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Abstract 

The MASC (Multiple Associative Computing) model 
is a generalized associative-style computational model 
that naturally supports massive data-parallelism and 
also control-parallelism. A wide range of applications 
has been developed on this model. Recent research has 
compared its power to the power of other popular 
parallel models such as the PRAM and MMB models 
using simulations. However, the simulation of MMB has 
identified some important issues regarding the cost of 
certain basic MASC operations required for associative 
computing such as broadcasts, reductions, and 
associative searches. This paper investigates these issues 
and gives background information and an analysis of 
timings for these operations, based on implementation 
techniques and comparison fairness with respect to other 
models. It aims to provide justification and clarify 
arguments on the timings for these constant-time or 
nearly constant-time basic MASC operations. 
 
1. Introduction 

 
The MASC (Multiple Associative Computing) 

model is a generalized associative-style of computing 
that has been in use since the introduction of associative 
SIMD computers in the early 1970s [18,19]. It provides a 
practical, highly scalable model that naturally supports 
both data-parallelism and control-parallelism with a wide 
range of applications. The MASC model is an MSIMD 
type model that provides one or more instruction streams 
(ISs), each of which is sent to a unique set in a dynamic 
partition of processing elements (PEs). This allows a task 
currently in execution to be partitioned into multiple 
tasks using control parallelism. The associative feature 
of the model allows data in the local memories of 
processors to be located by content rather than by 
address. 

A large amount of research work has been done for 
this model. For example, an associative language, called 
ASC, has been implemented for the MASC model with 
one instruction stream across many platforms [19]. A 

number of efficient algorithms have been developed for 
various problems [3,10,18,19]. Also, recent research has 
compared its power to the power of the CRCW PRAM 
[24] and MMB (Meshes with Multiple Broadcasting) 
models [4] using simulations. 

However, the simulations between MASC and 
MMB has identified some important issues regarding the 
cost assigned to certain basic MASC operations such as 
the broadcast and reduction operations. Both the 
accuracy of the cost assigned to these operations and its 
fairness with respect to the costs assigned on other 
parallel models are extremely important, as they 
determine the accuracy of the comparison between 
MASC and other models. Likewise, the accuracy and the 
fairness are essential in determining the ability of MASC 
to efficiently support applications in different areas, both 
for programming and complexity analysis of algorithms. 
In making fair cost assignments, it is necessary to 
consider the theoretical asymptotic rate of increase in the 
cost that occurs as the data size increases. However, it is 
equally important to also consider how these operations 
can be implemented in hardware and the running time of 
the implementations of these operations. The theoretical 
asymptotic rate of increase, together with the running 
times for hardware implementations can be used to 
produce graphs that project feasible running time for an 
operation on data sets of varying size. When this graph is 
bounded above by a small constant even when the 
number of processors exceeds what is considered to be 
feasible in the foreseeable future, we explore the option 
of assigning a constant running time to these basic 
MASC operations.  

This paper investigates these issues based on the 
implementation details of Goodyear’s STARAN, which 
is the architectural ancestor of the MASC model. We 
will discuss and analyze comparative fairness for the 
timings of certain basic operations on the MASC model 
with respect to the timings on other parallel models, e.g., 
the PRAM and MMB models.  

The paper is organized as follows. Section 2 gives a 
brief description of the MASC model and the motivation 
for MASC. Section 3 describes the hardware 
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implementation from STARAN to support these basic 
operations.  Section 4 discusses the individual operations 
based on the implementation facts. Section 5 compares 
the costs of these basic operations on the PRAM and 
MMB models and addresses the issue of what costs 
should be assigned to MASC when it is compared (using 
simulations) to related models. The last section is a 
summary. 

 
2. The MASC model 

 
The MASC model consists of an array of processing 

elements (PEs) and an array of instruction stream 
processors (ISs). Each PE, paired with its local memory, 
is called a cell. There are three real or virtual networks to 
connect cells and ISs, namely, a cell network used for 
communication among cells, an instruction stream 
broadcast/reduction network used for communication 
between ISs and their cells, and an IS network used for 
communication among ISs (Figure 1).  

