upload bandwidth permits, the client initiates more
parallel connections until saturation.

The placement of the original transmission blocks is spe-
cified by the data center:

1) The peer sets up a reliable TCP connection to a Wuala
coordination server T and sends 20 sequence numbers.

2) The server T replies with a list of 20 servers.
3) The peer uploads to each of these servers one original

transmission block.
4) This step is repeated five times until all original trans-

mission blocks are uploaded.
In this phase, the peer strictly follows the placement

instructions given by the coordinator T and different original
transmission blocks may be placed on same server, since the
list of servers returned by T may contain servers that already
store a transmission block belonging to that file.

Upload of Additional Transmission Blocks: Once all
original transmission blocks are uploaded, the client uploads
additional transmission blocks to the servers:

1) The peer sends 20 sequence numbers to the Wuala

240

coordination server T.
2) The server T replies with a list of 20 candidate servers.
3) The peer uploads additional transmission blocks to those

servers in the list to which the client has not already
uploaded any transmission block related to the same file.

4) These steps are repeated a certain number of times.
The upload of additional transmission blocks is done to in-

ject redundancy: not only servers may crash, but as mentioned,
the same server may hold multiple original transmission
blocks, which affects resiliency to failures.

Despite the many experiments we performed, we could not
derive the exact number of additional transmission blocks h
produced by Wuala. In our experiments h varied between 17
and 40.

0 10 20 30 40 50
0

20

40

60

80

100

120

Time [seconds]

S
e
rv

e
r

[#
]

Original

Transmission

Blocks

Additional

Transmission

Blocks

1 Transm. Block

2 Transm. Blocks

3 Transm. Blocks

Figure 4. Upload Activity to Servers

500 1000 1500 20000

50

100

150

200

250

Time [seconds]

P
ee

r [
#]

Figure 5. Upload Activity to Peers

Figure 4 illustrates the upload process to servers for a file of
size 100 MiB from one of our measurement clients. On the y-
axis we show the unique servers selected to store transmission
blocks: a horizontal line indicates the time it takes for one or
more blocks to be transferred; each transmission block is of
size 1 MiB. The server upload results in 135 transmission

blocks sent to 120 distinct servers. First the 100 original
transmission blocks are uploaded, followed by 35 additional
transmission blocks uploaded in 3 batches. In total, the upload
consists of 144 MiB.

Once the server upload is completed, a file is safely stored
and available, even if the Wuala client goes offline.

D. Uploads to Peers
Usually, the Wuala client will stay on-line after the file

has been uploaded to the server. As our traces indicate,
once a file has been transferred to the servers, the upload
process continues by uploading additional transmission blocks
to remote storage peers.

If we look at the trace of the single file upload we discussed
in the previous section, we observe that once the server
upload completes, another 250 remote peers are used to store
additional 273 transmission blocks. Figure 5 depicts such
upload activity to storage peers. It is interesting to note that
only a few uploads are performed at the same time. As we
will substantiate in Section VI, storage peers participating in
Wuala are used as content caches. Uploading to peers therefore
does not affect the availability and durability of the file.

In contrast to the server selection mechanism described
above, data placement on peers is essentially random. Our
traces indicate that a Wuala client obtains from the Wuala
coordination server a random list of peers before uploading
transmission blocks. We also find that remote peers can store
more than one transmission block that is part of the same file,
although this rarely happens.

Figure 5 shows the activity for the upload to different peers.
As can be seen, the transmission rates to peers can vary a
lot. We try to determine whether the selection of peers is
biased. For this purpose we use our storage peer offering
storage space to Wuala over a period of several months.
We observe the number of incoming transmission blocks per
day using the monitoring interface of Wuala. In Figure 6
we see that the number of incoming transmission blocks
increases with increasing on-line time, which indicates that
the coordination server has a bias in the peer selection towards
storage peers with larger up-times. This approach is sensible
since it enhances data availability on peers [21].

