
Introductory Programming
Manual

The ClearSpeed Software
Development Kit

Document No. 06-UG-1117 Revision: 2.E

January 2008

Document No. 06-UG-1117 Revision: 2.E January 2008 3

The ClearSpeed Software Development Kit
Introductory Programming Manual

Overview
This document is intended to help new users get started with the ClearSpeed Software
Development Kit (SDK). Some understanding of parallel processing in general, and the CSX
processor architecture in particular, will be useful although the main concepts are introduced
in this document.

This manual starts with an overview of the architecture. It then works through a series of
examples which demonstrate various features of the C language extensions used to
program the CSX processor.

The following chapters provide more detail of the tool chain and the Cn programming
language. This is primarily targeted at programmers with some previous C or C++
programming experience.

Note: Please refer to the ClearSpeed Software Developer Kit Installation Guide for install
instructions.

Structure of the document
This chapter explains the background to the Cn language and the CSX architecture.

Chapter 2: Simple Cn programs, presents a number of example programs to demonstrate
the use of Cn for real problems. There are a number of exercises that the reader can use to
test and extend their understanding.

Chapter 3: Building and running Cn programs, gives a brief overview of the commands to
run the main tools in the Software Development Kit (SDK). This should be enough to allow
the reader to run the examples provided.

Chapter 4: Parallel programming in Cn, introduces the basics of data-parallel programming
and the use of the debugger.

Chapter 5: Cn for the working C programmer, provides an informal discussion of the
features of the Cn programming language, focusing on the features specific to programming
the CSX processor.

Chapter 6: More Cn programs, uses some more complex programs and a series of
exercises to teach more about the Cn language and the CSX architecture.

Chapter 7: Debugging Cn, explains how to use the debugger, a port of GDB, to debug Cn
programs.

Chapter 8: Programming host applications, describes how to build applications which run on
both the host processor and a CSX coprocessor.

Chapter 9: Programming hints, provides some reminders of common mistakes made when
learning Cn.

Bibliography, is a list of references and suggested further reading.

Table of contents SDK Introductory Programming Manual

4 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Table of contents

1 Overview of the architecture . 7
1.1 Terminology . 9

1.2 Programming model . 9

2 Simple Cn programs . 10
2.1 Aim of this document . 10

2.2 Example 1: Hello world .11

2.3 Example 2: A first poly program .11

3 Building and running Cn programs . 13
3.1 A brief description of the tool chain . 13

3.2 Compiling program . 13
3.2.1 File naming conventions . 14

3.2.2 Compiling as C . 14

3.3 Running your code . 15
3.3.1 Running on a simulator . 15

4 Parallel programming in Cn . 17
4.1 Sequential code and parallel code . 17

4.2 Using the debugger . 18

4.3 Start the program . 19

4.4 Exit the debugger . 19

5 Cn for the working C programmer . 20
5.1 Comments . 20

5.2 Data types . 20

5.3 Mono and poly specifiers . 20
5.3.1 Basic types . 21

5.3.2 Pointer types . 21

5.3.3 Pointers to mono data . 21

5.3.4 Pointers to poly data . 23

5.3.5 Illegal casts . 25

5.3.6 Array types . 26

SDK Introductory Programming Manual Table of contents

Document No. 06-UG-1117 Revision: 2.E 5
ClearSpeed Technology plc

5.3.7 Struct and union types . 26

5.3.8 Typedefs . 27

5.4 Mixing mono and poly variables . 28

5.5 Flow control . 28
5.5.1 If statements . 28

5.5.2 For, while and do..while loops . 30

5.5.3 Goto statement . 30

5.5.4 Labeled breaks . 31

5.5.5 Switch statements . 31

5.6 Functions . 32

5.7 Other architectural features . 32
5.7.1 Data transfers between mono and poly . 33

6 More Cn programs . 35
6.1 Example 1: Mandelbrot set . 35

6.1.1 Standard (mono) implementation . 36

6.1.2 Parallel (poly) implementation . 38

6.2 Exercise 2: Input and output . 41

6.3 Example 3: Asynchronous I/O . 43

7 Debugging Cn . 47
7.1 Compiling for debug . 47

7.2 Starting csgdb . 47

7.3 Using csgdb to investigate mandelbrot_poly.cn . 48
7.3.1 Listing source code . 48

7.3.2 Connecting to the device . 49

7.3.3 Setting breakpoints . 49

7.3.4 Starting execution . 49

7.3.5 Examining variables . 50

7.3.6 Reading registers . 52

7.3.7 Stepping to a function call . 53

7.3.8 Viewing the poly enable state . 55

7.3.9 Attaching commands to breakpoints . 59

7.3.10 Returning from a function . 62

7.3.11 Viewing memory . 69

7.3.12 Terminating the program . 73

Table of contents SDK Introductory Programming Manual

6 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

8 Programming host applications . 74
8.1 Initialization . 75

8.2 Synchronization and communication . 75

8.3 Sample code . 76

9 Programming hints . 77
9.1 Effects of function return type . 77

9.2 Use of mono variables inside poly conditionals . 77

9.3 Debugging tips . 78
9.3.1 Random errors occuring . 78

9.4 Mixing mono and poly conditions . 78

9.5 Dereferencing mono*poly pointers . 79

Bibliography . 80

Revision history . 81

SDK Introductory Programming Manual Overview of the architecture

Document No. 06-UG-1117 Revision: 2.E 7
ClearSpeed Technology plc

1 Overview of the architecture

Figure 1 shows a high-level view of the CSX600 processor architecture. The CSX600
processor comprises a multi-threaded single-instruction multiple-data array processor core,
external DRAM interface, high-speed interfaces and embedded SRAM integrated onto a
single chip. All subsystems on the chip are interconnected using the ClearConnect bus on-
chip network. The ClearConnect bus can be extended through the ClearConnect bridge
ports to provide communication between two or more CSX600 processors or other devices
such as FPGAs and through the host debug port to the host.

The array processor core contains 96 processing elements (PE). Each PE can execute
simultaneous add and multiply operations. The CSX600 supports fully pipelined operation
executing one instruction per cycle.

Figure 1. CSX600 processor

The CSX600 has 256 Kbytes of on chip SRAM (mono memory) and a DDR2 interface to
SDRAM. The part that is most relevant to our discussion are the execution units. This
consists of two main parts: the mono execution unit and an array of processing elements
(PEs) which form the poly execution unit. Each instruction in the single instruction stream is
executed by the mono or poly execution unit, as appropriate.

ClearConnect Bus ClearConnect
Bridge

ClearConnect
Bridge

Memory
Unit

Interrupt
and

Semaphore
Unit

(GSU ISU)

Host Debug
Port

iCache dCache ESRAM

Mono Processor

Poly Processor

Processor Core

Control bus

Data bus

DDR2
SDRAM

Overview of the architecture SDK Introductory Programming Manual

8 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Figure 2. Execution units

The performance of the processor comes from the fact that data is processed in parallel by
the poly execution unit.

The main features of the poly execution unit are:
An SIMD (single instruction multiple data) array of 96 PEs. This means that each PE
executes the same instruction but on different data.
Each PE has an ALU (arithmetic logic unit), 32 + 64 bit FPU (floating point unit), a
register file and 6 Kbytes of SRAM.
The PEs are connected as a linear array via a connection path.

Instruction
Cache

Data
Cache

Bus Port

Instruction Fetch

Decode

Issue

Branch
Control

Mono Execution Unit

Poly Execution Unit

B
u
s
 P

o
rt

A
L

U

F
P

U

F
P

U

M
A

C

Reg File

SRAM

PIO

Reg File

SRAM

PIO

Reg File

SRAM

PIO

A
L

U

F
P

U

F
P

U

M
A

C

A
L

U

F
P

U

F
P

U

M
A

C

ALU

Reg File

Load/Store

SDK Introductory Programming Manual Overview of the architecture

Document No. 06-UG-1117 Revision: 2.E 9
ClearSpeed Technology plc

1.1 Terminology
To avoid any confusion a number of terms are defined here:

Basic type: A variable which stores a single data object (for example, a char, an int, a
float, and so on).
Aggregate type: Types, such as arrays, structures, unions or pointers, derived from
other types. These types may hold several data objects.
Mono variable: A variable that has one instance. This can be of basic or aggregate
type.
Poly variable: A variable that has many instances with, typically, different data values
on each poly Processing Element (PE). This can be of either a basic or aggregate type.
Mono memory: Memory associated with mono data. There is one instance of this
accessible by all PEs. Also referred to as local memory. This memory may be on chip
and/or on the same PCB card as the CSX processor.
Poly memory (also known as PE memory): Memory associated with poly data. Each
PE has its own local block of poly memory; each instance of poly memory is only visible
to the corresponding PE.