 
 

 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 1. The MASC model 
 

A complete description of MASC can be found in 
[18]. The following provides a brief summary. The 
MASC model is an MSIMD type model, where at least 
one or more ISs each send commands to a unique set in a 
dynamic partition of the PEs.  The number of ISs is 
normally expected to be small, compared to the number 
of PEs. Each PE is capable of performing local 
operations as a sequential processor other than issuing 
instructions. Each PE can only access its own local 
memory. An IS is logically a processor which has a 
connection to each cell. Each IS has a copy of the 
program being executed and issues instructions to all its 
assigned cells. Each cell listens to only one IS and 
initially all cells listen to the same IS. The cells can 
switch to other ISs in response to commands from the 
current IS and the results of a data test. A cell can be 
active, inactive, or idle. An active cell executes the 
program instructions broadcast by the IS to which it is 
currently listening while an inactive cell listens to but 

does not execute these instructions. An IS can instruct an 
inactive cell to become active again. An idle cell does 
not contain any needed data and can be reassigned to a 
new task. 

Assuming the word length is considered to be a 
constant, the MASC model supports the following 
important constant time operations for an IS: 
• Broadcasting an instruction stream or a data item to 

the set of PEs listening to the IS 
• Global reduction of a binary value stored in each 

active PE using logic OR or AND 
• Global reduction of an integer (or real) value stored 

in each active PE using maximum or minimum 
• Associative search to find the cells whose data 

values match the search pattern (called responders) 
or do not match the search pattern (called non-
responders) 

• The AnyResponder operation to determine if there is 
any existing responder after an associative search 

• The PickOne operation to select (or "pick") an 
arbitrary responder from its set of active cells 
These basic operations are essential to support the 

associative style of computing. They serve as core 
properties for the MASC model uniquely to achieve its 
effectiveness. In hardware, they are implemented 
through the broadcast/reduction network in a bit-serial 
fashion. The correctness of the timings assigned to each 
of these operations depends on both possible hardware 
implementations and comparative fairness with respect 
to other parallel model, as we will discuss in the 
following sections. 

 
3. Broadcast/reduction network 

 
In this section, we take a close view on a possible 

hardware implementation of the broadcast/reduction 
network based on the STARAN computer, which is the 
architectural motivation for the MASC model. The 
STARAN was an associative SIMD computer with 512 
to 4096 PEs, depending upon the size of a particular 
installation. The STARAN was built in the early 1970’s 
and the ASPRO, its architectural descendent, was built in 
1980’s by Goodyear Aerospace. Currently, the ASPRO 
is produced by Martin-Marietta and is used by the U.S. 
Navy. Their hardware implementation of associative 
operations through the broadcast/reduction network 
provides a possible implementation for these basic 
associative operations on the MASC model. 

 The broadcasting/reduction network on the 
STARAN is constructed using a group of resolver 
circuits [6]. A N-PE resolver consists of N PEs labeled 
PE0 , PE1 , …, PEN-1  and each PEi  has a responder bit 
Ri  that is equal to 0 or 1. The resolver is designed to be 
able to tell each PE whether or not any earlier PE has a 
responder bit equal to 1. Thus for each i, it computes Vi  
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= R0  ∨ R1 ∨ R2  ∨… ∨ Ri-1 , where ∨ is the logic-OR 
operator and 0 < i ≤ N. The resolver also sends VN  to the 
control unit to tell it whether or not any responder bits 
are equal to 1. A 4-PE resolver is illustrated in Figure 2. 

In practice, by using the parallel prefix idea, a 
resolver for N PEs can be built as a log4 (N)-level tree of 

4-PE resolvers. Each leaf represents a PE and the PEs are 
partitioned into groups of 4 PEs, which are fed into the 

first level of 4-PE resolvers. A reduction operation is 
executed by sending the signals down the tree to the PE 
leaves and then back up to the root of the tree to obtain 
the final result, while accumulating partial results in 
middle. Obviously, the delay from any input to any 
output is at most (2 log4 N -1) gates. A 16-PE resolver 

tree is shown in Figure 3.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 2. A 4-PE resolver with at most an 1-gate delay from any input to any output 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3. A 16-PE resolver with at most a 3-gate delay from any input to any output 
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4. Discussion on the basic operations 
 