E. Maintenance
We want to understand the maintenance policy of Wuala. In

fact, a pure P2P storage system requires frequent maintenance
of stored files to achieve a given level of redundancy, which
implies the generation and upload of additional transmission
blocks. We want to understand if the peer that owns the file is
involved in the maintenance, as is typically the case in a P2P
storage system [17].

We carried out the following experiment, which involves
one of our Wuala clients operating as a casual peer. From
this peer we upload a 100 MiB file into Wuala. Over the next
month we monitor the outgoing communication of our casual
peer: While the encrypted representation of the uploaded file
remains in the temporary folder of the casual peer, we cannot

241

0 15 30 45 60 75 90 105 120
0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

2QíOLQH�7LPH�>GD\V@

,Q
FR
P
LQ
J�
7U
DQ
VP

LV
VL
RQ
�%
OR
FN
V�
>�
@

Figure 6. Incoming Transmission Blocks per Day

detect any further upload operations. In Section VI we will see
that one week after the file was uploaded, its availability on
peers is already fairly low. To keep it available, maintenance
would already have been necessary.

While we can conclude that the peers are not involved in
data maintenance, we cannot tell if there is some maintenance
that is completely internal to the data center. On this topic we
could obtain more information by communicating with one of
the co-founders of Wuala. Luzius Meisser from Wuala told us
[22], that Wuala tries to have transmission blocks belonging
to a single file stored on at least 116 servers. As soon as a file
is spread across less than 108 different servers, a maintenance
operation is triggered in order to have transmission blocks
on 116 different servers. Using this information we can
approximate a lower bound for the availability of stored files.
If we assume for Wuala servers an availability of 0.99, the file
availability is at least [15]:

Afile =
108X

i=100

✓
108

i

◆
0.99i(1� 0.99)108�i ⇡ 0.999998 (1)

VI. ANATOMY OF A DOWNLOAD OPERATION

Similar to Section V, we now study the download opera-
tion. Our traces indicate that downloading a file involves the
following steps:

1) Contact a coordination server T for a list of servers S and
peers P that hold a transmission block related to the file;

2) Start transfer of transmission blocks from servers S;
3) Start transfer of transmission blocks from peers P;
4) Each established transfer from a peer p 2 P replaces one

transfer from a server s 2 S;
5) The encrypted file is reconstructed in a temporary folder;
6) Optional: Contact T again for a list of peers P0 and upload

additional transmission blocks to peers A ✓ P0;
7) Send T the list of peers A storing additional transmission

blocks.
Our goal is to characterize the mechanism used to select

the sources of transmission blocks (servers, peers) and to

corroborate the findings of Section V-D, i.e., that peers are
mostly used as content caches. This approach has already been
investigated by [23]. In summary, our results indicate that data
durability and data availability are achieved using servers in a
data center. However, whenever possible, the burden of serving
files – especially popular ones – is delegated to peers. Also,
the download operation involves one more step that resembles
to data maintenance: if a file is requested, its availability on
peers is restored.

We now describe our experiments in detail. We instruct our
Wuala client to download the same 100 MiB file that he had
uploaded previously. One download is performed immediately
after the upload operation was completed and another one is
performed one week later.

Figure 7(a) indicates, on the y-axis, the source identifier and
type (server or peer): horizontal lines represent the amount of
time required for attempts or full downloads of a transmission
block. Similarily, Figure 7(b) shows the amount of traffic from
each sink for the same transfer. Clearly, peers provide most
of the fragments of the downloaded file in the immediate
download case. Recall from Section V that our client uploaded
250 transmission blocks to remote peers. We also note that our
client establishes many parallel connections [24], among them
a substantial number to servers. However, within a short time
after the start of the download, some data transfers are diverted
to peers. This happens as soon as first connections to peers are
successfully established. In this respect, the reliable transfer
protocol described in Section VII plays an important role, as
it is possible to switch sources for downloading a file at any
time: missing coding fragments within a transmission block
can be individually indicated to the source. We see that servers
generally guarantee a fast startup of a file transfer, while
subsequent transfers from peers take over the transfers as soon
as possible. For this particular experiment, our measurements
indicate that 87 servers provided 21 MiB worth of data,
whereas 97 MiB were served by a total of 90 peers.

