
 1

Timings for Associative Operations on the MASC Model

Mingxian Jin, Johnnie Baker, and Kenneth Batcher
Department of Mathematics and Computer Science

Kent State University, Kent, Ohio 44242
Phone: (330) 672-2430 Fax: (330) 672-7824

Email: {mjin, jbaker, batcher}@mcs.kent.edu

Abstract

The MASC (Multiple Associative Computing) model
is a generalized associative-style computational model
that naturally supports massive data-parallelism and
also control-parallelism. A wide range of applications
has been developed on this model. Recent research has
compared its power to the power of other popular
parallel models such as the PRAM and MMB models
using simulations. However, the simulation of MMB has
identified some important issues regarding the cost of
certain basic MASC operations required for associative
computing such as broadcasts, reductions, and
associative searches. This paper investigates these issues
and gives background information and an analysis of
timings for these operations, based on implementation
techniques and comparison fairness with respect to other
models. It aims to provide justification and clarify
arguments on the timings for these constant-time or
nearly constant-time basic MASC operations.

1. Introduction

The MASC (Multiple Associative Computing)

model is a generalized associative-style of computing
that has been in use since the introduction of associative
SIMD computers in the early 1970s [18,19]. It provides a
practical, highly scalable model that naturally supports
both data-parallelism and control-parallelism with a wide
range of applications. The MASC model is an MSIMD
type model that provides one or more instruction streams
(ISs), each of which is sent to a unique set in a dynamic
partition of processing elements (PEs). This allows a task
currently in execution to be partitioned into multiple
tasks using control parallelism. The associative feature
of the model allows data in the local memories of
processors to be located by content rather than by
address.

A large amount of research work has been done for
this model. For example, an associative language, called
ASC, has been implemented for the MASC model with
one instruction stream across many platforms [19]. A

number of efficient algorithms have been developed for
various problems [3,10,18,19]. Also, recent research has
compared its power to the power of the CRCW PRAM
[24] and MMB (Meshes with Multiple Broadcasting)
models [4] using simulations.

However, the simulations between MASC and
MMB has identified some important issues regarding the
cost assigned to certain basic MASC operations such as
the broadcast and reduction operations. Both the
accuracy of the cost assigned to these operations and its
fairness with respect to the costs assigned on other
parallel models are extremely important, as they
determine the accuracy of the comparison between
MASC and other models. Likewise, the accuracy and the
fairness are essential in determining the ability of MASC
to efficiently support applications in different areas, both
for programming and complexity analysis of algorithms.
In making fair cost assignments, it is necessary to
consider the theoretical asymptotic rate of increase in the
cost that occurs as the data size increases. However, it is
equally important to also consider how these operations
can be implemented in hardware and the running time of
the implementations of these operations. The theoretical
asymptotic rate of increase, together with the running
times for hardware implementations can be used to
produce graphs that project feasible running time for an
operation on data sets of varying size. When this graph is
bounded above by a small constant even when the
number of processors exceeds what is considered to be
feasible in the foreseeable future, we explore the option
of assigning a constant running time to these basic
MASC operations.

This paper investigates these issues based on the
implementation details of Goodyear’s STARAN, which
is the architectural ancestor of the MASC model. We
will discuss and analyze comparative fairness for the
timings of certain basic operations on the MASC model
with respect to the timings on other parallel models, e.g.,
the PRAM and MMB models.

The paper is organized as follows. Section 2 gives a
brief description of the MASC model and the motivation
for MASC. Section 3 describes the hardware

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 2

implementation from STARAN to support these basic
operations. Section 4 discusses the individual operations
based on the implementation facts. Section 5 compares
the costs of these basic operations on the PRAM and
MMB models and addresses the issue of what costs
should be assigned to MASC when it is compared (using
simulations) to related models. The last section is a
summary.

2. The MASC model

The MASC model consists of an array of processing

elements (PEs) and an array of instruction stream
processors (ISs). Each PE, paired with its local memory,
is called a cell. There are three real or virtual networks to
connect cells and ISs, namely, a cell network used for
communication among cells, an instruction stream
broadcast/reduction network used for communication
between ISs and their cells, and an IS network used for
communication among ISs (Figure 1).

