
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE P2P 2011 proceedings

B-Tracker: Improving Load Balancing and
Efficiency in Distributed P2P Trackers

Fabio V. Hecht, Thomas Bocek, Burkhard Stiller
University of Zurich, Institute of Informatics (IFI)

Zurich, Switzerland
Email: {hecht,bocek,stiller} @ifLuzh.ch

Abstract—Trackers are used in peer-to-peer (P2P) networks
for provider discovery, that is, mapping resources to potential
providers. Centralized trackers, e.g., as in the original BitTorrent
protocol, do not benefit from P2P properties, such as no single
point of failure, scalability, and load balancing. Decentralized
mechanisms have thus been proposed, based on distributed
hash tables (DHTs) and gossiping, such as BitTorrent's Peer
Exchange (PEX). While DHT-based trackers suffer from load
balancing problems, gossip-based ones cannot deliver new map
pings quickly. This paper presents B-Tracker, a fully-distributed,
pull-based tracker. B-Tracker extends DHT functionality by
distributing the tracker load among all providers in a swarm.
Bloom filters are used to avoid redundant mappings to be
transmitted. This results in the important properties of load
balancing and scalability, while adding the ability for peers
to fetch new mappings instantly. B-Tracker shows, through
simulations, improved load balancing and better efficiency when
compared to pure DHTs and PEX.

I. I N T R O D U C T I O N

Trackers are important building blocks used in peer-to-peer
(P2P) systems for provider discovery - mapping resources,
such as files or video segments, to providers, that is, peers
that announce the ability to provide them. In the simplest case,
e.g. the original BitTorrent protocol [1], the tracker follows a
client/server (C/S) approach.

C/S-based trackers, however, do not fully benefit from P2P
properties, such as no single point of failure, scalability, load
balancing, and the lack of a central authority. Therefore,
different types of distributed trackers have been deployed. Dis
tributed hash tables (DHTs) are natural candidates to be used
as distributed trackers [2], [3], since their main functionality is
mapping keys (content) into values (providers). Another way
of designing a distributed tracker is using a gossip protocol,
such as Peer Exchange (PEX) [4], [5], enabling peers to spread
information about potential providers directly to each other.

This paper introduces B-Tracker (Balanced Tracker), a
fully-decentralized, pull-based tracker that improves both ef
ficiency and load balancing of a DHT-based tracker. Using
B-Tracker, each provider becomes itself a tracker for the
resources it provides. Mechanisms for tracker discovery and
updating information are defined. In addition, Bloom filters [6]
are used to avoid peers discovering already known providers.

B-Tracker may be used by any P2P application that employs
a tracker to locate possible providers, for instance file-sharing
applications, such as BitTorrent. Delay-sensitive applications,

e.g. live streaming, may further benefit from its pull approach
by requesting peers when those are needed.

Evaluations show that the proposed approach achieves better
efficiency and load balancing when compared to a pure DHT
approach and PEX.

The remainder of this paper is organized as follows. Sec
tion II presents related work. The suggested approach is
described in Section III. Evaluation details and results are
presented in Section IV. Section V contains conclusions and
suggests future work.

II. R E L A T E D W O R K

Two types of distributed trackers, namely DHT and gossip
ing, have been proposed and deployed, such that trackers are
as well able to benefit from P2P properties.

Distributed hash tables (DHTs), such as KAD [3], are able
to map keys (e.g., content) into values (e.g., providers). The
DHT functionality is modified to allow several values to be
added to a single key and to return a random subset of
those values when queried. DHT-based trackers are pull-based,
which allows a peer to retrieve a new set of providers as
soon as and only as long as it is needed. The fact that a
random subset is returned, regardless of which providers the
requester has already obtained, reduces its efficiency, since
a large amount of traffic may be used to transfer useless
providers, and newly arrived providers with free resources will
not be as quickly discovered by peers in the swarm. Another
problem is load balancing; since content popularity resembles
a power-law distribution [7] and DHTs keep a constant number
of replicas per key, peers responsible for popular content have
much higher load than others.

Provider information may also be spread using a gos
sip protocol, such as Peer Exchange (PEX) [4], which is
implemented by several BitTorrent clients as an extension
of the original protocol. Using PEX does not eliminate the
need for a tracker, since every peer must still contact a
tracker (C/S or DHT) in order to obtain its first provider list.
Though different implementations of PEX exist, their main
idea is that peers keep their neighbors informed about their
current neighbor set. This is done by periodically (e.g., once
a minute) sending messages containing sets of added and
removed neighbors [5] to every neighbor. When new providers
are needed, peers select providers that appear least frequently
as their neighbors' neighbors, since those are probably newly

978-1-4577-0149-8/11/$26.00 ©2011 IEEE 310

TABLE I
RELATED WORK COMPARISON

Approach
DHT
PEX
B-Tracker

Efficiency
-
-
+

Load Balancing
-
+
+

Push/pull
Pull
Push
Pull

arrived ones that might have free resources. PEX reduces mean
download time [8] and improves load balancing in BitTorrent,
due to every peer being responsible for sending regular update
messages. But, owing to its push-based approach, a trade-off
on the frequency of messages sent must be considered. If
sent less frequently, the information is spread more slowly,
which may be troublesome, especially for delay-sensitive
applications, such as video streaming. If sent more frequently,
efficiency decreases, as information will be more redundant.