Figures 7(c) and 7(d) show how the situation changes when
the download operation is initiated one week after the upload.
In this experiment, 86 transfer sessions were opened to servers
and only 26 to peers. The download resulted in 100 MiB worth
of data from servers and 23 MiB from peers. Clearly, this
indicates scarce data availability on peers. Barely 10% of the
250 peers that had received transmission blocks a week before
contribute to the download. Since we certainly expect more
than 10% of the same users still to use Wuala after one week
we explain this by the fact that peer up-times are low.

Our traces also indicate that downloading the file after
one week triggers the upload of new transmission blocks
from our peer to some randomly selected remote peers: A
total of 112 transmission blocks have been uploaded. These
additional uploads serve to refresh the peer caches: subsequent
downloads for the same file will be served predominantly by
peers. Especially for flash crowds, when a file is requested in
a short timespan by a large number of users, this approach can
help reduce the outgoing traffic from the servers in the data
center.

242

0 20 40 60
0

20

40

60

80

100

120

140

160

Time [seconds]

S
ou

rc
e

[#
]

P
ee

rs
S

er
ve

rs

(a) Download Right after Upload: Activity per Source over Time

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

Traffic [MiB]

S
ou

rc
e

[#
]

P
ee

rs
S

er
ve

rs

(b) Download Right after Upload: Data Traffic per Source

0 10 20 30 40
0

20

40

60

80

100

Time [seconds]

S
ou

rc
e

[#
]

P
ee

rs
S

er
ve

rs

(c) Download One Week after Upload: Activity per Source over Time

0 1 2 3
0

20

40

60

80

100

Traffic [MiB]

S
ou

rc
e

[#
]

P
ee

rs
S

er
ve

rs
(d) Download One Week after Upload: Data Traffic per Source

Figure 7. Download at different points in time

VII. TRANSFER OF CODING FRAGMENTS

We now focus now on the transport protocol used to reliably
transfer big files. Our traces indicate that Wuala uses UDP,
which does not offer any loss recovery. Therefore, it is the
application that must cope with lost, duplicated, or reordered
datagrams. We first introduced packet loss using iptables
to see how much loss Wuala can tolerate: For a 100 MiB file,
the upload completed as long as the loss rate was not above
10% packet loss, whereas the download completed even for
loss rates up to 90%.

We now explain our methodology to infer from our traces
how Wuala performs error detection and recovery. First we
note that the sender of a transmission block transmits a burst
of datagrams with a size from 1,040 to 1,047 bytes. In fact,
each of these datagrams, which we shall further call content

datagrams, contains 1,024 bytes of payload data that exactly
correspond to one coding fragment (see figure 2). The receiver
occasionally sends small status datagrams of 36 bytes. The
number of content datagrams sent in response to a status
datagram depends on a variable window size. The window
size starts with 1 and is increased until it reaches a maximum
window size of 16. To analyze each datagram type more
closely, we use a Chi-Square like test as proposed by Finamore
et al. [25]. This test reveals how the values taken by a group
of bits deviates over several datagrams from a theoretical
random distribution. This information helps us to determine
the boundaries of fields, identify fields that stay constant or
are incremented. We use 4 bit groups in the following tests.

First, we analyze content datagrams by taking a set of 1000
datagrams from one transfer of a transmission block from

243

a single source. In the header of the content datagram we
can identify a sequence number increasing by one for each
content datagram. For a fully transferred transmission block,
this number covers exactly the number of coding fragments
the transmission block consists of.

Performing the Chi-Square test on 500 datagrams of one
transfer session mixed with 500 datagrams of another transfer
session allows to identify the header field that contains the
identifier that uniquely indicates the transfer session. Given
this information, a receiver is able to assign each incoming
coding fragment to the proper position in the transmission
block. Since UDP datagrams are delivered atomically, a coding
fragment is either delivered completely or not at all. Duplicate
datagrams or delivery in wrong order are, due to the identifiers
in the header, easy to detect. The protocol also needs to deal
with lost datagrams. To find out how this is done we also
need to analyze the content of the status datagrams sent by
the receiver.