Figure 1. The MASC model

A complete description of MASC can be found in
[18]. The following provides a brief summary. The
MASC model is an MSIMD type model, where at least
one or more ISs each send commands to a unique set in a
dynamic partition of the PEs. The number of ISs is
normally expected to be small, compared to the number
of PEs. Each PE is capable of performing local
operations as a sequential processor other than issuing
instructions. Each PE can only access its own local
memory. An IS is logically a processor which has a
connection to each cell. Each IS has a copy of the
program being executed and issues instructions to all its
assigned cells. Each cell listens to only one IS and
initially all cells listen to the same IS. The cells can
switch to other ISs in response to commands from the
current IS and the results of a data test. A cell can be
active, inactive, or idle. An active cell executes the
program instructions broadcast by the IS to which it is
currently listening while an inactive cell listens to but

does not execute these instructions. An IS can instruct an
inactive cell to become active again. An idle cell does
not contain any needed data and can be reassigned to a
new task.

Assuming the word length is considered to be a
constant, the MASC model supports the following
important constant time operations for an IS:
• Broadcasting an instruction stream or a data item to

the set of PEs listening to the IS
• Global reduction of a binary value stored in each

active PE using logic OR or AND
• Global reduction of an integer (or real) value stored

in each active PE using maximum or minimum
• Associative search to find the cells whose data

values match the search pattern (called responders)
or do not match the search pattern (called non-
responders)

• The AnyResponder operation to determine if there is
any existing responder after an associative search

• The PickOne operation to select (or "pick") an
arbitrary responder from its set of active cells
These basic operations are essential to support the

associative style of computing. They serve as core
properties for the MASC model uniquely to achieve its
effectiveness. In hardware, they are implemented
through the broadcast/reduction network in a bit-serial
fashion. The correctness of the timings assigned to each
of these operations depends on both possible hardware
implementations and comparative fairness with respect
to other parallel model, as we will discuss in the
following sections.

3. Broadcast/reduction network

In this section, we take a close view on a possible

hardware implementation of the broadcast/reduction
network based on the STARAN computer, which is the
architectural motivation for the MASC model. The
STARAN was an associative SIMD computer with 512
to 4096 PEs, depending upon the size of a particular
installation. The STARAN was built in the early 1970’s
and the ASPRO, its architectural descendent, was built in
1980’s by Goodyear Aerospace. Currently, the ASPRO
is produced by Martin-Marietta and is used by the U.S.
Navy. Their hardware implementation of associative
operations through the broadcast/reduction network
provides a possible implementation for these basic
associative operations on the MASC model.

 The broadcasting/reduction network on the
STARAN is constructed using a group of resolver
circuits [6]. A N-PE resolver consists of N PEs labeled
PE0 , PE1 , …, PEN-1 and each PEi has a responder bit
Ri that is equal to 0 or 1. The resolver is designed to be
able to tell each PE whether or not any earlier PE has a
responder bit equal to 1. Thus for each i, it computes Vi

PE Memory
IS

IS

C
E
L
L

N
E
T
W
O
R
K

I
S

N
E
T
W
O
R
K

PE Memory

PE Memory

Cells

•
•
•• • •

Broadcast/reduction network

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 3

= R0 ∨ R1 ∨ R2 ∨… ∨ Ri-1 , where ∨ is the logic-OR
operator and 0 < i ≤ N. The resolver also sends VN to the
control unit to tell it whether or not any responder bits
are equal to 1. A 4-PE resolver is illustrated in Figure 2.

In practice, by using the parallel prefix idea, a
resolver for N PEs can be built as a log4 (N)-level tree of

4-PE resolvers. Each leaf represents a PE and the PEs are
partitioned into groups of 4 PEs, which are fed into the

first level of 4-PE resolvers. A reduction operation is
executed by sending the signals down the tree to the PE
leaves and then back up to the root of the tree to obtain
the final result, while accumulating partial results in
middle. Obviously, the delay from any input to any
output is at most (2 log4 N -1) gates. A 16-PE resolver

tree is shown in Figure 3.