Table I displays a comparison between the expected effi
ciency and load balancing properties of DHT, PEX and B-
Tracker. Efficiency refers to the traffic generated to spread the
knowledge about providers, while load balancing refers to how
well traffic is distributed among peers.

III. B-TRACKER

Though the terms peer, tracker, provider, and neighbor all
refer to a participant in the P2P system, this terminology
defines more precisely the different roles that peers perform
in different situations. In short, a peer queries a tracker to
obtain a list of providers, which are contacted directly and, if
there is mutual interest, may become neighbors, with which
actual resource provisioning takes place. The basic func
tions a tracker offers to peers are getProviders(resourcelD),
which returns a list of providers of the resource, and add-
AsProvider(resourcelD), which adds the sender of the mes
sage to the provider list at the trackers. Finally, remove As -
Provider(resourcelD) is called by a peer that is not anymore
a provider for the given resource. It is assumed that, once a
peer is provided with a resource, e.g. a file or a video stream,
it becomes itself a provider of it - a seeder or a leecher in
BitTorrent j argon.

A. Primary Trackers
B-Tracker uses a DHT structure for initial tracker discovery,

since DHTs offer a scalable structure to store key-value
mappings at well-known locations. Peers with peerlD closest
to the key (the resourcelD) are responsible for storing the list
of providers of the resource. These peers - termed primary
trackers - are discovered in O(logn) steps, where n is the
number of peers in the system. The DHT's original put(key,
value) function is modified to allow multiple tuples (peerlD,
IP address, TCP or UDP port of providers) to be stored under
a single key, and get(key) is adapted to return a random subset
of these tuples.

The number of primary trackers for a resource is given
by the primary tracker replication factor rp. Since primary
trackers are not necessarily providers for the resources they

track, and to motivate peers to use secondary trackers, they
have limited provider storage capacity, holding only up to cp
providers per resource.

B. Secondary Trackers
Once a peer has obtained a provider list from a primary

tracker, subsequent tracker queries can be issued to any
provider, since each of them is a secondary tracker for the
resources they provide. The concept of secondary trackers
improves scalability, since resources with more providers are
able to distribute the load among more trackers, and fairness,
because the load is shared by those peers interested in provid
ing the resource.

An important parameter is np, the number of primary
trackers that peers query before requesting from a secondary
tracker. While a low value decreases the load of primary
trackers, it may return peers that have none or outdated
information about secondary trackers. A high value reduces
this risk, but increases the number of requests to primary
trackers. Secondary trackers are not limited in storage capacity,
since they scale with swarm popularity.

C. Improving Efficiency
In order not to suffer from the Coupon Collector Prob

lem [9], and to avoid that each tracker keeps state about
which providers were supplied to each request, a solution
based on Bloom filters [6] is used. Queries to primary and
secondary trackers include a Bloom filter with all already
known providers. Trackers take the filter into consideration
by returning a random subset of known providers for the
specified resource, excluding providers that match the filter.
While Bloom filters save bandwidth due to their fixed size,
they may produce false positives. This means that an unknown
provider may not be found. The probability of false positives
can nevertheless be adjusted to a low value.

D. Updating Mechanism
The addAsProvider(resourcelD) operation is used by peers

that have become providers for a certain resource. It can be
issued to both primary and secondary trackers, but primary
trackers accept only up to cp providers per resource.

The replication factor rp determines on how many primary
trackers the operation is attempted, while rs represents the
number of replicas at secondary trackers. A higher rs value
increases the chance that a provider is found, but increases
communication costs. A random subset of known secondary
trackers is chosen to receive addAsProvider(resourcelD), as a
simple way to distribute the load evenly among them.

E. Outdated Information
Tracker entries tend to become outdated as peers fail, leave,

or stop offering resources, without informing the responsi
ble trackers with a removeAsProvider(resourcelD) message.
This is a problem for all centralized or distributed tracker
approaches. Having trackers periodically verify all providers
they hold would bring a large overhead due to the potentially

311

large number of entries. B-Tracker assigns a time to live
(TTL) to each resource-provider mapping stored on primary
and secondary trackers. Providers are required to update (via
addAsProvider(resourcelD)) their respective tracker entries
before the TTL runs out.