Note: Mono and poly memory are two physically distinct memory spaces, with their own memory
maps.

1.2 Programming model
The main thing that is required in a programming language for the CSX architecture is a
means of representing poly data. This is done by introducing the keyword poly and a
corresponding mono keyword. These new keywords are called multiplicity specifiers. They
allow the programmer to specify the domain in which the declaration will exist.

mono – the object exists in the mono domain (that is, a single instance).
For example, mono int a; is equivalent to int a;
poly – the object exists in the poly domain (that is, many instances).
For example, poly int b; the variable b has a separate value on each PE.

The default multiplicity is mono; if no multiplicity specifier is used, the variable will be mono.

All operations that can be performed on ‘normal’ (mono) variables can also be done with
poly variables. In the case of poly variables, multiple values will be operated on
simultaneously (one per PE).

Poly variables can also be used in conditional statements, so that code can be executed on
some PEs and not others.

Because of the extra complexity of having both mono and poly conditional expressions, it is
impractical to support the goto statement. As a common use of this is to jump out of deeply
nested conditions or loops, another extension to the Cn language is the use of labels with
break or continue statements

Refer to the following Cn chapters in this manual. Also see the appropriate chapter of the
SDK Reference Manual for full details of the Cn language.

Simple Cn programs SDK Introductory Programming Manual

10 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

2 Simple Cn programs

The purpose of this document is to teach the basics of Cn and to inspire confidence in using
it. Programming exercises are provided to teach these basics, since it is believed that
hands-on experience is the best teacher.

2.1 Aim of this document
Having completed the five programming exercises in Chapter 2 and Chapter 6 you should
have code running which uses all of the following elements of Cn:

Cn types
– monos
– polys
Conditionals
– conditionals on monos
– conditionals on polys
Pointers
– mono pointers to monos
– mono pointers to polys
– poly pointers to monos
– poly pointers to polys
External memory access
– semaphores
– programmed I/O memory transfers

While it is possible to step through these elements sequentially in a programming example,
it is always more interesting to learn something in a practical context.

Note: These programs are tutorials intended to show how the features of the language are used in
practice, the code is not optimized. There are a number of techniques which can be used to
greatly improve the efficiency of code on this architecture. These vary from generic
techniques to keep more of the PEs busy more of the time, greater overlapping of I/O and
processing, through to novel algorithms designed specifically for the architecture.

SDK Introductory Programming Manual Simple Cn programs

Document No. 06-UG-1117 Revision: 2.E 11
ClearSpeed Technology plc

2.2 Example 1: Hello world
The canonical example for a new programming language is the Hello world program. Not
wanting to break this ancient tradition, it is used here.

#include <stdio.h> // Output support

int main() {
 printf("Hello world\n");

 return 0;
}

This can be compiled with the following command:

cscn hello.cn

This compiles the source code in the file hello.cn in to an executable file called a.csx.
This can then be run with the following commands(1):

csreset -A
csrun a.csx

This resets and then loads the executable on to the CSX processor. The program csrun will
then handle communication from the running program: the message “Hello world” will be
displayed and then the program will terminate.

Note that csrun will normally search for a CSX processor in your system to run the program
on. If you are using a simulator, you will need to specify further command line options (see
Note 1). See Section 3.3.1: Running on a simulator for details of how to use the simulator.

2.3 Example 2: A first poly program
We can also implement a poly variant of this simple program where each Processing
Element (PE) outputs a different message. Rather than introduce poly strings and pointers
at this point, we will stick with integers.

#include <stdiop.h> // Output support
#include <lib_ext.h> // Extra functions to support features of
hardware

int main() {
 poly int n;

 n = get_penum(); // individual PE number

 printfp("PE number: %d\n", n); // Output different message per
PE

 return 0;
}

1. Running code on a simulator

If running code on a simulator, then the -s option must be used with csreset and csrun. This tells it to connect
to a simulator, rather than searching for hardware.

Simple Cn programs SDK Introductory Programming Manual

12 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

This example can be compiled and run in the same way as the previous one. This time we
will use the -o option to specify the output filename.

cscn -o count.csx count.cn

This compiles the program, producing an executable file called count.csx. This can then
be run with the command:

csrun count.csx

This will print a series of integers from 0 upwards; one per PE.

Note: It is not necessary to reset the processor if it has been reset before and if the previously run
program terminated correctly.

SDK Introductory Programming Manual Building and running Cn programs

Document No. 06-UG-1117 Revision: 2.E 13
ClearSpeed Technology plc

3 Building and running Cn programs

This section provides a brief introduction to the main tools in the Cn Software Development
Kit (SDK). Enough information is provided to get you started, that is, able to compile and run
the examples provided.

3.1 A brief description of the tool chain
The SDK contains all the tools necessary to write, compile and run programs on
ClearSpeed’s CSX processors. The most commonly used tools are:

cscn
compiles source code to executable programs(1);
csreset
resets the processor prior to running programs;
csrun
runs an executable on a CSX processor;
csgdb
the source code debugger;
isim
simulator of CSX processor for executing programs in the absence of hardware.

Only basic use of the tools needed to compile the examples are described below. For more
details, and for information on the other tools in the SDK, see the SDK Reference Manual.

3.2 Compiling program
Once you have written your Cn code, you need to run it through the Cn compiler. In most
cases this is simply a matter of using the cscn command with a few basic options and a list
of source code files. The most commonly used options are:

-g

This option enables debugging support. It generates extra information in the
executable file for the debugger. This option must be used if you wish to use csgdb to
debug your program.

-o filename

This option specifies the output filename. If this is omitted the code is written to a file
called a.csx.

-h

This option will display information on all the command line parameters that can be
used with cscn.

1. The program cscn actually invokes a series of other tools to compile your source code. These are: the C pre-
processor (cscpp), the compiler (cncc), the macro assembler (mass) and the linker (cld).

For larger projects it can be more efficient to run these stages of processing individually, for example with a
make file.

Building and running Cn programs SDK Introductory Programming Manual

14 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

For example, if the program being compiled is split across two source files (main.cn and
functions.cn) then the program can be compiled with debug support with the following
command:

cscn -g -o example.csx main.cn functions.cn

The files specified on the command line can be Cn source, assembly code or object files.
cscn will work out what needs to be done with each file based on the file name extension.

3.2.1 File naming conventions
The file name extensions used by the SDK are:

.cn Cn language source file

.h Cn include file

.csx executable file

.csi pre-processed Cn source file

.is assembler source file

.inc assembler include file

.s assembler output from compiler

.cso object file

.csa library file

3.2.2 Compiling as C
Because Cn has been based closely on ANSI C, it is often possible to write code that can be
compiled and run as either Cn or as C. Obviously, if compiled as C, none of the parallel
processing or other specific features of the processor will be available, but this can still be a
useful technique for debugging code and ensuring that, in ‘sequential mode’, the code does
what is expected.

The predefined macro __STDCN__ can be used to control a set of include statements and
macro definitions to simplify this. For example, a program could have the following at the
start:

#ifdef __STDCN__
/* Include standard Cn support functions */
#include <lib_ext.h>
#else
/* Macros to allow code to be compiled as C */
#define poly
#define mono
#endif

By defining empty macros for the Cn keywords mono and poly, these will not be seen by a
standard C compiler. Similarly, any Cn-specific functions that are used, for example, poly
variants of standard functions, could be mapped onto equivalent C functions; for example:

#define sinp sin /* Map poly sine function to standard
equivalent */

SDK Introductory Programming Manual Building and running Cn programs

Document No. 06-UG-1117 Revision: 2.E 15
ClearSpeed Technology plc

3.3 Running your code
Once you have created an executable file, it can be run on a CSX processor (or on a
simulation of the processor). This requires a program running on the host computer to load
the executable code on to the CSX processor and then communicate with it as it runs.

In the simplest case where the program runs almost entirely on the CSX processor, then a
program such as csrun or the debugger can be used. This loads the code on to the CSX
processor and then waits for communication from it.