Applying the same procedure as above to the analysis of
the status datagrams, we also find a unique identifier for each
transfer session. We are able to identify a mechanism in the
status datagrams to address missing coding fragments within
a transmission block. An offset in combination with a bitmap
of 7 bytes is used to tell the sender which coding fragments
to transfer next. Since the bitmap is able to address only
56 successive coding fragments, the offset is used to shift
the bitmap during the transfer in order to be able to cover
all fragments that are part of the same transmission block.
Whenever needed, this technique also allows the receiver to
switch to another data source for missing coding fragments.
Remember that thanks to the erasure coding used (see Figure
2), for a segment to be correctly received the receiver can use
any set of 100 different coding fragments.

This procedure corresponds to a pull-based approach [26]:
it not only allows to request the missing coding fragments
individually, but also allows the receiver to individually adapt
the rate at which new fragments arrive.

VIII. RECENT CHANGES TO WUALA

The results presented so far are based on measurements
made in mid 2010. In the mean time, significant modifications
have been made to the Wuala architecture [27]. In this section
we first present an outline of the new system design, followed
by a discussion on the reasons for this modification.

A. New Storage System
The most important change made in the release issued at

the end of 2011 is that Wuala no longer stores data on peers
(see Section V): peers are not used as content caches anymore,
and the Wuala architecture is now a purely centralized one.
In this Section, we present measurement results that elucidate
the data management in general and the new storage system
called blobs, which is still in a beta stage; we also focus
on upload and download operations. In the following, we
adopt the same experimental setup as introduced in Section II.

Data Management: In order to reassess the data management
strategy used in the new release of Wuala, we proceed by
uploading a number of files with different sizes, as we did in
Section IV. Our traces show that all files in the new storage
system are indeed uploaded to servers only, corroborating the
fact that Wuala is now a pure server-based file sharing and
backup system. Again, the size of a file determines how data
is transferred to and stored on the servers. Our traces also
indicate that a new file fragmentation scheme is used.

Files smaller than 4 KiB in size (c.f. tiny files, Section IV)
are embedded into metadata and uploaded to a single server,
as in the previous version of Wuala. Instead, Short files with
sizes between 4 KiB and 128 KiB are now simply transferred
reliably via TCP to a single server. All files exceeding 128
KiB are now broken into 128 KiB chunks: we label such
files composite files. Chunks related to a composite file are
further grouped into blobs of 4 MiB. Figure 8 illustrates an
example of such a composition.

1. Blob 2. Blob 3. Blob

32 Chunks
4,096 KiB

32 Chunks
4,096 KiB

2 Chunks
256 KiB

Figure 8. Example of a 8,400 KiB sized file resulting in 66 chunks grouped
into 3 Blobs

Uploading Files: We now focus on file upload and describe
how this operation has changed. A file is simply encrypted at
the client and uploaded once, to a single server in the data
center. Clients do not upload any additional redundant data
to the servers, which means that clients are not involved in
applying erasure coding to their files. The amount of traffic
for uploading a short file is roughly the same as its file
size. Instead, for larger composite files, data are uploaded
as a multiple of 128 KiB, which is the chunk size. We
also observe that composite files are uploaded using HTTP
POST requests sent to an application server [28]. In fact, for
each blob of a composite file a new HTTP POST request is
sent by the client, resulting in up to three concurrent TCP
connections to the same server.

Deduplication of Blobs: The new file fragmentation scheme
of Wuala allows performing data deduplication on blob
objects, as opposed to a file-level deduplication used in the
previous version of Wuala.

As a consequence, data deduplication is now more fine-
grained: Altering a few bytes in a composite file only triggers
the upload of the blobs affected by the modification. For
example, appending some bytes at the end of a composite
file results in the upload of the last blob, or, if the number
of blobs increased by one due to the append operation, only
the last two blobs are uploaded to servers. Instead, when
prepending some bytes at the beginning of a composite file,
the whole file will be uploaded again.