Figure 2. A 4-PE resolver with at most an 1-gate delay from any input to any output

Figure 3. A 16-PE resolver with at most a 3-gate delay from any input to any output

PEi

R

PEi+1

R

PEi+2

R

PEi+3

R

Vi Vi+1 Vi+2 Vi+3 Ri Ri+1 Ri+2 Ri+3

Vi = V
i=0

 i=i-1
 (Ri) Ri ∨ Ri+1 ∨Ri+2

PEi PEi+15

4-PE Resolver

4-PE Resolver

4-PE Resolver

4-PE Resolver

4-PE Resolver

Vi Ri ∨ Ri+1 ∨…∨Ri+15

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 4

4. Discussion on the basic operations

In this section, we discuss the timings on the

individual basic MASC operations given in Section 2.
We consider broadcasting first. Broadcasting for

bus-based architectures provides a fast way to transmit
data between processors that are far apart. The
assumption that an arbitrary subset of broadcasts on a
bus-based architecture can occur in constant time,
regardless of the number of processors or the length of
buses, has been generally accepted in the literature
[7,8,12,13,14,15,20,21,23]. This provides consistency
among researchers in the field and is supported by
experimental evidence even for very large architectures
by today's standards [14,17]. For example, in today’s
architectures with at most tens of thousands of
processors, the time to broadcast a data item over a bus
is usually no more than that to perform a basic operation
such as an addition by a sequential processor. Hence it
can be bounded within one or a few machine cycles
[7,17]. This constant time assumption for broadcasting
greatly simplifies calculation of running times of
algorithms and comparison of various models without
loss of prediction accuracy. 1

In a similar way, we assign the timing for a
broadcast on the MASC model from an IS to its PEs to
be constant. On the MASC model, broadcasting is used
to issue instruction streams from an IS to its PEs and
transmit data between them. Broadcasting a bit or a word
on the MASC model is performed through the broadcast
network. Practically, the broadcast network may be
implemented as a separate network from the reduction
network yet with the same structure (like in the
STARAN), or they may share the same network. It is
easy to observe that it takes log4 N gate delay for a bit to
travel from the root of the tree network to the N PE
leaves at the bottom. Recall that broadcasting on a bus-
based architecture technically requires linear order with
respect to the bus length and the number of the
processors. It is clear that the time for broadcasting
increases asymptotically slower when using this tree-
based network than when using a bus-based architecture.

The gate delay from any input to any output on the
broadcast/reduction network for the MASC model is at
most (2log4 N –1). This cost is given particular attention
here. We argue that for practical purpose it could be
bounded by a small constant. The reasoning is as
follows. Typically, a gate delay takes about 1-5
nanoseconds. We may imagine even if we built an

1 Since the number of gates that a bus is able to drive is limited,
perhaps a re-evaluation of the time for broadcasting at the VLSI level is
needed by researchers in the field before making this assumption for
millions of processors. In considering VLSI designs to maximize the
fan-out of a gate and minimize the layers of gates, a possible approach
might be to increase the fan-out of the n-ary broadcast tree used here
(e.g., to a 100-ary tree).

extremely large machine with size of 2210 processors, the
gate delay would be at most (2log4 2210 -1) × 5
nanoseconds ≈ 5.1 microseconds. On the other hand,
building a machine with 2210 processors appears to be
impractical, since the number of atoms in the known
universe is estimated to be less than 229 [2]. It is likely
that machines in the foreseeable future will have at most
a few million processors. A machine with 100 million
processors would have the gate delay less than 50
nanoseconds, which is comparable to the time for a
memory access in today’s systems. Since there are
approximately 8 billion neurons in the human brain, it
seems reasonable to conjecture that an efficient machine
with that many processors would necessarily have to use
a model quite different from those used today. Also,
since a processor can handle much more complex
computations than is considered possible for a neuron, it
seems likely that if a machine were built to be able to
handle the computations typical of the brain, then it
would probably have far fewer than 8 billion processors.

We give brief diagrams for the function graph of
(2log4 N –1) gate delay for this timing. Given the
average 1-gate delay is 2 nanoseconds, the function
graphs are shown in Figure 4 in regular scales and Figure
5 with the vertical axis in logarithmic scales, while N is
between 1 to 229 . (Notice that 229 is approximately
equal to 1.2e+154 shown in the figures. We did not give
the function curves from 229 +1 to 2210 due to the
limitations of our plotting device.) The two horizontal
lines in Figure 5 are reference lines. It is clear that this
function changes very slowly and is bounded by a small
constant even if N is unreasonably large.