In the more general case, the whole application may be made up of a host component and a
part running on one or more CSX processors—perhaps accelerating some specific function.
This is illustrated in Figure 3.

Figure 3. Application acceleration

In order to communicate between the CSX device (or simulator) and the host computer a
device driver is used. This is a small software module that provides input and output (I/O)
services between the host and the CSX processor. The device driver will have been
installed as part of the software installation process.

3.3.1 Running on a simulator
If you wish to run your compiled CSX code on the simulator, for example because you do
not have access to a CSX processor, then before the CSX code can be run, the simulator
must be started in its own command window.

The simulator is run using the command(1):

isim

Building and running Cn programs SDK Introductory Programming Manual

16 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

When isim is running, it does not output any text to the screen until it is accessed by a
program such as csreset, csrun or another host application.

Note: After isim is started, csreset must be used to put the simulator into a known state ready
for a program to be loaded and executed:

csreset --sim -A

Note that the --sim (or -s) option is required to tell csreset to connect to the simulator
rather than looking for hardware.

At this point the simulator is ready to run a program. The executable now needs to be
loaded and run. There are two common cases here: the debugger, csgdb, or csrun.

To simply load and run a program using csrun, the command is:

csrun -sim filename.csx

To run the program with the debugger, the command would be:

csgdb filename.csx

1. If using Linux, then the simulator can be started in its own window using the command:

xterm -e isim &

If running Microsoft Windows, the same thing can be achieved with the command:

start isim

SDK Introductory Programming Manual Parallel programming in Cn

Document No. 06-UG-1117 Revision: 2.E 17
ClearSpeed Technology plc

4 Parallel programming in Cn

This chapter explains how a loop in a standard C program can be replaced—or, at least,
unrolled—by the use of poly variables. It also shows some basic capabilities of the
debugger.

4.1 Sequential code and parallel code
The standard C code and the Cn code are shown side by side below. This example
assumes a CSX processor with 96 (or more) processing elements.

The sequential version of the code simply iterates over a loop and calculates 96 values.

The parallel version uses the PE number to calculate a different value from the series on
each PE. Compiling and running each of these programs will produce identical output.
However, the parallel version will be executed 96 times faster (ignoring the fact that the run
time for this trivial example will actually be dominated by the display of the results).

This is an interesting example to demonstrate some basic capabilities of the debugger (the
debugger is described in more detail in Chapter 7: Debugging Cn).

Sequential C code Parallel Cn code

#include <stdio.h>
#include <math.h>

#define SAMPLES 96

int main() {
 float sine, angle;
 int i;

 // loop over values 0...n-1
 for (i = 0; i < SAMPLES; i++) {
 // convert to an angle in
 // the range 0 to Pi
 angle = i * M_PI / SAMPLES;
 // calculate sine of angle
 sine = sin(angle);
 // print out values
 printf("%d: %0.3f\n",i,sine);
 }

 return 0;
}

#include <stdiop.h>
#include <mathp.h>
#include <lib_ext.h>

#define SAMPLES 96

int main() {
 poly float sine, angle;
 poly int i;

 // get PE number: 0...n-1
 i = get_penum();
 // convert to an angle in
 // the range 0 to Pi
 angle = i * M_PI / SAMPLES;
 // calculate sine on each PE
 sine = sinp(angle);
 // print out values
 printfp("%d: %0.3f\n", i, sine);

 return 0;
}

Parallel programming in Cn SDK Introductory Programming Manual

18 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

4.2 Using the debugger
Firstly, make sure the code is compiled with debug support; for example:

cscn -g -o sine_poly.csx sine_poly.cn

Then start the debugger:

csgdb sine_poly.csx

This prints a startup message from the debugger and then the command prompt ‘(gdb)’.
Now use the connect command to connect to the hardware (or simulator). When
successfully connected, this displays the current location of the program counter:

(gdb) connect

main() at sine_poly.cn:7

7 . int main(){

This output may vary depending upon the format the code was originally entered.

Now use the list command to display the program source. Type return at the prompt after
the first group of lines to display the rest of the program:

(gdb) list
3 #include <lib_ext.h>
4
5 #define SAMPLES 96
6
7 int main() {
8 poly float sine, angle;
9 poly short i;
10
11 // get PE number: 0...n-1
12 i = get_penum();
(gdb)
13 // convert to an angle in
14 // the range 0 to Pi
15 angle = i * M_PI / SAMPLES;
16 // calculate sine on each PE
17 sine = sinp(angle);
18 // print out values
19 printfp("%d: %0.3f\n", i, sine);
20
21 return 0;
22 }
(gdb)

Now set a break point before the print statement:

(gdb) break 19
Breakpoint 1 at 0x80015180: file sine_poly.cn, line 19.
(gdb)

SDK Introductory Programming Manual Parallel programming in Cn

Document No. 06-UG-1117 Revision: 2.E 19
ClearSpeed Technology plc

4.3 Start the program
Next start the program running:

(gdb) run
Starting program: C:\src\cn\hlpg/sine_poly.csx
Breakpoint 1, main () at sine_poly.cn:19
19 printfp("%d: %0.3f\n", i, sine);
(gdb)

You can now use the debugger to examine the state of some variables. Because these are
poly variables, a number of values will be displayed, one per PE.

For example:

(gdb) print sine
$1 = {0, 0.0327190831, 0.0654031336, 0.0980171412, 0.1305262,
0.162895471,
 0.195090324, 0.227076262, 0.258819044, 0.290284663, 0.321439445,
0.35225004,
...
 0.16289553, 0.130526081, 0.0980170965, 0.0654031485,
0.0327191688}
(gdb)

Note: Some variables may appear to be out of scope because of compiler optimizations, even if
you would expect them to still be in scope according to the scoping rules of C.

Now type continue to run to the end of the program. This will print out all the sine values
from all PEs:

(gdb) next
0: 0.0
1: 0.00
2: 0.01
3: 0.01
.
.
90: 0.020
91: 0.016
92: 0.013
93: 0.01
94: 0.01
95: 0.0

Processor 0 has terminated.
Program exited normally.
(gdb)

4.4 Exit the debugger
Now you can use the quit commend to exit the debugger. A more complete tutorial on using
the debugger can be found in Chapter 7: Debugging Cn.

Cn for the working C programmer SDK Introductory Programming Manual

20 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

5 Cn for the working C programmer

The Cn language is based very strongly on ANSI C. Any programmer familiar with ANSI C
should have no difficulties with the syntax and fundamental concepts of Cn. It is
recommended that you refer to [3.] The C Programming Language. If you are unfamiliar with
ANSI C, it is suggested that you spend some time familiarizing yourself with it, since Cn
introduces some extra concepts for programming parallel systems and that is the main
focus of this chapter.

The following sections explain the features found in the Cn language.

5.1 Comments
The compiler accepts both standard C-style block comments (/* ... */) and the C++
syntax (// ...) for line comments.

5.2 Data types
The Cn language supports the following basic types:

char, unsigned char, signed char
short, unsigned short, signed short
int, unsigned int, signed int
long, unsigned long, signed long
float, double

Cn also supports the following aggregate types:
struct
union
pointers
arrays

These are exactly the same as for ANSI C and should cause no issues for a C programmer.

For details of the sizes and representation of these types, see the [1.] SDK Reference
Manual.

5.3 Mono and poly specifiers
The Cn language adds two extra keywords used in declarations. The new keywords are
called multiplicity specifiers. The multiplicity specifier allows the programmer to specify the
domain in which the declaration will exist.

mono: the declaration exists in the mono domain (one instance), for example, mono
variable/memory.
poly: the declaration exists in the poly domain (many instances), for example, poly
variable/memory.

The default multiplicity is mono: that is, there will be an implicit mono unless an explicit poly
is used.

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 21
ClearSpeed Technology plc

There are several situations in which the multiplicity specifier can be used. The next
subsections will detail these and provide some examples.