244

Downloading Files: When downloading short files, the
data is sent from a single server. However, when repeatedly
downloading the same short file, the identity of the server
is not constant: we recorded that more than 10 different
machines delivered the file to our measurement client. Since
we know that data is not replicated within the Wuala data
center (see Section IX), we conjecture the presence of a
number of proxy servers that take care of data delivery.

The download of composite files results in up to three TCP
connections to different servers. The amount of data received
from the three servers involved in the download operation is
a multiple of the chunk size (128 KiB), from each server: the
total download traffic accounts for the file size rounded up to
the next multiple of the chunk size.

B. Conversation with the Designer of Wuala
It is very instructive to look into the reasons underlying

the recent changes in the architecture of Wuala. One may ask
why the designers of Wuala abandoned the idea of an hybrid
architecture that relied on peer resources to deliver data. In
discussions with one of the co-founders of Wuala [22] we
were learned that

• An hybrid architecture, where peers participate in serving
transmission blocks, makes the implementation and main-
tenance of the Wuala software much more complicated
than a pure client/server approach.

• The price of outgoing bandwidth from the data center has
dropped dramatically in the past few years. As of spring
2012, the price charged by the provider that Wuala uses
for storing data [11] decreased by an order of magnitude
as compared to the rates in 2008 (1 Euro as opposed
to 12 Euros). This means taht the economic incentive to
outsource data delivery to peers lost its attraction.

• As our measurement results showed (c.f. Section VI),
the contribution of peers to download operations was
marginal. After just one week, a file will already predom-
inantly be downloaded from servers, instead from peers.
This fact reinforces the idea that an hybrid architecture –
albeit interesting from a research point of view – does not
bring substantial benefits to compensate for the additional
efforts due to a more complex software architecture.

• Wuala is increasingly used on smart phones, which have
more stringent energy and bandwidth constraints than
fixed clients. It is therefore preferable not to produce
redundant data on the client in order to reduce CPU and
bandwidth utilization. Instead, data redundancy is best
introduced at the server side, allowing clients to upload
only the amount of data they want to store, and not more.

• The target user group of Wuala has evolved from home
users, mostly interested in the social aspect of content
sharing inherent to a P2P approach, to business customers
who’s main concern is security and durability.

An additional technical detail we learned in our discussion
is that once a file has been uploaded to the new Wuala system,
erasure coding is still used to produce redundant coding blocks
that are then stored on other servers for improved availability.

However, this operation is now completely invisible to the
client since it is internal to the data center.

IX. DISCUSSION

In this paper, we have seen that Wuala has evolved from
a hybrid system where peers can be used to serve contents,
to a purely centralized system. In the context of Internet
applications based on a P2P architecture, there is at least
another prominent example that is similar to the Wuala case,
namely Internet file-sharing. Without digging into the whole
history of P2P file sharing applications, it is well known that
BitTorrent, which represents a successful application based on
a P2P paradigm, has – and continues to, albeit with country-
specific nuances [29] – largely dominated Internet traffic, an
indication of its popularity. However, in recent years, we
have witnessed the advent of an equally popular alternative
to P2P file-sharing applications, this time based on a purely
centralized approach. Besides considerations on the usability
of a stand-alone client versus an easy-to-use Web application,
and on user privacy – which certainly contributed to the raise
of one click hosters – centralized services such as Mega
Upload and equivalent have flourished also because – similarly
to what we discussed for Wuala – the costs associated to a
client-server architecture have significantly dropped.

Which lessons can we learn, and what do the two examples
discussed above imply for the research in P2P systems? We
think there are two aspects that need to be clearly distinguished

• Research: In research, one is free to make its own set
of assumptions under which a given problem is then
addressed. It is important to realize that these assumptions
do not necessarily need to incorporate the current real-
world constraints. In fact, when identifying new research
directions, one should not confine itself by what it is
technically feasible today. Instead, one may ask how a
problem could be solved if a given constraint that exists
today would disappear. When such a design then becomes
“practicable” at a later point of time, it may in fact be
seen as major breakthrough. Therefore, the fact that P2P
based designs seem to fall “out-of-fashion” does not mean
that they are irrelevant. In fact, some of them start already
finding their use in large scale data centers with thousands
of machines, see e.g. Dynamo of Amazon [30].