In this section, we discuss the timings on the 

individual basic MASC operations given in Section 2.      
We consider broadcasting first. Broadcasting for 

bus-based architectures provides a fast way to transmit 
data between processors that are far apart. The 
assumption that an arbitrary subset of broadcasts on a 
bus-based architecture can occur in constant time, 
regardless of the number of processors or the length of 
buses, has been generally accepted in the literature 
[7,8,12,13,14,15,20,21,23]. This provides consistency 
among researchers in the field and is supported by 
experimental evidence even for very large architectures 
by today's standards [14,17]. For example, in today’s 
architectures with at most tens of thousands of 
processors, the time to broadcast a data item over a bus 
is usually no more than that to perform a basic operation 
such as an addition by a sequential processor. Hence it 
can be bounded within one or a few machine cycles 
[7,17]. This constant time assumption for broadcasting 
greatly simplifies calculation of running times of 
algorithms and comparison of various models without 
loss of prediction accuracy. 1 

In a similar way, we assign the timing for a 
broadcast on the MASC model from an IS to its PEs to 
be constant. On the MASC model, broadcasting is used 
to issue instruction streams from an IS to its PEs and 
transmit data between them. Broadcasting a bit or a word 
on the MASC model is performed through the broadcast 
network. Practically, the broadcast network may be 
implemented as a separate network from the reduction 
network yet with the same structure (like in the 
STARAN), or they may share the same network. It is 
easy to observe that it takes log4 N gate delay for a bit to 
travel from the root of the tree network to the N PE 
leaves at the bottom. Recall that broadcasting on a bus-
based architecture technically requires linear order with 
respect to the bus length and the number of the 
processors. It is clear that the time for broadcasting 
increases asymptotically slower when using this tree-
based network than when using a bus-based architecture.  

The gate delay from any input to any output on the 
broadcast/reduction network for the MASC model is at 
most (2log4 N –1).  This cost is given particular attention 
here. We argue that for practical purpose it could be 
bounded by a small constant. The reasoning is as 
follows. Typically, a gate delay takes about 1-5 
nanoseconds. We may imagine even if we built an 

                                                 
1 Since the number of gates that a bus is able to drive is limited, 
perhaps a re-evaluation of the time for broadcasting at the VLSI level is 
needed by researchers in the field before making this assumption for 
millions of processors. In considering VLSI designs to maximize the 
fan-out of a gate and minimize the layers of gates, a possible approach 
might be to increase the fan-out of the n-ary broadcast tree used here 
(e.g., to a 100-ary tree). 

extremely large machine with size of 2210  processors, the 
gate delay would be at most (2log4 2210  -1) × 5 
nanoseconds ≈ 5.1 microseconds. On the other hand, 
building a machine with 2210  processors appears to be 
impractical, since the number of atoms in the known 
universe is estimated to be less than 229   [2]. It is likely 
that machines in the foreseeable future will have at most 
a few million processors. A machine with 100 million 
processors would have the gate delay less than 50 
nanoseconds, which is comparable to the time for a 
memory access in today’s systems. Since there are 
approximately 8 billion neurons in the human brain, it 
seems reasonable to conjecture that an efficient machine 
with that many processors would necessarily have to use 
a model quite different from those used today. Also, 
since a processor can handle much more complex 
computations than is considered possible for a neuron, it 
seems likely that if a machine were built to be able to 
handle the computations typical of the brain, then it 
would probably have far fewer than 8 billion processors. 

We give brief diagrams for the function graph of 
(2log4 N –1) gate delay for this timing. Given the 
average 1-gate delay is 2 nanoseconds, the function 
graphs are shown in Figure 4 in regular scales and Figure 
5 with the vertical axis in logarithmic scales, while N is 
between 1 to 229  . (Notice that 229  is approximately 
equal to 1.2e+154 shown in the figures. We did not give 
the function curves from 229  +1 to 2210  due to the 
limitations of our plotting device.) The two horizontal 
lines in Figure 5 are reference lines. It is clear that this 
function changes very slowly and is bounded by a small 
constant even if N is unreasonably large. 

For a very large architecture, wire length is also an 
issue. According to the optimal VLSI layout, when the 
number N of processors is very large, the wire length can 
increase as large as N1/3 , based on the 3-D cube 
topology. However, this same problem exists in bus-
based architectures. We may use the same solution (if 
any) to the problem. An option used in [7] is formulating 
a parameter, i.e., the cycle of a computation, as the 
maximal length of a single bus to capture this notion. 