5.3.1 Basic types
The basic types can always be used in conjunction with multiplicity specifiers. For instance:
poly int counter;
// A different instance of ’counter’ exists on each PE
mono unsigned char initial;
// A single instance of ’initial’ exists in mono memory
mono unsigned long tval;
poly unsigned long p_tval;

5.3.2 Pointer types
Pointers are more complicated than basic types. Pointer declarations consist of a base type
and a pointer. The definition on the left-hand side of the * represents the base type (the
object type that the pointer points to). The definition on the right-hand side of the *
represents the pointer object itself. The possible combinations should be familiar to most C
programmers as it is possible to make either of these entities constant. For instance:

const int * const foo; /* const pointer to const int */
int * const bar; /* const pointer to non-const int */
const int * bing; /* non-const pointer to const int */

Multiplicity specifiers work in a similar way. Consider the following:

poly int * poly foo; /* poly pointer to poly int */
int * poly bar;
/* poly pointer to mono int (equiv to mono int * poly bar) */
poly int * bing;
/* mono pointer to poly int (equiv to poly int * mono bing) */

The best way to understand this is to visualize the poly and mono memory spaces. Imagine
the pointers as separate entities in these memory spaces which reference data objects
which may themselves be in mono or poly memory space. The diagrams below should
make this clearer.

It is also possible to create more complex multiple pointer types such as mono int *
poly * poly but, as long as you follow the rules for decomposing and visualizing each
component of these more complex declarations, they can be understood in the same way.

5.3.3 Pointers to mono data
For mono data, there are two types of pointers:

Mono pointer, that is, a single instance of the pointer and the object pointed to, both in
mono memory.
Poly pointer, that is, a pointer on each PE that points to data in mono memory.

Cn for the working C programmer SDK Introductory Programming Manual

22 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Mono pointer to mono data

This is the “normal” C pointer type, for example, int * (that is, mono int * mono) –
there is a single instance of the pointer and of the object pointed to; both are in mono
memory. Figure 4 shows how this can be visualized.

Figure 4. Representation of mono int * mono

This type of pointer has exactly the same uses, and behaves in exactly the same way, as in
standard C. For example, taking the address of a mono variable will create a pointer of this
type.

mono int n;
mono int * mono p;

p = &n; // create a pointer to n
*p = 1; // assign a value to n

Poly pointer to mono data

It is also possible to have a pointer on each PE that points to data in mono memory. In this
instance, the pointer value on each PE could contain a different address; each pointing to a
different element of the same array, for example. This is shown in Figure 5.

Pointers of the type mono type * poly are not used very frequently. The compiler does
not currently support de-referencing this type of pointer as this implies moving data from
mono space into poly space. Because this data movement might have a significant
performance impact, such data transfers must be done explicitly using functions from the
standard library (see Section 5.7.1: Data transfers between mono and poly). Therefore, the
only use for this type of pointer is as an argument to the library functions which perform
transfer of data between poly and mono memory.

Mono Memory

Pointer

int

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 23
ClearSpeed Technology plc

Figure 5. Representation of mono int * poly

mono int a[ARRAY_SIZE];
poly short i;
mono int * poly p;

i = get_penum()
p = a + i // each PE points to a different element of the array p

5.3.4 Pointers to poly data
For poly data, the same two types of pointers exist:

mono pointer points to the same address in every PE’s memory.
poly pointer can hold a different address on each PE (pointing to data on the same PE).

Mono pointer to poly data

A mono pointer to poly memory (poly * mono) is shown in Figure 6; here a mono variable
provides the address of the data in poly memory.

Mono
Memory

Poly
Memory

Poly
Memory

Poly
Memory

Int

Pointer Pointer Pointer

Int

Int

Cn for the working C programmer SDK Introductory Programming Manual

24 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

For example, taking the address of a poly array produces a poly*mono pointer: an instance
of the array exists on each PE but, because they are all at the same address, a mono value
can be used as a pointer to the array.

Code to count the number of bytes with the value zero in a buffer on each PE could be
coded as follows:

poly char buffer[BUFFER_SIZE]
poly char * mono ptr;
poly int count;
int i;

// initialize
ptr = buffer;
count = 0;
// iterate over the buffer
for (i = 0; i < BUFFER_SIZE; i++) {
 // check value pointed to on each PE
 if (*ptr == 0) {
 count++;

// increment counter on those PEs where it is zero
 }
 ptr++; // move the pointer to the next byte
}

In this example, the mono variable ptr contains a single address—every PE uses this as
the address of the next byte to be checked and counted.

Figure 6. Representation of mono int * mono

Mono Memory

Poly
Memory

Poly
Memory

Poly
Memory

Pointer

int int int

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 25
ClearSpeed Technology plc

Poly pointer to poly data

The last pointer type (poly * poly) provides even greater flexibility. Here, each PE can
calculate a different address for accessing data in its poly memory. This is illustrated in
Figure 6.

This is an important feature of the language (and of the architecture). It allows you to have
each PE operate on different data in a very flexible way. Each PE can calculate the address
of the data it is to use rather than having to allocate data to be processed in a fixed way.

Figure 7. Representation of poly int * poly

An example of the use of these pointers is shown below. Here the code is searching for the
first position of a character within a string. Each PE can process a different string and so the
pointer to the character will be different on each PE.

// prototype for poly version of strchr() - from strings.h
poly char * poly strchrp(const poly char * mono s1, poly char c);
poly char str[256];
// the variable str is actually a poly * mono pointer
poly char * poly ptr; // a pointer into the string

... // initialize string on each PE
ptr = strchrp(str, ’z’);
// search for first occurrence of ’z’: different on each PE

5.3.5 Illegal casts
Note that, because mono and poly data are in completely separate memory spaces, it is not
legal to cast or assign a mono * pointer to a poly * pointer, or vice-versa.

There would be two problems with attempting to do this sort of cast. Firstly, the mono and
poly pointer sizes are not guaranteed to be the same; poly memory is typically quite small
and may use 16-bit pointers, while mono pointers may be 32 or 64 bits. Secondly, a pointer
to data in poly memory, for example, will not necessarily point to anything meaningful if cast
to a pointer to mono memory; it could point to arbitrary data or even code.

Poly
Memory

Poly
Memory

Poly
Memory

Pointer Pointer Pointer

Int

Int

Int

Cn for the working C programmer SDK Introductory Programming Manual

26 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

5.3.6 Array types
The multiplicity specifier for an array type defines the domain for the base type. For
instance, consider the following:

poly char buffer[20];

In this example the array base type is poly char. This declaration will create space for 20
characters on the poly stack frame. The address of each of these arrays in poly space will
be the same. Therefore the type of the pointer that is implied by a reference to buffer is
poly char * mono – a pointer existing in mono space that points to poly space.

Note: It is not possible to create a poly char * poly pointer using array notation since an
array declaration only specifies the base type multiplicity class (the implicit pointer
multiplicity class will always be mono).

Multi dimension arrays are supported in Cn in exactly the same way as for ANSI C.

5.3.7 Struct and union types
Structures and unions are exactly the same as for ANSI C, however, multiplicity specifiers
have strict rules for use inside a struct or union construct. Objects inside a struct/union
definition have no multiplicity class (it is undefined). It is only when a variable that has the
type of the struct/union is declared that the multiplicity class is specified. This means that an
object that is a struct/union can be declared as either mono or poly. For example:

struct _A {
 int a; //
 char b;

// Multiplicity class not defined in struct definition
 float c; //
};

poly struct _A my_struct;
// All objects within the struct are poly
mono struct _A my_struct_2;
// All objects within the struct are mono

poly struct _B {
 int a;

// Not allowed to declare multiplicity inside definition
 int b;

// (but statment also declares a poly object)
} my_struct_3;

union _B {
 poly int a; // Illegal use of multiplicity specifier
 mono char b; // Illegal use of multiplicity specifier
 float c;
};
mono union _B my_union;
// Multiplicity of declaration would conflict with definition

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 27
ClearSpeed Technology plc

The only situation where a poly or mono specifier can be used in a struct or union is when
declaring a pointer. This is due to the fact that the member itself (the pointer) cannot have a
multiplicity specifier, but the object pointed to can. This makes sense, since without this
capability it would not be possible to have a pointer to a poly object as a member of a struct
or union. For instance:

struct _C {
 mono int *a; // pointer to a mono int
 poly char *b; // pointer to a poly char
};
struct _C my_struct2; // Note: this is an implicit mono object
 // a is mono pointer to mono int
 // b is mono pointer to poly char

struct _C poly my_struct3; // Poly object of the same type
 // a is poly pointer to mono int
 // b is poly pointer to poly char

In the example just given, the first object my_struct2 contains two members which are
mono int * mono a and poly char * mono b. The second object my_struct3
contains two members which are mono int * poly a and poly char * poly b.