For a very large architecture, wire length is also an
issue. According to the optimal VLSI layout, when the
number N of processors is very large, the wire length can
increase as large as N1/3 , based on the 3-D cube
topology. However, this same problem exists in bus-
based architectures. We may use the same solution (if
any) to the problem. An option used in [7] is formulating
a parameter, i.e., the cycle of a computation, as the
maximal length of a single bus to capture this notion.

Let ω be the greater of the length of an instruction or
a data item (i.e., word). Obviously, broadcasting an
instruction or a data item one bit at a time from an IS to
its PEs takes O(ω). With architectures that have already
been built or those currently envisioned, the size of ω is
a small constant. However, most parallel models assume
that the processor's identification number can be stored
in a word, thus requiring that for a machine with N
processors, ω must be at least log N in size. It is
traditional to assume in the bus-based architectures that
the buses have bandwidth ω. In particular, for MASC we
may build the separate broadcast network with the bus

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 5

 (µs)

Figure 4. The gate delay of (2log 4 N -1) in regular scales.

1.023

1.010

(µs)

Figure 5. The gate delay of (2log 4 N -1) with the vertical axis in logarithmic scales

bandwidth ω so that it transmits ω bits simultaneously.
Therefore, it is very reasonable to assume that both the
word and instruction broadcasts require constant time.

Next, we discuss the logic OR global reduction
operation. With each PE holding a binary value, a global
OR is performed through the log4 N-level tree of 4-PE
resolver network, as shown in Figure 2 and Figure 3.
Thus, the same reasoning used for the 1-bit broadcasting
can be used to justify assuming that a global OR takes
constant time, although the tree traversal is in the
opposite direction.

A global AND operation is implemented using a
global OR operation simply by adding compliment gates
to the inputs. So it can be assigned the same timing as a
global OR operation.

An associative search is a unique feature of an
associative model like MASC. On MASC, it is executed
through the broadcast/reduction network by broadcasting
a predefined search pattern to the PEs from an IS. Those
PEs with matching values set their responder bit and
remain active. Then an AnyResponder operation can be
used to check if there exists any responder. Also, using
the reduction network, the IS can select (or pick) an
arbitrary (usually the first) active PE to do any special
processing. We refer this to as a PickOne operation.

Clearly, an AnyResponder operation is essentially a
global OR operation over all the responder bits. It

involves one tree traversal of the reduction network and
returns true if any responder bit is set among the active
PEs and false otherwise. A PickOne operation is also
performed by the reduction network by going up through
the same tree traversal as a global OR. So both these two
operations should have the same timing as a broadcast or
a global OR, i.e., constant time. Notice that, after a PE is
picked and processed, the PickOne operation clears the
responder bit of the PE and the IS can proceed to pick
another of the active processors. An associative search
involves three steps, i.e., a broadcast of word-length
pattern; a sequential comparison of two word data by
each active PE; and a global AnyResponder operation.
Hence, the associative search also requires constant time.

Let the word length be ω. In a bit-serial SIMD
architecture such as the STARAN, operations on
multiple bits are performed bit-serially. This means that,
if a 1-bit local addition takes O(1), then a two-word local
addition takes O(ω). If ω is assumed to be constant, then
addition/subtraction is also a constant time operation, as
one would expect. Some researchers argue that the word
length in parallel computers with N PEs should always
be (logN) or larger [2] so that it can store the
identification number of each PE. However, since a

parallel computer could have over 1.8× 1019
 PEs before

log N is larger than 64, the assumption that the word
length is also a constant seems to be reasonable, based

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 6

on the size of current parallel computers and those in the
foreseeable future.

Consider computing a global Maximum (or
Minimum) of N integer (or real) values. As before, we
continue to assume that the word length ω is considered
a constant. Let each of the N PEs contains a value in a
common word-size field. The global Maximum (or
Minimum) operation can be implemented as a bit-serial
operation with a global OR being computed for each bit
of the field in the order of the left (most significant) bit
to the right (least significant) bit. Each global OR bit
operation keeps active those PEs whose bit value is 1 (or
0 for Minimum) until either only one responder is left or
until all bits have been processed [19]. Additionally, if
all active processors have a 0 value for one bit, then all
remain active for the next round. If we assume that the
time to compute a global OR is constant and ω is the
word length, then the time for this operation is O(ω). If
ω is also assumed to be a constant, as assumed for the
addition of two words above, the time for a global
Maximum (or Minimum) operation will also require only
constant time.