Let ω be the greater of the length of an instruction or 
a data item (i.e., word). Obviously, broadcasting an 
instruction or a data item one bit at a time from an IS to 
its PEs takes O(ω). With architectures that have already 
been built or those currently envisioned, the size of ω is 
a small constant. However, most parallel models assume 
that the processor's identification number can be stored 
in a word, thus requiring that for a machine with N 
processors, ω must be at least log N in size. It is 
traditional to assume in the bus-based architectures that 
the buses have bandwidth ω. In particular, for MASC we 
may build the separate broadcast network with the bus 
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Figure 4. The gate delay of (2log 4 N -1) in regular scales. 
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Figure 5. The gate delay of (2log 4 N -1) with the vertical axis in logarithmic scales

bandwidth ω so that it transmits ω bits simultaneously. 
Therefore, it is very reasonable to assume that both the 
word and instruction broadcasts require constant time. 

Next, we discuss the logic OR global reduction 
operation. With each PE holding a binary value, a global 
OR is performed through the log4 N-level tree of 4-PE 
resolver network, as shown in Figure 2 and Figure 3. 
Thus, the same reasoning used for the 1-bit broadcasting 
can be used to justify assuming that a global OR takes 
constant time, although the tree traversal is in the 
opposite direction.  

A global AND operation is implemented using a 
global OR operation simply by adding compliment gates 
to the inputs. So it can be assigned the same timing as a 
global OR operation.  

An associative search is a unique feature of an 
associative model like MASC. On MASC, it is executed 
through the broadcast/reduction network by broadcasting 
a predefined search pattern to the PEs from an IS. Those 
PEs with matching values set their responder bit and 
remain active. Then an AnyResponder operation can be 
used to check if there exists any responder. Also, using 
the reduction network, the IS can select (or pick) an 
arbitrary (usually the first) active PE to do any special 
processing. We refer this to as a PickOne operation.  

Clearly, an AnyResponder operation is essentially a 
global OR operation over all the responder bits. It 

involves one tree traversal of the reduction network and 
returns true if any responder bit is set among the active 
PEs and false otherwise. A PickOne operation is also 
performed by the reduction network by going up through 
the same tree traversal as a global OR. So both these two 
operations should have the same timing as a broadcast or 
a global OR, i.e., constant time. Notice that, after a PE is 
picked and processed, the PickOne operation clears the 
responder bit of the PE and the IS can proceed to pick 
another of the active processors. An associative search 
involves three steps, i.e., a broadcast of word-length 
pattern; a sequential comparison of two word data by 
each active PE; and a global AnyResponder operation. 
Hence, the associative search also requires constant time. 

Let the word length be ω. In a bit-serial SIMD 
architecture such as the STARAN, operations on 
multiple bits are performed bit-serially. This means that, 
if a 1-bit local addition takes O(1), then a two-word local 
addition takes O(ω). If ω is assumed to be constant, then 
addition/subtraction is also a constant time operation, as 
one would expect. Some researchers argue that the word 
length in parallel computers with N PEs should always 
be (logN) or larger [2] so that it can store the 
identification number of each PE.  However, since a 

parallel computer could have over 1.8× 1019
  PEs before 

log N is larger than 64, the assumption that the word 
length is also a constant seems to be reasonable, based 
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on the size of current parallel computers and those in the 
foreseeable future. 

Consider computing a global Maximum (or 
Minimum) of N integer (or real) values. As before, we 
continue to assume that the word length ω is considered 
a constant. Let each of the N PEs contains a value in a 
common word-size field. The global Maximum (or 
Minimum) operation can be implemented as a bit-serial 
operation with a global OR being computed for each bit 
of the field in the order of the left (most significant) bit 
to the right (least significant) bit. Each global OR bit 
operation keeps active those PEs whose bit value is 1 (or 
0 for Minimum) until either only one responder is left or 
until all bits have been processed [19]. Additionally, if 
all active processors have a 0 value for one bit, then all 
remain active for the next round. If we assume that the 
time to compute a global OR is constant and ω is the 
word length, then the time for this operation is O(ω). If 
ω is also assumed to be a constant, as assumed for the 
addition of two words above, the time for a global 
Maximum (or Minimum) operation will also require only 
constant time.   