5.3.8 Typedefs
As with ANSI C, Cn supports typedef. This allows the programmer to define their own
types. The typedef statement cannot use multiplicity specifiers to define the multiplicity of
the type. However, as with structs and unions, it can define pointers to mono or poly types.
For instance:

typedef poly int p_int; // illegal use of multiplicity specifier
typedef poly int * p_ptr; // ’p_ptr’ is a pointer to poly int
typedef mono int * m_ptr; // ’m_ptr’ is a pointer to mono int
p_ptr a; // poly int * mono a
poly p_ptr a; // poly int * poly a
m_ptr a; // mono int * mono a
poly m_ptr a; // mono int * poly a

Cn for the working C programmer SDK Introductory Programming Manual

28 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

5.4 Mixing mono and poly variables
It is generally legal to mix mono and poly variables in expressions. The basic rules are
outlined here.
1. A mono value can be assigned to a poly variable:

poly int x = 1;

In this case, the mono value is copied to all instances of the poly variable.
2. An expression can mix mono and poly variables:

poly int x;

int y;

x = x + y;

In this case, the mono variable is promoted to a poly (that is, an instance is created on
every PE—every instance having the same value) and then the expression is
evaluated concurrently by all the PEs.
The compiler will be able to optimize this so that the mono variable is not copied to poly
memory every time it is used.

3. It is not legal (or even meaningful) to assign a poly to a mono variable as this means
that multiple values would have to be written to a single variable.

5.5 Flow control
Cn supports the same basic flow control statements as ANSI C with some minor additions.
The basic flow control constructs are:

if statements,
for loops,
while loops,
do .. while loops,
switch statements (not supported for poly expressions).

Each of these statements uses expressions as loop or branch control. The difference with
Cn is that these control expressions can be of mono or poly type. (Any expression has a
resultant type which, in the case of Cn, can have a multiplicity).

5.5.1 If statements
As mentioned above, the expression used in any flow control statement can be either mono
or poly. The Cn mono variant of these expressions is the same as standard C. Consider the
following snippet:

int i;
...
if (i > 100) {
 ... /* do some work */
}
else {
 ... /* do some other work */
}

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 29
ClearSpeed Technology plc

As a C programmer, you should be familiar with the mechanics of this code. If the condition
is met, then the first branch of the if statement is executed, otherwise the else branch is
executed. This is the same whether the statements in the two branches operate on mono or
poly data.

Poly conditionals

Now consider the case with a poly expression for the condition:

poly short penum;
...
penum = get_penum();
/* Each PE now contains a different value in the penum variable */

if (penum < 32) {
 ... /* Do some work */
}
else {
 ... /* Do some different work */
}

In this case, some PEs will execute the first branch, and some will execute the second.
Remember, however, that there is a single instruction stream executed by all PEs. So what
actually happens is that each PE is enabled for the instructions where the condition is true,
and disabled for the branch where the condition is false. However, because there is a
separate mono execution unit (which is always enabled) any mono operations will always
be executed, whichever branch they are in.

In general, if a poly expression is used for flow control, then the instructions for all
alternatives will be issued. The instructions for each branch will be executed on a different
subset of the PEs.

This has important implications for mono objects that are used inside poly flow control
statements. Consider the following code snippet:

poly short penum = get_penum();
mono int i;

if (penum < 32) {
 ... /* Do some work */
 i = 0; /* Set mono variable */
}
else {
 ... /* Do some other work */
 i = 1; /* Set mono variable */
}

What is the value of i after this statement has finished? It will, in fact, be 1. Operations on
poly data are controlled by the condition in the if statement, but mono operations are not
because the code for both branches is executed, the variable i is initially set to 0 and then
to 1.

This is not always intuitive and can cause unexpected results for the unwary programmer.
Even if all the poly variables used in the if statement fulfil the first condition, the mono
variables are still updated as if both branches had been executed.

Cn for the working C programmer SDK Introductory Programming Manual

30 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Consider the following piece of code:

poly int value = 0;
// Even though value set to 0, both branches will still execute
mono int i;
if (value == 0) {
 i = 1;
}
else {
 i = 2;
}

In this case, even though all of the PEs fulfill the condition (and hence none will execute the
else clause), the compiler will emit code to execute both branches and the processor will
execute it. In fact, by writing code like this you are restricting the possibility of optimizing the
code, since both branches must be executed. (If the branches contain only operations on
poly data, then the compiler can, in principle, remove “dead code” that can never be
executed.)

5.5.2 For, while and do..while loops
Similar rules to the if statement apply to the for, while and do..while loops. In the
same way that both branches of a poly conditional are executed, a loop with a poly control
value will be executed as long as the condition is true on any PE. Those PEs which evaluate
the condition as false will be disabled for the remaining iterations. But, again, mono
operations will be executed on every iteration.

Consider the following piece of code:

poly int i;
mono int loop_count = 0;

...
/* i is set in this piece of code, the value may be different on
/* each PE */
while (i > 100) {
 //... /* Do some work */
 i -= 2; /* Decrement poly loop control */
 loop_count++; /* Increment mono loop count */
}

The value of loop_count will depend on the maximum value of i in the poly space (that is,
the number of times the loop is executed on any PE). In this case, loop_count is a useful
value since it tells the programmer the maximum number of iterations that the loop actually
went through.

5.5.3 Goto statement
The goto statement is supported in Cn with the restriction that a goto statement can not
cross a poly boundary. For example, anything which changes enable state such as a poly
if or a poly while.

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 31
ClearSpeed Technology plc

5.5.4 Labeled breaks
To provide a similar level of control to the use of goto, the break and continue
statements are extended in Cn. Labels are allowed in Cn but only on loop constructs (for,
while, do..while). Break and continue statements in Cn can then specify a label which
allows the program to break out of heavily nested loops.

For instance:

for_i:
 for (i = 0; i < 10000; i++) {

// Label for_i is associated with the for loop
 while(j > 100) {
 do {
 // ...
 if (foo == bar) {
 break for_i;
 }
 // ...
 } while (a != b);
 }
 }

In this example, the break will break out of the deepest point in the nested loop to the
outermost level (breaking completely out of all the nested loops).

This gives most of the flexibility of goto, but in a more structured way.

5.5.5 Switch statements
Switch statements are supported in Cn. They provide the same functionality as for ANSI C.
Switch statement expressions must be mono expressions.

int val;
... /* Some code which sets up the value in val */
switch (val) { /* Only mono expressions are valid for switch */
case 0:
case 1:
 ... /* Do some work */
 break;
case 2:
 ... /* Do other work */
 break;
default:
 ... /* etc. */
}

Cn for the working C programmer SDK Introductory Programming Manual

32 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

An equivalent for poly expressions can be constructed using if statements. Consider the
following section of code performing the same functionality as a poly switch statement in Cn:

poly int val;
... /* Some code which sets up the values in val */
if ((val == 0) || (val == 1)) {
/* Select operations to be done on each PE */
 ... /* Do some work */
}
else if (val == 2) {
 ... /* Do other work */
}
else {
 ... /* etc. */
}

5.6 Functions
Functions are fundamentally the same in Cn as they are in ANSI C.

Cn supports function pointers.

Multiplicity specifiers can be used with the arguments and the return type of a function. The
return type defines multiplicity of the function: that is, a function returning a poly type is
referred to as a poly function.

The multiplicity of a function affects how returns are handled. This is analogous to the way
conditional statements are handled.

A mono function will return immediately a return is executed.
A poly function will only return once all of the PEs have returned a value and all
remaining mono code has executed. In effect, a poly function will execute to the end
with the PEs that have executed the return statement disabled. If there is no mono
code, and all PEs have returned, then a compiler may be able to optimize by returning
early.

5.7 Other architectural features
The following sections describe some important features of the architecture which are not
directly supported in Cn. These can be accessed through library functions or by
programming in assembly language. Examples of using these can be found in
Chapter 6: More Cn programs.

SDK Introductory Programming Manual Cn for the working C programmer

Document No. 06-UG-1117 Revision: 2.E 33
ClearSpeed Technology plc

5.7.1 Data transfers between mono and poly
A set of input and output (I/O) operations are defined to support the movement of data
between mono and poly memory spaces. There are a number of different modes of
operation for these I/O transfers. The most commonly used variants are made available as
library functions.