• Service: When developing a service, on the other hand,
one must understand well the current constraints and the
environment in which the service will be used, in order
to develop the most cost effective and efficient solution.
In the case of Wuala, important constraints are limited
upload bandwidth of peers (particularly in the case of
smart phones), low peer availability, limited battery power
(particularly in the case of hand-held devices) and con-
tinuously falling prices for data center storage and data
center bandwidth.

X. CONCLUSION

We saw that there are several impediments in adopting a
P2P approach: Low peer availability and peer churn, which

245

if dealt with properly, lead to much more complex software
systems as compared to a mere client/server based architecture
[22]. Dealing with “unreliable” peers also results in a large
amount of control traffic, as pointed out first by Blake and
Rodriguez [31]. Another factor that is typically ignored is the
programming effort required to build such distributed service
as compared to simply using centralized components of high
availability.

We saw that Wuala, a widely deployed “peer-assisted”
storage system, offers a service to a large community, so ease
of operation and cost efficiency are important. Therefore, in the
beginning, Wuala used peers to save transmission bandwidth
but not to save storage space.

Our measurement study revealed that Wualas hybrid ap-
proach overcomes most of the well known problems related
to peer churn. We showed that Wuala stores all the metadata on
servers and uses erasure coding in conjunction with a flexible
transport protocol as the key for efficient parallel data transfers
that exploit excess bandwidth capacity at the edge to serve
popular content. Data availability and durability is achieved
by storing data on servers hosted in data centers. To reduce
the operational overhead, smaller files are managed differently
from big files. Further, keeping a full copy of each file at
the data center simplifies considerably the maintenance, no
assumption is made about the original copy at the originating
peer being available for maintenance [17].

In the last years, we have seen the advent of large scale data
centers that offer services such as storage and computation at
a very low cost that continues to decrease. On the other hand,
mobile devices with limited processing power and bandwidth
resources are increasingly used to access on-line storage
systems.

Given these trends, it should be less of a surprise that a
system such as Wuala

• whose design in 2007 [10] was presented as being pure
P2P

• was first implemented as a hybrid system with the key
components being already centralized in data center

• has been re-implemented recently as a fully centralized
and server based system with the peers being relegated
into the role of simple clients of the service.

Today, Wuala adopts a purely server based approach, as do
alternative services such as Dropbox [3], with one important
difference that in Wuala data are encrypted before upload and
the password never leaves the client [10]. Dropbox encrypts
data as well but admits that data is accessible to their employ-
ees [3].

For the future, our goals are to study and compare
alternative designs that rely on different facets of data center
economics. Questions related to the main driving factors that
differentiate Wuala from Dropbox, for example, require a
deeper understanding of the cost models behind these two
popular services.

Acknowledgements We would like to thank Luzius
Meisser from Wuala for very useful discussions and helpful

comments. This work was partially supported by the FP7
project Figaro (grant n. 258378).

REFERENCES

[1] Amazon Web Services, 2012, http://aws.amazon.com/s3/.
[2] Google Inc., 2012, Google Docs. http://docs.google.com/.
[3] Dropbox Inc., 2012, Dropbox. http://www.dropbox.com/.
[4] Amazon Web Services, 2012, Pricing. http://aws.amazon.com/s3/

#pricing.
[5] J. Kincaid, 2011, Dropbox security bug. http://techcrunch.com/2011/06/

20/dropbox-security-bug-made-passwords-optional-for-four-hours/.
[6] R. Chow and et al., “Controlling data in the cloud: outsourcing compu-

tation without outsourcing control,” in Proc. of ACM CCSW, 2009.
[7] M. Batchelder and L. Hendren, “Obfuscating java: The most pain for the

least gain,” in Compiler Construction, ser. Lecture Notes in Computer
Science, S. Krishnamurthi and M. Odersky, Eds. Springer, 2007, vol.
4420, pp. 96–110.