As a related observation, we compare the 
implementation of the broadcast/reduction network of 
the MASC model that is in a bit-serial fashion and a 
sequential processor that is in a word-serial fashion. In 
fact, the hardware needed to support a sequential 
addition operation is not that different from the hardware 
needed to support the mentioned MASC basic operations 
on the broadcast/reduction network. It has been shown 
that the lower bound for a sequential processor to 
perform addition is Ω(log k) where k is the number of 
bits of the two operands [11,16]. A sequential processor 
performing addition using carry-look-ahead adders as 
building blocks is much like a MASC performing a 
global reduction using resolvers as building blocks. The 
cost of addition for a sequential processor is considered 
to take constant time regardless of the number of its 
input bits (i.e., length of the operands). With the almost 
same hardware circuits, it is reasonable to apply the 
same measurement that ignores the number of input bits 
(i.e., number of PEs) on the MASC reduction operations.  

The prefix sum operation is not supported in 
hardware in either the STARAN or the ASPRO. Also, it 
is not yet a basic operation on the MASC model. But 
based on the principle we discussed earlier, it is possible 
to implement this operation using the reduction network 
for a group of 1-bit binary values with each stored in a 
PE. As claimed in [16], “any design for a prefix sum 
operation can be converted to a carry computation 
network by simply replacing each adder with the carry 
operator.” This could take the same time as a sequential 
addition operation, as well as a MASC reduction 
operation. However, for a ω-bit prefix sum, it may need 

more expensive hardware support to take the partial 
sums and partial carries to the next round of addition.  

It is important to keep in mind that all of the above 
basic operations are implemented in hardware, in 
contrast to other parallel computational models that 
execute most of them using software algorithms. These 
features make the MASC model a unique parallel 
computation model that is powerful and feasible. 

 
5. Comparison of timings with other 

models  
 
In order to compare the MASC model with other 

computation models such as PRAM or MMB, it is 
critical that the timings charged for the basic operations 
of each model be fair. For example, if two models both 
support a broadcast with the same hardware, it would be 
unreasonable to charge one model O(log N) for a 
broadcast and the other O(1). Also, for two operations 
using the same hardware in one model, we should not 
charge one O(1) and the other O(log N).  

It is useful to compare the timing cost for the basic 
MASC operations to those of similar operations for 
RAM and PRAM memory access. We give a short 
summary of the computational complexity of RAM and 
PRAM memory access presented in [2]. The memory 
access on these two classic models can be implemented 
by a combinatorial circuit that is called the Memory 
Access Unit (MAU). The MAU of RAM is implemented 
as a binary tree of switches. Each memory access from 
the processor has to use the path between the root of the 
tree and a memory location at a leaf of the tree. When 
the memory size is M, the depth of the MAU is clearly 
Θ(log M). For PRAM, the lower bound for the depth of a 
MAU with M global memory locations and N (= O(M)) 
processors is also Ω(log M). A theoretical optimal MAU 
for PRAM with depth Θ(log M) is possible using a 
sorting circuit and a merging circuit. However, there is 
an efficient and more practical MAU for PRAM with 
depth Θ(logM). Since the circuit in the optimal MAU has 
depth O(log M), each memory access is performed with 
a O(log M) switch delay. This is exactly the same 
situation as observed with the basic operations for the 
MASC model. Researchers and algorithm developers 
have ignored this small theoretical logarithmic factor for 
many years and have elected to treat memory access time 
as a constant, just like the time for other basic operations 
such as addition and comparison. This timing approach 
has dominated algorithm analysis on both the RAM and 
PRAM models in the literature and has significantly 
simplified and standardized complexity analysis of 
algorithms, both in terms of comparing algorithm 
performance and of comparing computational models. 

We may further consider reduction operations for 
PRAM. Using prefix operation algorithms, all PRAM 
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models can calculate logic OR/AND or maximum/ 
minimum in O(logN). However, using concurrent writes, 
the CRCW PRAM can compute every Boolean function 
with a small domain (e.g., binary values) in constant 
time [22]. But this does not hold for other variants of 
PRAM without concurrent writes, as they require at least 
Ω(log N) algorithm steps for such a computation [9]. 
Thus, the charges for reductions and basic operations of 
logic OR/AND are reduced for the CRCW PRAM due to 
an assumed superior architectural implementation.  