The library functions are extensions of the standard memcpy functions. These support mono
to poly and poly to mono transfers using both address mode and strided mode. The
functions are summarized below(1):

memcpym2p Transfers data from mono space to poly space. Each PE can individually
specify the source address (addressed mode). Every enabled PE transfers the same
amount of data to the same location in poly memory. Disabled PEs do not take part in
the transfer.
memcpyp2m As above, but transferring data from poly to mono memory.
memcpym2p_strided This function transfers data from mono to poly using strided
mode: the starting address in mono memory is specified; this is then incremented by
the specified stride value for each PE’s data. Every enabled PE transfers the same
amount of data to the same location in poly memory; disabled PEs do not take part in
the transfer.
memcpyp2m_strided As above, but transferring data from poly to mono memory.

In addition, there are asynchronous versions of these functions which execute the I/O on a
separate thread so that it can proceed concurrently with computation being performed on
the processor. These functions also use semaphores, described below, to synchronize the
completion of I/O with program flow.

Note: There are some restrictions on asynchronous functions. For example, size of transfer and
alignment. See the Standard Library Reference Manual for further details.

Caching and I/O

Caution: It is important to be aware of the way that the cache is used for mono data when using the
I/O functions.

Normally, accesses by a program to mono memory are cached to provide faster access to
frequently used data. However, I/O transfers to and from the PEs do not go via the cache—
this could lead to unexpected behavior unless efforts are made to keep the contents of the
cache and external memory consistent. The memcpy functions described above do this
automatically; however, the asynchronous versions do not.

The function dcache_flush can be used to ensure that the contents of the data cache are
consistent with mono memory. This should be used if your program mixes normal accesses
to mono memory with the I/O functions.

Semaphores

Semaphores are a standard method for synchronizing multiple concurrent operations. A
semaphore is a status word used to control access to a shared resource or to control the
execution of concurrent tasks.

1. Please refer to the SDK Reference Manual, section Assignment.

Cn for the working C programmer SDK Introductory Programming Manual

34 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

A semaphore is a non-negative integer value and two associated operations:
Signal
A signal is an atomic(1) operation that increments the semaphore value.
Wait
Wait is an atomic operation that decrements the semaphore value.
The value cannot be negative and so, if the semaphore is zero when the wait is
executed, the wait operation will not finish until the semaphore is signalled by another
thread. The waiting thread may be descheduled allowing other threads to run.

Valid user semaphore numbers range between 0 and 92. Semaphores 93-127 are reserved
for system use and should not be used.

As an example of the use of semaphores, consider the asynchronous I/O functions
described above. These perform the I/O concurrently with the program that calls them: they
use semaphores to indicate when the I/O has completed. This is shown diagrammatically in
Figure 8. This shows a compute thread that performs a couple of asynchronous I/O
operations.

The semaphore is initialized with the value 0 (A). When the first I/O completes, the
semaphore is signalled (B). The semaphore value of 1 indicates that there is data available.
When the compute thread wishes to use the data, it must first wait on the semaphore; in this
case the data is available and the thread continues immediately (C). The program then
initiates a second I/O operation (D) and is ready for the data before the operation has
completed (E). The compute thread is suspended until the I/O operation completes and
signals the semaphore (F).

Figure 8. Synchronization of I/O and compute with semaphores

Note: The program could have multiple data buffers so it can read multiple data items ahead of
when they are required. In this case the semaphore value will be incremented for each
completed I/O and so indicate the number of data items available to be processed.

1. An atomic operation is one that cannot be interrupted: that is, in this case, the semaphore value is read,
incremented and written back as a single operation. This ensures that behavior is consistent even when
multiple threads access the same semaphore.

I/O Thread

Compute Thread

Semaphore 1 00

Initiate
I/O

Signal

Use
data

Wait

Initiate
I/O

0
Wait

0

Signal

Use
data

I/O
Complete

I/O
Complete

A B DC E F

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 35
ClearSpeed Technology plc

6 More Cn programs

This chapters gives several examples of how to use Cn programs and it also provides a few
exercises for you to do.

6.1 Example 1: Mandelbrot set
The Mandelbrot set The Mandelbrot Set Explorer is an example of fractal geometry
discovered by Benoit Mandelbrot in the 1970s. It is a simple but compute intensive algorithm
that produces complex and beautiful images (see Figure 9).

Figure 9. Example of a Mandelbrot set

The algorithm used to generate the Mandelbrot set can be represented by the following
pseudo-code; for a given point x, y in the complex plane:

while and number of iterations < threshold value
result = result + 1

 ;
note: these two assignments are concurrent

The usual way of implementing this is to iterate over a series of values of x and y and run
through this equation for each. This then gives a result value for each coordinate which is
used to represent a color or grey-scale value. The image in Figure 9 was generated by
iterating over values of x from -1.5 to 1.0 and values of y from -1.5 to 1.25. The resolution of
the image is 256 x 256. A false-color map has been applied to the image to make it more
interesting.

x2 y2+() 4≤

x x2 y2 xorig–+= y 2xy yorig+=

More Cn programs SDK Introductory Programming Manual

36 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

6.1.1 Standard (mono) implementation(1)

Given this information, you can now devise a standard C program to generate a Mandelbrot
set. This code can be compiled and run on any standard processor as well as a CSX
processor; but obviously without exploiting the parallelism.

First, define macros for constant parameters used by the program:

#define NUMROWS 96 // Size of image to be generated
#define NUMCOLS 96

#define MINX -1.5f // Coordinates of fractal to be evaluated
#define MINY -1.25f
#define MAXX 1.0f
#define MAXY 1.25f

// Increment for each screen coordinate
#define STEPX ((MAXX - MINX) / NUMCOLS) #define STEPY ((MAXY -
MINY) / NUMROWS)
#define RES 150 // Max number of iterations

Include the standard Cn header files.

#include <dprint.h>

#include <lib_ext.h>

Define a function to test the termination condition for a given (x,y) coordinate.

/* Evaluate the termination condition */
int terminate(float x, float y) {
 return (x*x + y*y > 4.0f);
}

The main part of the work is done in the function calcres() which evaluates the result at
position (x,y).

/* Calculate the result for a given x and y position */
char calcres(float x, float y, int res) {
 char result;
 int turnedon;
 int i;
 float tx;
 float xcalc, ycalc;

 /* Set the xcalc cumulative value to its initial value */
 xcalc = x;
 /* Set the ycalc cumulative value to its initial value */
 ycalc = y;

 result = 0;
 /* Initialize flag to control iterations */
 turnedon = 1;

 /* Loop up to res times for each position (this will determine) the

1. Please refer to the Cn Standard Library Reference Manual for more information.

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 37
ClearSpeed Technology plc

quality of the final picture, the more iterations, the better
but slower the solution will be) */

 for (i = 0; i < res; i++) {
 /* Only continue calculating if the result has not been

determined yet */
 if (turnedon) {
 /* Check to see if the termination condition is met */
 if (terminate(xcalc, ycalc)) {
 /* Final result is the number of iterations required

to terminate */
 result = i + 1;
 turnedon = 0;
 }
 else {
 /* Set the values for the next iteration */
 tx = xcalc * xcalc - ycalc * ycalc + x;
 ycalc = 2.0f * xcalc * ycalc + y;
 xcalc = tx;
 }
 }
 }
 return result;
}

The main body of the program: initializes variables, iterates calculating the Mandelbrot set
one row at a time and printing the results.

int main() {
 float x, y;
 int col_count, row_count;

 /* Create some space on the stack for the results */
 /* We calculate a row at a time, hence we only need a buffer for

one row */
 char buffer[NUMCOLS];

 /* Iterate over the rows */
 for (row_count = 0; row_count < NUMROWS; row_count++) {
 /* Iterate over the columns */
 for (col_count = 0; col_count < NUMCOLS; col_count++) {

 x = MINX + col_count * STEPX;
// Calculate the x value for this position

 y = MAXY - row_count * STEPY;
// Calculate the y value for this position

 /* Calculate the value for this position */
 buffer[col_count] = calcres(x, y, RES);
 }
 /* Print out the current row */
 dprint_mono_memory_raw(buffer, NUMCOLS);
 }

More Cn programs SDK Introductory Programming Manual

38 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

 return 0;
}

Exercise 6.1: Get this program to compile and run under a standard compiler and operating
system. You will need to comment out the include at the top of the program and come up
with a definition of the dprint_mono_memory_raw() function (hint: this function simply
prints out a series of 4-byte values in hexadecimal, from a given memory location, to the
console window).