[8] Wireshark Foundation, 2012, Wireshark. http://www.wireshark.org/.
[9] M. Mellia, A. Carpani, and R. Lo Cigno, 2012, Tstat. http://tstat.tlc.

polito.it/.
[10] D. Grolimund, 2007, Google Tech Talk. http://www.youtube.com/watch?

v=3xKZ4KGkQY8.
[11] Hetzner Online AG, 2012, Internet hosting provider. http://www.hetzner.

de/.
[12] Maxmind Inc, 2012, Geolocation database. http://www.maxmind.com/.
[13] I. S. Reed and X. Chen, Error-Control Coding for Data Networks.

Kluwer Academic, 1999.
[14] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant

Arrays of Inexpensive Disks (RAID),” in Proc. of SIGMOD, Chicago,
IL, Jun. 1988, pp. 109–116.

[15] R. Bhagwan and et al., “Total recall: system support for automated
availability management,” in Proc. of USENIX NSDI, 2004.

[16] A. Duminuco, 2009, Data redundancy and maintenance for peer-to-peer
file backup systems. Ph.D. thesis, Eurecom, France.

[17] L. Toka, M. Dell’Amico, and P. Michiardi, “Online data backup: A
peer-assisted approach,” in Proc. of IEEE P2P, 2010.

[18] D. Grolimund and et al., “Cryptree: A folder tree structure for crypto-
graphic file systems.” in Proc. of IEEE SRDS, 2006.

[19] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” in Proc. of ICDCS, 2002.

[20] J. Proakis and M. Salehi, Fundamentals of Communication Systems.
Pearson Education, 2007.

[21] J. W. Mickens and B. D. Noble, “Exploiting availability prediction
in distributed systems,” in Proc. of NSDI - Volume 3, ser. NSDI’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 6–6.

[22] Personal Communication with Luzius Meisser from Wuala, Feb. 2012.
[23] N. Leibowitz, A. Bergman, R. Ben-shaul, and A. Shavit, “Are file

swapping networks cacheable? characterizing p2p traffic,” in Proc. of
WWW Caching Workshop, 2002.

[24] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated
content in the internet,” IEEE/ACM Transactions on Networking, vol. 10,
2002.

[25] A. Finamore et al., “Kiss: Stochastic packet inspection,” in Proc. of
TMA, 2009.

[26] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the power of
pull-based streaming protocol: Can we do better,” IEEE JSAC, vol. 25,
2007.

[27] LaCie AG, 2012, Wuala Changelog. http://bugs.wuala.com/changelog
page.php.

[28] Eclipse Foundation, 2012, Jetty Web Server. http://www.eclipse.org/
jetty/.

[29] Sandvine, Global Internet Phenomena Report, Spring 2011 . http:
//www.sandvine.com/downloads/documents/05-17-2011 phenomena/
Sandvine%20Global%20Internet%20Phenomena%20Report.pdf/.

[30] G. DeCandia et al., “Dynamo: amazon’s highly available key-value
store,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[31] C. Blake and R. Rodrigues, “High availability, scalable storage, dynamic
peer networks: pick two,” in Proceedings of the 9th conference on Hot
Topics in Operating Systems - Volume 9. Berkeley, CA, USA: USENIX
Association, 2003, pp. 1–1.

246

Summary Review Documentation for

“A Measurement Study of the Wuala On-line Storage Service”

Authors: Thomas Mager, Ernst Biersack, Pietro Michiardi

REVIEWER #1

The intro has to be improved to provide a better overview of
the paper. A basic overview of what Wuala provides should be
given in the intro. The evaluation setup requires a justification.
Two aspects require special explanation: 1) why the clients
were not distributed across the globe (as opposed to your
lab); 2) why you did not change the evaluation approach when
you learned the system became centralized. The conclusions
section looks more like an intro and should be reshaped.

Strengths: The paper performs a strong reverse engineer-
ing that provides some deep details of the working of Wuala.
The paper reveals the system design and implementation of
Wuala and how it has evolved from the last few years from a
hybrid architecture to a cloud-based architecture.