IV. EVALUATION

B-Tracker has been implemented and evaluated using sim
ulations to show its properties, when compared to popularly
deployed distributed tracker approaches, namely PEX and pure
DHT-based trackers. TomP2P [10] has been adapted to support
DHT, PEX, and B-Tracker approaches.

The evaluation focuses on efficiency and load balancing.
Load is defined in terms of upstream traffic, since it is a
scarce resource in a P2P system. Efficiency is defined in terms
of mean load per peer in the swarm, considering all tracker-
related messages sent, so less load conveys better efficiency.
Load balancing is defined as the standard deviation of load
among all peers in the swarm, so less deviation determines
better load balancing.

The parameters used for the evaluation are as follows.
The Bloom filter assumes a probability of false positives
p = 0.0073 with a number of items n = 100, which results in
a filter of size m = 1024 bits [6]. A fixed replication factor
rp = 20 is used for the DHT approach, as in the popular
BitTorrent implementation [3]. B-Tracker uses rp = 2 and
rs = 18 for replication, since they add up to 20, in order to
be fairly comparable to the DHT approach. The number of
primary trackers that peers consult before requesting from a
secondary tracker np = 0, that is, they always query secondary
trackers for providers first, resorting to primary trackers only if
all queries to secondary trackers fail. Primary tracker storage
capacity cp = 35 providers per resource, since 35 is a common
number of neighbors used by P2P applications. All results are
averages from 100 runs.

A. Simulation Setup
A P2P system with 1000 peers was simulated as follows.

At each run, a swarm is initially created with 50, 250, or 450
peers. Peers in the swarm are interested in obtaining a certain
resource, e.g., downloading a file. Each peer in the swarm
obtains 35 providers from the DHT. Measurement starts only
after they have obtained those initial providers, in order to
simulate a live swarm. The system, then, suffers from churn,
which is defined as the percentage (10%, 20%, 30%, or 40%)
of peers in the swarm that go offline, being immediately
substituted by the same number of newly created peers. All
peers attempt in turn to have again 35 providers in total,
exchanging messages according to the approach in place.

In the DHT approach, peers query always a random one of
the 20 peers that are responsible for holding the provider list
for the resource in question. The tracker always replies with
a random subset of at most 35 providers.

In the PEX approach, peers exchange PEX messages con
taining a set with newly added neighbors and a set of discon
nected neighbors. If, after exchanging PEX messages, a peer

still does not have 35 providers, it queries the DHT to obtain
them.

In the B-Tracker-NF - NF stands for no Bloom filters -
approach, peers query one or more random secondary trackers,
which in essence are providers obtained from the initial DHT
call until they obtain at least 35 providers. If, after querying
all known secondary trackers, a peer has not reached its goal,
it queries a primary tracker to obtain them. The B-Tracker
approach works like B-Tracker-NF, except that all requests
contain a Bloom filter holding the currently known providers.

B. Evaluation: Efficiency
In a more efficient system, the knowledge of which are

current providers is spread with less traffic generated per peer.
Efficiency is, therefore, defined in terms of the average load
per peer; load being defined as bytes sent per peer, on average.
Figs. 1, 2, and 3 show the average load per peer for swarm
sizes 50, 250, and 450, respectively. Each value shown is an
average of all runs, with error bars displaying the standard
deviation.

B-Tracker achieves better efficiency when compared to
pure DHT and PEX approaches. A DHT approach is not
efficient because each new peer and peers with less than 35
providers in the swarm need to query the DHT, which creates
many routing messages to find trackers. PEX is even less
efficient, because it requires that peers send many unnecessary
messages, informing neighbors about their new neighbors
regardless of whether or not it is needed. B-Tracker shows
better efficiency than B-Tracker-NF due to the use of Bloom
filters - though request messages are larger, since they contain
the filter, the provider list returned by trackers contains only
useful information, further improving overall efficiency.

The B-Tracker approach shows better scalability, since, for
larger swarms, the mean load per peer increases only slightly.
DHT and PEX experience a larger load increase from swarm
size 50 to 250, though from 250 to 450 it increases only
slightly. The difference between B-Tracker-NF and B-Tracker
shows that using Bloom filters as proposed improves efficiency
especially on larger swarm sizes.

Load also increases with churn for all investigated ap
proaches, since, with more churn, there are more newly created
peers that look for providers, and more peers need to obtain
more providers. PEX, however, has a higher load increase with
higher churn when compared to the other approaches.

C. Evaluation: Load Balancing
Figs. 4, 5, and 6 show the standard deviation in load among

all peers in the swarm. Load balancing was calculated for each
run and an average for all runs is displayed; error bars show,
thus, the standard deviation for the different runs.