Exercise 6.2: Get this program to compile and run under the Cn compiler. (hint: Chapter 3:
Building and running Cn programs, contains instructions on how to do this. The library and
include files used in this example are included with the SDK distribution).

Exercise 6.3: Can you see a way to optimize the performance of this code? (hint: The
calcres() function will sometimes iterate unnecessarily around the loop when the
termination condition has already been reached).

6.1.2 Parallel (poly) implementation
The next step is to make use of the poly (parallel data) capabilities of the processor.
Obviously, you are iterating over each of the coordinates in a serial fashion. In the example
as shown, there are 96x96 coordinates in the image. If you use a processor with 96
processing elements, it makes sense to exploit these to calculate an entire row or column in
parallel.

The change that will be made is to calculate an entire column(1) of the image in one go.
Each PE is allocated a row of the complete image. As the program iterates through the
columns, every PE calculates the pixel value for its row simultaneously.

The terminate()and calcres() functions need to be modified to operate on poly
variables. They now look like this:

/* Evaluate the termination condition in parallel */
poly int terminate(poly float x, poly float y) {
 return (x*x + y*y > 4.0f);
}

poly char calcres(mono float x, poly float y, mono int res) {
 poly char result; // Different result on each PE
 poly int turnedon;

// Each PE does a different number of iterations
 int i; // but they all go round the same loop
 poly float tx; // Intermediate values for each PE
 poly float xcalc, ycalc;

1. The only reason we generate columns in parallel (rather than rows) is simply because it makes it easier to print
out the generated data.

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 39
ClearSpeed Technology plc

 /* Set the xcalc cumulative value to its initial value */
 xcalc = x;
 /* Set the ycalc cumulative value to its initial value */
 ycalc = y;

 result = 0;
 /* Initialize flag to control iterations */
 turnedon = 1;

 /* Loop up to ’res’ times for each position (this will determine
the quality of the final picture, the more iterations, the
better but slower the solution will be) */

 for (i = 0; i < res; i++) {
 /* Only continue calculating if the result has not been
determined yet */
 if (turnedon) {
 /* Check to see if the termination condition is met */
 if (terminate(xcalc, ycalc)) {
 /* Final result is the number of iterations req. to

terminate */
 result = i + 1;
 turnedon = 0;
 }
 else {
 /* Set the values for the next iteration */
 tx = xcalc * xcalc - ycalc * ycalc + x;
 ycalc = 2.0f * xcalc * ycalc + y;
 xcalc = tx;
 }
 }
 }
 return result;
}

The main changes to be pointed out are as follows:
The terminate() and calcres() functions now use poly arguments and a poly
return type. This means that the results are being evaluated on all of the poly
processing elements in parallel.
The loop at (i) remains unchanged from the mono version of the code. The same
number of iterations will be done each time.

Note: 1 This means that the optimization can still be applied. Instead of iterating the maximum
number of times, the loop can iterate just as many times as any of the PEs may need it
to.

2 Although this may seem inefficient, the fact that some PEs may be idle, for a number of
iterations is completely outweighed by the increase in performance obtained from the
high level of parallelism.
The conditional statements (ii) and (iii) are now poly conditionals. This means that the
result of these conditions may be different on each of the PEs.
Both the branches of the inner if statement (iii) and (iv) will be executed. Some of the
PEs will execute the first branch (iii) and some will execute the else clause (iv).

(i)

(ii)

(iii)

(iv)

More Cn programs SDK Introductory Programming Manual

40 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

There are also some modifications to the main() function to set up the PEs so that they
can perform in parallel.

int main() {
 mono float x;
 poly float y;
 int col_count;

 /* Create some space on the stack for the results */
 /* We iterate in x and evaluate a different y position on every

PE simultaneously, so we need a one-row buffer on each PE:
i.e. a poly buffer */

 poly char buffer[NUMCOLS];

 /* Iterate over the columns evaluating a complete column each
time */

 for (col_count = 0; col_count < NUMCOLS; col_count++) {

 x = MINX + col_count * STEPX;
// Calculate the x value for this position

 y = MAXY - get_penum() * STEPY;
// Calculate the y value for this PE

 /* Evaluate this column for 96 rows of the image in one step
*/
 buffer[col_count] = calcres(x, y, RES);
 }
 /* Print out all rows */
 dprint_poly_memory_raw(buffer, NUMCOLS);

 return 0;
}

Important points to note are:
The use of a poly array for the rows of results. There is an instance of this on every poly
processing element—every PE calculates a value for its position in the column
simultaneously.
The get_penum() library function returns the PE number (ranging in this case from 0
to 95). This allows the program to set up a unique y co-ordinate for each of the PEs.
The dprint_poly_memory_raw() function prints out the values from the memory of
each PE in turn.

Exercise 6.4: Compile and run the program using the Cn compiler. (hint: this should be no
different than the process you went through for the mono variant).

Exercise 6.5: Apply the equivalent optimization to the calcres() function. Think about
what this implies for the behavior of the program (hint: there is a feedback mechanism to tell
the control unit when all the PEs are disabled). See The Cn Standard Library Reference
Manual for a list of functions.

Exercise 6.6: Can you modify this code to cope with images larger than 96x96? (hint: You
can use more than 96 bytes per poly processing elements to contain the results). Consider
processing an 8x8 square of pixels.

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 41
ClearSpeed Technology plc

6.2 Exercise 2: Input and output
It is frequently necessary to transfer data between mono and poly memory, for example, to
distribute data across the PE array for processing. The processor has a number of
input/output (I/O) modes(1) to support this sort of data movement. These are made available
via functions based on the standard memcpy() library functions.

The following program provides a simple example of the use of the I/O capabilities of the
processor. This uses the library functions to load array-sized chunks of data into PE memory
from external (mono) memory. It does some trivial processing and then writes the results
back to mono memory.

#include <string.h>
#include <dprint.h>
#include <lib_ext.h>

#define DATA_SIZE 150

int main () {
 // buffers to store the data being processed
 mono float input_data[DATA_SIZE], output_data[DATA_SIZE];

 poly float element;
// the values being processed on each PE

 mono float scale;
// the scaling factor applied to each value

 // pointers to input and output data
 mono int * poly src_addr, * poly dst_addr;

 // loop control variables
 mono int i, count, array_size;
 poly short penum;

 // initialize
 array_size = get_num_pes();
 penum = get_penum();
 scale = 3.0f;
 count = DATA_SIZE;
 for (i = 0; i < DATA_SIZE; i++) {
 input_data[i] = (float) i;
 }

1. See the CSX600 Hardware Programming Manual for more details.

More Cn programs SDK Introductory Programming Manual

42 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

 for (i = 0; i < DATA_SIZE; i += array_size) {
 // process only remaining elements
 if (penum <= (count - 1)) {
 // set up external memory address to read from for each

PE
 src_addr = input_data + i + penum;

 // copy the data to be updated into the array
 memcpym2p(&element, src_addr, sizeof(float));

 // do the processing on all data in parallel
 element *= scale;

 // calculate address to write each PE’s results to
 dst_addr = output_data + i + penum;

 // copy the results back out to mono memory
 memcpyp2m(dst_addr, &element, sizeof(float));
 }
 // count how many data elements left
 count -= array_size;
 }

 // print out the results
 for (i = 0; i < DATA_SIZE; i++) {
 dprint_mono(FLOAT, output_data[i]);
 }

 return 0;
}

This is not an ideal implementation of the algorithm, however, because it does not overlap
the I/O and compute operations. For example, when data is read from mono memory using
the memcpym2p function, the PEs are idle while waiting for the data transfer to complete.
When there are a large number of PEs or a large volume of data is being read, this can
become a significant loss of efficiency.

One of the main reasons for supporting multithreading in the architecture is to allow
compute and I/O to be efficiently overlapped. This is made available to programmers
through the asynchronous I/O functions described next.

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 43
ClearSpeed Technology plc

6.3 Example 3: Asynchronous I/O
The asynchronous I/O functions are similar to the functions used previously but execute on
a separate thread, allowing the compute thread to continue running. To synchronize the
completion of a read or write operation with the use of the data in a compute thread, the
functions take an extra parameter which is the ID of a semaphore used to signal completion.

This example extends the code above to use asynchronous I/O. To do this you need to
introduce two buffers for the data being processed on the PEs. One buffer (the active buffer)
can be processed while the next buffer (the background buffer) is being filled, then the
active buffer is output while the next is processed, and so on.