Weaknesses: Some aspects that reverse engineering can-
not reveal as high level design are missing. The fact that Wuala
is not a P2P system anymore might make the results a little
obsolete, but on the other hand, it also provides an explanation
of why P2P systems are being abandoned or no more widely
used.

REVIEWER #2

The paper provides a good mix of practice and how P2P
systems work in industrial systems with reverse engineering,
social and economic impact. A discussion on how the use of
UDP by Wuala was impacted by NATs and firewalls would
be interesting.

Strengths: The paper presents a nice disassembly of the
service and its evolution. It also provides a good counter-
balance to the P2P hype. It is also good that the authors
contacted the architects of the service to confirm their findings.

Weaknesses: The paper lacks a comparison with other
systems that have undergone a similar evolutions such as BBC
iPlayer and Zattoo. Also a comparison of the code obfuscation
with other systems such as EU blackhat conference about
skype would be interesting.

REVIEWER #3

The best part of the paper was on the systematization of
the reverse engineering. It would be good if the authors could
generalize it or distill a kind of methodology for reverse
engineer P2P systems.

Strengths: The paper performs a reverse engineering of
Wuala storage service and discovers the underlying design of
the system. It has found out how the system has evolved in
the last years from a hybrid P2P architecture to a cloud-based
architecture.

Weaknesses: The main issue with the paper was the
question of how much scientific contribution was to perform
reverse engineering on an existing system.

REVIEWER #4
The paper uses a technically sound characterization strategy

leading to interesting insights of the design and operation
of the service. The design choice of Wuala also is a good
representative of what has been adopted by industry in the
area of P2P storage. There is a need for clarification in the
penultimate paragraph of page 5 where it is stated: ”In total,
the upload consists of 144 MiB” when the total number of
blocks uploaded (both original and additional) was of 135.”.
Since each block is of 1MiB size, it is unclear where the
remaining 9 MiB came out. A possibility is that this 9 MiB
are due to packet losses but it is not mentioned anywhere and
needs to be clarified.

Strengths: The paper present a technically sound charac-
terization of the Wuala system revealing relevant findings.

REVIEWER #5
The paper presents the evaluation of a P2P-assisted storage

system. The fact that these systems are becoming rare and they
are averse to provide details on their systems makes the paper
especially interesting in providing an example of industrial
practice in P2P storage. However, unlike evaluation studies
on Skype there were little surprises in the results, especially
taking into account that many of the basics of Wuala are
already described in [10]. It would have been interesting to see
an analysis of the potential benefits of the optimization related
to handle files of different sizes with different techniques. One
of the surprising results was the poor retention of uploaded
blocks at the peer caches. Only 10

Strengths: The paper presents a detailed evaluation of a
P2P-assisted storage service.

Weaknesses: The fact that the results related to P2P date
back to 2010 might render them obsolete.

RESPONSE FROM THE AUTHORS

We have addressed all the minor issues in the paper and
made the appropriate adjustments and clarifications and also
changed the title.

We have also added a new section (section 9: Discussion)
where we elaborate on the reasons for the comeback of client-
server based services and its implications for research in p2p
systems.

Concerning comments on the novelty of the results, we
would like to emphasize that our paper contains are large
number of details on the operation of Wuala (organization in
transmission blocks, large number of transmission blocks in
the order of 140, role of peers, small files are treated differently
than big files, recent changes to Wuala and its reasons) that
were not publicly known before. Also previous sources of
information on Wuala such as ref [10] do not reflect how
Wuala was actually implemented. Some of comments would

247

require new measurements, which is unfortunately not possible
since the hybrid version of Wuala we have investigated in
this paper is not longer available. For the kind of metrics we
look at, having several vantage points is not necessary. We
are not claiming to measure the download/upload performance
of Wuala; hence there is no need to consider the impact of
the client location. Specifically, even in the upload/download
experiments, we focus on the inner workings of Wuala, not
on the actual performance achieved by a peer.

248