Next, we compare timings on MASC with timings 
on MMB, which is considered to be a more practical 
computational model than PRAM.  A MMB is a basic 
mesh enhanced with several global buses, one bus for 
each row and one bus for each column. A processor can 
broadcast along its row or column bus to allow fast data 
transmission to all processors that are on the same row or 
column bus. In one time unit, only one processor is 
allowed to write a value on a bus. All other processors 
are assumed to simultaneously read the value being 
broadcast in constant time. 

As with other bus-based architectures we discussed 
earlier in Section 3, the time to broadcast along a bus on 
MMB increases linearly as the number of processors 
increases, i.e., O(N).  It has been generally accepted that 
this time can be considered to be constant. As for other 
basic operations on MMB, it has been shown in [21] that 
on a MMB with size of N1/2 × N1/2  and each PE holding 
a data item, the global reduction of finding a 
maximum/minimum or logic OR/AND can be computed 
in O(N 1/6 ). Also, if all data items lie in the same row 
with only one item per processor, these reductions take 
O(log N).  For the latter cases, it has been shown in [13] 
that Ω(log N) is the lower bound for these reductions. 
Since MMB does not contain a circuit to perform these 
reductions, specific algorithms have to be designed for 
them. It is clear that substantially different methods are 
used to execute these operations on the MASC model. 

Most recently, an augmented MMB model called the 
MHB (Meshes with Hybrid Buses) model was proposed 
in [12]. A MHB is a MMB enhanced with precharged 1-
bit row and column buses. By draining the precharged 
high voltage to ground on the augmented bus, concurrent 
broadcast by several processors can be supported. This 
makes it possible for a global OR reduction operation to 
be done in constant time. This is called an “.OR” (dot 
OR) bus by hardware people and differs from the logic 
OR via gates that we discussed earlier for the MASC 
model. It also ignores a small but non-constant time for 
precharging or draining on the augmented bus (which is 
sometimes claimed to be logarithmic). Furthermore, it 
supports our simulation results in [4] that show that a 
MMB is less powerful than a MASC with a 2-D mesh 
unless it is augmented with extra hardware. 

The above discussion and comparison of MASC 
with other models justify our constant time assumption 

concerning the timings of the broadcast and reduction 
operations on the MASC model. We argue that our 
assumption uses the same methodology that the other 
models have used, both for the purpose of theoretical 
research and for practical implementations.   

 
6. Summary 

 
We have given the details of our timing justification 

for the MASC basic operations, based on their hardware 
implementation on the STARAN, which is the 
architectural ancestor of the MASC model. We have also 
compared our timings with those of other models. A 
summary of the MASC operations is given in Table 1. In  
the second  column, we list the timings when we assume 
that the broadcast bus has a 1-bit width. In the third 
column, we assume that the broadcast bus has a ω-bit 
width. These timings are based not only on actual 
implementation (e.g., STARAN and ASPRO), but on the 
comparable timings used by RAM, PRAM, and bus-
based architectures. These models were included as part 
of our study in order to evaluate which MASC timing 
charges result in the fairest possible comparison of 
MASC to other models for parallel computation. 

 
Table 1. Summary of the timings of the basic 

MASC operations  

Operations 
1-bit B. 

Bus 
ω-bit B. 

Bus 

Broadcast O(ω) O(1) 

Addition/Subtraction O(1) 

Logic OR O(1) 

Logic AND O(1) 

Associative Search  O(ω) O(1) 

AnyResponder O(1) 

PickOne O(1) 

Maximum/Minimum O(ω) O(1) 
 

There are several issues to consider in determining 
the proper cost for basic operations for a model. These 
include implementation considerations, experimental 
data involving prototypes, theoretical considerations, and 
comparison with the costs assigned to other models with 
similar capabilities. Other considerations are that the 
costs assigned should be kept simple whenever possible, 
consistent with the added requirement that they must 
provide accurate comparison of performance of 
algorithms designed for the model and with the 
performance of this model when compared with other 
models. It would be useful to have more experimental 
data using modern technology to test the timings 
assigned to the basic MASC operations.  
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