B-Tracker-NF and B-Tracker distribute load much better
than DHT, due to the presence of secondary trackers. In a
pure DHT approach, peers that are trackers become heavily
loaded as swarm size increases, as seen in Fig. 6. PEX
shows improved load balancing, especially on larger swarms.
B-Tracker-NF shows that using Bloom filters as proposed

312

DHT I I B-Tracker-NF
PEX KXXXI B-Tracker

20% 30% 40%
churn

DHT I I B-Tracker-NF wmm\
PEX KXXXI B-Tracker ~ ^ ~ B

10% 20% 30%
churn

40% 30% 40%

Fig. 1. Efficiency, swarm size 50 Fig. 2. Efficiency, swarm size 250 Fig. 3. Efficiency, swarm size 450

DHT :
PEX

B-Tracker-NF
B-Tracker

B-Tracker-NF I
B-Tracker I

120

100

80

60

40

20

DHT I I B-Tracker-NF
PEX KXXXI T B-Tracker

20% 30% 40%
churn

Fig. 4. Load balancing, swarm size 50 Fig. 5. Load balancing, swarm size 250 Fig. 6. Load balancing, swarm size 450

improves the load balancing only by a small amount. The
fact that load balancing degrades on larger swarms on all
approaches is explained by their use of a DHT for initial
tracker discovery, besides as a last resort if PEX and secondary
trackers do not yield the goal of 35 providers per peer.

Churn has a negative influence on load balancing in all
investigated approaches and swarm sizes. This is also due
to the DHT being queried at least initially by all new peers.
The difference of these load balancing steps, however, is small
between 30% and 40% churn rates, suggesting that it increases
at smaller steps.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces B-Tracker, a pull-based, fully-
distributed P2P tracker. B-Tracker improves load balancing
by increasing the number of replicas proportionally to content
popularity. Its pull approach allow the use of Bloom filters to
eliminate irrelevant providers from tracker replies, and elim
inates providers being sent to peers which are not interested
in receiving new providers.

Simulations show that B-Tracker achieves better load-
balancing and higher efficiency than other distributed trackers.
A pure DHT approach shows poor load balancing because
it uses a fixed replication factor. PEX shows improved load
balancing but lower efficiency, since peers exchange messages
which may not be of interest. Finally, a larger swarm size and
higher churn produce only small degradation in B-Tracker's
both load balancing and efficiency. The use of Bloom filters
as suggested helps a further increase in system efficiency by

avoiding redundant traffic.
Future work will investigate security aspects with malicious

peers and trackers, establish theoretical bounds for B-Tracker
operations, investigate locality-awareness of secondary track
ers, and deploy B-Tracker on a real P2P system.

ACKNOWLEDGMENT

This work has been performed partially in the framework
of the EU ICT STREP SmoothIT (FP7-2008-ICT-216259) and
EU CSA SESERV (FP7-CSA-2010-258138).

REFERENCES

[1] B. Cohen, "Incentives Build Robustness in BitTorrent," in 1st Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

[2] M. Steiner, T. En-Najjary, and E. W. Biersack, "A Global View of KAD,"
in 7th ACM SIGCOMM conference on Internet measurement, ser. IMC
'07. New York, NY, USA: ACM, 2007, pp. 117-122.

[3] S. A. Crosby and D. S. Wallach, "An Analysis of BitTorrent's Two
Kademlia-Based DHTs," Department of Computer Science, Rice Uni
versity, Tech. Rep. TR-07-04, June 2007.

[4] "Peer Exchange," http://wiki.vuze.eom/w/Peer_Exchange, last visited:
March 2011.

[5] "BitTorrentPeerExchangeConventions - TheoryOrg," http://wiki.theory.
org/BitTorrentPeerExchangeConventions, last visited: April 2011.

[6] B. H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable
Errors," Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[7] F. Hecht, T. Bocek, and D. Hausheer, "The Pirate Bay 2008-12 Dataset,"
http://www.csg.uzh.ch/publications/data/piratebay/, December 2008.

[8] D. Wu, P. Dhungel, X. Hei, C. Zhang, and K. Ross, "Understanding
peer exchange in bittorrent systems," in Peer-to-Peer Computing (P2P),
2010 IEEE Tenth International Conference on, aug. 2010, pp. 1 -8 .

[9] V. G. Papanicolaou, G. E. Kokolakis, and S. Boneh, "Asymptotics for
the random coupon collector problem," Journal of Computational and
Applied Mathematics, vol. 93, no. 2, pp. 95 - 105, 1998.

[10] "TomP2P Project Site," http://tomp2p.net, last visited: April 2011.

313