As a related observation, we compare the
implementation of the broadcast/reduction network of
the MASC model that is in a bit-serial fashion and a
sequential processor that is in a word-serial fashion. In
fact, the hardware needed to support a sequential
addition operation is not that different from the hardware
needed to support the mentioned MASC basic operations
on the broadcast/reduction network. It has been shown
that the lower bound for a sequential processor to
perform addition is Ω(log k) where k is the number of
bits of the two operands [11,16]. A sequential processor
performing addition using carry-look-ahead adders as
building blocks is much like a MASC performing a
global reduction using resolvers as building blocks. The
cost of addition for a sequential processor is considered
to take constant time regardless of the number of its
input bits (i.e., length of the operands). With the almost
same hardware circuits, it is reasonable to apply the
same measurement that ignores the number of input bits
(i.e., number of PEs) on the MASC reduction operations.

The prefix sum operation is not supported in
hardware in either the STARAN or the ASPRO. Also, it
is not yet a basic operation on the MASC model. But
based on the principle we discussed earlier, it is possible
to implement this operation using the reduction network
for a group of 1-bit binary values with each stored in a
PE. As claimed in [16], “any design for a prefix sum
operation can be converted to a carry computation
network by simply replacing each adder with the carry
operator.” This could take the same time as a sequential
addition operation, as well as a MASC reduction
operation. However, for a ω-bit prefix sum, it may need

more expensive hardware support to take the partial
sums and partial carries to the next round of addition.

It is important to keep in mind that all of the above
basic operations are implemented in hardware, in
contrast to other parallel computational models that
execute most of them using software algorithms. These
features make the MASC model a unique parallel
computation model that is powerful and feasible.

5. Comparison of timings with other

models

In order to compare the MASC model with other

computation models such as PRAM or MMB, it is
critical that the timings charged for the basic operations
of each model be fair. For example, if two models both
support a broadcast with the same hardware, it would be
unreasonable to charge one model O(log N) for a
broadcast and the other O(1). Also, for two operations
using the same hardware in one model, we should not
charge one O(1) and the other O(log N).

It is useful to compare the timing cost for the basic
MASC operations to those of similar operations for
RAM and PRAM memory access. We give a short
summary of the computational complexity of RAM and
PRAM memory access presented in [2]. The memory
access on these two classic models can be implemented
by a combinatorial circuit that is called the Memory
Access Unit (MAU). The MAU of RAM is implemented
as a binary tree of switches. Each memory access from
the processor has to use the path between the root of the
tree and a memory location at a leaf of the tree. When
the memory size is M, the depth of the MAU is clearly
Θ(log M). For PRAM, the lower bound for the depth of a
MAU with M global memory locations and N (= O(M))
processors is also Ω(log M). A theoretical optimal MAU
for PRAM with depth Θ(log M) is possible using a
sorting circuit and a merging circuit. However, there is
an efficient and more practical MAU for PRAM with
depth Θ(logM). Since the circuit in the optimal MAU has
depth O(log M), each memory access is performed with
a O(log M) switch delay. This is exactly the same
situation as observed with the basic operations for the
MASC model. Researchers and algorithm developers
have ignored this small theoretical logarithmic factor for
many years and have elected to treat memory access time
as a constant, just like the time for other basic operations
such as addition and comparison. This timing approach
has dominated algorithm analysis on both the RAM and
PRAM models in the literature and has significantly
simplified and standardized complexity analysis of
algorithms, both in terms of comparing algorithm
performance and of comparing computational models.

We may further consider reduction operations for
PRAM. Using prefix operation algorithms, all PRAM

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 7

models can calculate logic OR/AND or maximum/
minimum in O(logN). However, using concurrent writes,
the CRCW PRAM can compute every Boolean function
with a small domain (e.g., binary values) in constant
time [22]. But this does not hold for other variants of
PRAM without concurrent writes, as they require at least
Ω(log N) algorithm steps for such a computation [9].
Thus, the charges for reductions and basic operations of
logic OR/AND are reduced for the CRCW PRAM due to
an assumed superior architectural implementation.

Next, we compare timings on MASC with timings
on MMB, which is considered to be a more practical
computational model than PRAM. A MMB is a basic
mesh enhanced with several global buses, one bus for
each row and one bus for each column. A processor can
broadcast along its row or column bus to allow fast data
transmission to all processors that are on the same row or
column bus. In one time unit, only one processor is
allowed to write a value on a bus. All other processors
are assumed to simultaneously read the value being
broadcast in constant time.

As with other bus-based architectures we discussed
earlier in Section 3, the time to broadcast along a bus on
MMB increases linearly as the number of processors
increases, i.e., O(N). It has been generally accepted that
this time can be considered to be constant. As for other
basic operations on MMB, it has been shown in [21] that
on a MMB with size of N1/2 × N1/2 and each PE holding
a data item, the global reduction of finding a
maximum/minimum or logic OR/AND can be computed
in O(N 1/6). Also, if all data items lie in the same row
with only one item per processor, these reductions take
O(log N). For the latter cases, it has been shown in [13]
that Ω(log N) is the lower bound for these reductions.
Since MMB does not contain a circuit to perform these
reductions, specific algorithms have to be designed for
them. It is clear that substantially different methods are
used to execute these operations on the MASC model.

Most recently, an augmented MMB model called the
MHB (Meshes with Hybrid Buses) model was proposed
in [12]. A MHB is a MMB enhanced with precharged 1-
bit row and column buses. By draining the precharged
high voltage to ground on the augmented bus, concurrent
broadcast by several processors can be supported. This
makes it possible for a global OR reduction operation to
be done in constant time. This is called an “.OR” (dot
OR) bus by hardware people and differs from the logic
OR via gates that we discussed earlier for the MASC
model. It also ignores a small but non-constant time for
precharging or draining on the augmented bus (which is
sometimes claimed to be logarithmic). Furthermore, it
supports our simulation results in [4] that show that a
MMB is less powerful than a MASC with a 2-D mesh
unless it is augmented with extra hardware.

The above discussion and comparison of MASC
with other models justify our constant time assumption

concerning the timings of the broadcast and reduction
operations on the MASC model. We argue that our
assumption uses the same methodology that the other
models have used, both for the purpose of theoretical
research and for practical implementations.

6. Summary

We have given the details of our timing justification

for the MASC basic operations, based on their hardware
implementation on the STARAN, which is the
architectural ancestor of the MASC model. We have also
compared our timings with those of other models. A
summary of the MASC operations is given in Table 1. In
the second column, we list the timings when we assume
that the broadcast bus has a 1-bit width. In the third
column, we assume that the broadcast bus has a ω-bit
width. These timings are based not only on actual
implementation (e.g., STARAN and ASPRO), but on the
comparable timings used by RAM, PRAM, and bus-
based architectures. These models were included as part
of our study in order to evaluate which MASC timing
charges result in the fairest possible comparison of
MASC to other models for parallel computation.

Table 1. Summary of the timings of the basic

MASC operations

Operations
1-bit B.

Bus
ω-bit B.

Bus

Broadcast O(ω) O(1)

Addition/Subtraction O(1)

Logic OR O(1)

Logic AND O(1)

Associative Search O(ω) O(1)

AnyResponder O(1)

PickOne O(1)

Maximum/Minimum O(ω) O(1)

There are several issues to consider in determining
the proper cost for basic operations for a model. These
include implementation considerations, experimental
data involving prototypes, theoretical considerations, and
comparison with the costs assigned to other models with
similar capabilities. Other considerations are that the
costs assigned should be kept simple whenever possible,
consistent with the added requirement that they must
provide accurate comparison of performance of
algorithms designed for the model and with the
performance of this model when compared with other
models. It would be useful to have more experimental
data using modern technology to test the timings
assigned to the basic MASC operations.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

 8

Acknowledgments

The authors wish to thank the following people for
their help in writing this paper: Profs. Will Meilander,
Robert Walker, Jerry Potter, and Arden Ruttan. We also
wish to thank an anonymous referee for his very useful
comments. This work was supported by a grant from
Ohio Board of Regents CS Enhancement Initiative.

References

[1] N. Abu-Ghazaleh, P. Wilsey, J. Potter, R. Walker, J.
Baker, Flexible Parallel Processing in Memory:
Architecture + Programming Model, Proc. of the 3rd
Petaflow Workshop, Feb. 1999. http://vlsi.mcs.kent.edu/
~parallel/papers/tpf3.pdf

[2] S. G. Akl, Parallel Computing: Models and Methods.
Prentice Hall, New York, 1997.

[3] M. Atwah and J. Baker, An Associative Dynamic Convex
Hull Algorithm, Proc. of the 10th Int’l Conf. on Parallel
and Distributed Computing Systems, 1998, pp. 250-254.

[4] J. Baker and M. Jin, Simulation of Enhanced Meshes with
MASC, a MSIMD Model, Proc. of the 11th Int’l Conf. on
Parallel and Distributed Computing Systems, Nov., 1999,
pp. 511-516.

[5] K. Batcher, STARAN Parallel Processor System
Hardware, Proc. Of the 1974 National Computer Conf.
(1974), pp. 405-410.

[6] K. Batcher, The Resolver Network, seminar notes,
Octobor, 1999.

[7] Y. Ben-Asher, D. Peleg, R. Ramaswami and A. Schuster,
The Power of Reconfiguration, J. of Parallel and
Distributed Computing, 13, 1991, pp. 139-153.

[8] S. Bokhari, Finding Maximum on an Array Processor with
a Global Bus, IEEE Trans. On Computers, C-33, 2 (1984),
pp.133-139.

[9] M. Dietzfelbinger, M. Mkutylowski, and R. Reischuk,
Feasible Time-optimal Algorithms for Boolean Functions
on Exclusive-write Parallel Random-access Machines,
SIAM J. Computing, Vol. 25, No. 6, Dec. 1996, pp.1196-
1230.

[10] M. Esenwein, and J. Baker, VLCD String Matching for
Associative Computing and Multiple Broadcast Mesh,
Proc. of the 9th Int’l Conf. on Parallel and Distributed
Computing Systems, 1997, pp. 69-74.

[11] I. Koren, Computer Arithmetic Algorithms, Prentice Hall,
New Jersey, 1993.

[12] R. Lin, S. Olariu, J. Schwing, The Mesh with Hybrid
Buses: an Efficient Parallel Architecture for Digital
Geometry, IEEE Trans. on Parallel and Distributed
Systems, Vol. 10, No. 3, Mar. 1999, pp.226-279.

[13] R. Lin, S. Olariu, J. Schwing, and J. Zhang, Simulating
Enhanced Meshes, with Applications, Parallel Processing
Letters, vol.3, No.1, 1993, pp.59-70.

[14] M. Maresca, Polymorphic Processor Arrays, IEEE Trans.
on Parallel and Distributed Systems, Vol. 4, No.5, May,
1993, pp. 490-506.

[15] R. Miller, V. Prasanna-Kumar, D. Reisis, and Q.Stout,
Meshes with Reconfigurable Buses, Proc. of the 5th MIT
Conf. on Advanced Research in VLSI, Boston, 1988.

[16] B. Parhami, Computer Arithmetic Algorithms and
Hardware Design, Oxford University Press, New York,
2000.

[17] D. Parkinson, D. Hunt, and K. MacQueen, The AMT
DAP 500, Proc. of the 33rd IEEE Computer Society Int’l
Conf., 1988, pp. 196-199.

[18] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun,
and C. Asthagiri, ASC: An Associative-Computing
Paradigm, Computer, 27(11), 1994, 19-25.

[19] J. Potter, Associative Computing: A Programming
Paradigm for Massively Parallel Computers, Plenum
Press, New York, 1992.

[20] V. Prasanna-Kumar and C. Raghavendra, Array Processor
with Multiple Broadcasting, J. of Parallel Distributed
Computing, 4:173-190, 1987.

[21] V. Prasanna-Kumar and D. Reisis, Image Computation on
Meshes with Multiple Broadcast, IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol.11, No.11, Nov.
1989, pp.1194-1201.

[22] R. Reischuk, Simultaneous Writes of PRAM Do Not Help
to Compute Simple Arithmetic Functions, J. of ACM, vol.
34, No.1, Jan., 1987, pp.163-178.

[23] Q. Stout, Mesh-connected Computers with Broadcasting,
IEEE Trans. On Computers, vol. C-32, No.9, Sept. 1983,
pp. 826-830.

[24] D. Ulm, J. Baker, Simulating PRAM with a MSIMD
Model (ASC), Proc. of the Int’l Conf. on Parallel
Processing, 1998, pp.3-10.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