This means that the modified program will be as follows:
1. Read into the active buffer.
2. Wait for the background buffer to be empty then read the next chunk into it.
3. Wait for the active buffer to be full then process the contents.
4. Write out the active buffer.
5. Swap the active and background buffers.
6. Repeat from Step 2 until all chunks are processed.
7. Wait for the write of the last active buffer to finish then print the results to the console.

The important thing to remember here is that the reading and writing functions return
immediately while the I/O operation continues in the background—in parallel with any
subsequent processing. For simplicity, this algorithm assumes that you have a minimum of
two chunks to process and that the total amount of data to process is a multiple of the array
size.

You will also notice that there are several points where you wait for buffers to fill or empty.
Semaphores are used to ensure that a read has completed and therefore the data can be
processed, or that a write has completed and so the buffer is empty and can be used for
something else. The semaphores are signalled, implicitly, by the asynchronous read and
write functions. The code has to explicitly wait on the appropriate semaphore before using
the buffers. Two semaphores are used: one to synchronize reading a buffer and processing
that data; the second to synchronize writing the data with refilling the buffer.

Valid semaphore numbers range between 0 and 92. Semaphores 93-127 are reserved for
system use and should not be used.

The following example illustrates proper usage with a dcache_flush call to force the write
back from the 4K data cache associated with mono memory of the input_data and
output_data arrays before being used by the async_memcpym2p and
async_memcpyp2m routines respectively.

Caution: Omission of the dcache_flush call results in incorrect behavior. Unlike the synchronous
memcpy transfers described in section Section 5.7.1 on page 33, asynchronous memory
copies do not guarantee cache coherency with mono memory. To ensure cache coherency
with mono memory, use the data cache write back routine (dcache_flush) as described in
[2.] The Cn Standard Libraries Reference Manual.

More Cn programs SDK Introductory Programming Manual

44 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

#include <string.h>
#include <lib_ext.h>
#include <dprint.h>
#include <stdio.h>

#define DATA_SIZE 192

//arrays to store the input and output data
#pragma align 8
mono float input_data[DATA_SIZE];
#pragma align 8
mono float output_data[DATA_SIZE];

int main() {

 //the values being processed on each PE (double buffered)
 poly float element[2];

 //pointers to input and output data on each PE
 mono int * poly src_addr;
 mono int * poly dst_addr;

 //array index values for managing the double buffering
 mono short background = 0, active = 1;
 mono unsigned int iterate=1;

 //the scaling factor applied to each value
 mono float scale;

 //loop control variables
 mono int i, count, array_size;

 //semaphores
 mono short READ_SEMAPHORE_a = 1;
 mono short READ_SEMAPHORE_b = 2;
 mono short WRITE_SEMAPHORE = 10;

 poly short penum;

 //initialize
 array_size = get_num_pes();
 penum = get_penum();
 scale = 2.0f;
 count = DATA_SIZE;

 //set up addresses to copy to/from on each PE
 src_addr = input_data + penum;
 dst_addr = output_data + penum;

SDK Introductory Programming Manual More Cn programs

Document No. 06-UG-1117 Revision: 2.E 45
ClearSpeed Technology plc

 //initialize input and output data
 for (i = 0; i < DATA_SIZE; i++) {
 input_data[i] = (float)i;
 output_data[i] = -1.0f;
 }

 //ensure data is written out from cache
 dcache_flush();

 //read some data into the 'active' buffer
 async_memcpym2p(READ_SEMAPHORE_a, &element[active], src_addr,
sizeof(float));

 //use semaphore to flag the next input buffer as empty
 sem_sig(WRITE_SEMAPHORE);

 do {
 //count how many data elements left to process after
 //completion of current iteration
 count -= array_size;
 iterate = (count > 0);

 //wait for the previous 'active' buffer to empty
 sem_wait(WRITE_SEMAPHORE);

 //read the next set of data into the 'background' buffer
 if (iterate) {
 //move pointer to next data to process
 src_addr += array_size;
 async_memcpym2p(READ_SEMAPHORE_b, &element[background],
src_addr,sizeof(float));
 }

 //wait for the 'active' buffer to fill
 sem_wait(READ_SEMAPHORE_a);

 //do the processing on all data in parallel
 element[active] *= scale;

 //copy the results back out to mono memory
 async_memcpyp2m(WRITE_SEMAPHORE, dst_addr, &element[active],
sizeof(float));

 //move pointer to next output data position
 dst_addr += array_size;

 //swap the 'active' and 'background' buffer poitners over
 {
 short t,tmp_SEMAPHORE;

More Cn programs SDK Introductory Programming Manual

46 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

 tmp_SEMAPHORE = READ_SEMAPHORE_a;
 READ_SEMAPHORE_a = READ_SEMAPHORE_b;
 READ_SEMAPHORE_b = tmp_SEMAPHORE;

 t = active;
 active = background;
 background = t;
 }
 } while (iterate);

 //wait for the last 'active' buffer to empty
 sem_wait(WRITE_SEMAPHORE);

 //print out the results
 for (i = 0; i < DATA_SIZE; i++) {
 dprint_mono(FLOAT, output_data[i]);
 }

 return 0;
}

Exercise 6.7: Extend the program to work with any amount of data.

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 47
ClearSpeed Technology plc

7 Debugging Cn

The CSX SDK includes a port of the standard GDB debugger.

7.1 Compiling for debug
To use the debugger the source code needs to be compiled with the -g option to generate
debug information, which is stored in the executable. The compilation command line should
be as follows:

cscn -o mandelbrot.csx -g mandelbrot_poly.cn

7.2 Starting csgdb
The debugger is started from the command line, passing it the executable name as a
command line argument. This allows it to read the symbol table from the executable when it
starts up. You start the debugger as follows:

csgdb mandelbrot.csx

The csgdb interface will start up and wait at the prompt for a command.
GNU gdb 6.5 (1.29.1.6 beta at 24-10-2007 16:11 on win32_i386)
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "--host=i686-mingw32 --target=cs-
clearspeed-elf"...
(gdb)

Debugging Cn SDK Introductory Programming Manual

48 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

7.3 Using csgdb to investigate mandelbrot_poly.cn

7.3.1 Listing source code
As you have started up csgdb with the executable name on the command line it will already
have stored the information relating to source code file names and locations. This means
that you can view the source code for the Mandelbrot application straight away.

You can now list the first 10 lines around the function main by using the command list
main.
(gdb) list main
52 }
53 }
54 return result;
55 }
56
57 int main() {
58 mono float x;
59 poly float y;
60 int col_count;
61 /* Create some space on the stack for the results */
(gdb)

Pressing enter three more times displays the rest of the source code for the function main:
62 /* We iterate in x and evaluate a different y position on every
PE
63 simultaneously, so we need a one-row buffer on each PE: i.e. a
poly buffer */
64 poly char buffer[NUMCOLS];
65 /* Iterate over the columns evaluating a complete column each
time */
66 for (col_count = 0; col_count < NUMCOLS; col_count++) {
67 x = MINX + col_count * STEPX; // Calculate the x value for
this position
68 y = MAXY - get_penum() * STEPY; // Calculate the y value for
this PE
69 /* Evaluate this column for 64 rows of the image in one step
*/
70 buffer[col_count] = calcres(x, y, RES);
71 }
(gdb)
72 /* Print out all rows */
73 dprint_poly_memory_raw(buffer, NUMCOLS);
74 }
(gdb)

The debugger can be configured to display more than 10 lines at a time using the set
listsize command but for this example leave it at the default.

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 49
ClearSpeed Technology plc

7.3.2 Connecting to the device
To start debugging the running code you have to connect to the processor running the code
using the connect command:

(gdb) connect
main() at mandelbrot.cn:57
57 int main() {
(gdb)

The debugger is now connected to the target device and ready to start running code. The
device is currently stopped at the reset address.

7.3.3 Setting breakpoints
Breakpoints can be set on a function name, source code line or an address in memory. Start
by setting a breakpoint at main and a temporary breakpoint at line 109 of mandelbrot.cn
using the break and tbreak commands:

(gdb) break main
Breakpoint 1 at 0x020055C8: file mandelbrot.cn, line 66.
(gdb) tbreak 67
Breakpoint 2 at 0x02005638: file mandelbrot.cn, line 67.
(gdb)

There are now two breakpoints set in the debugger and their status can be displayed using
the info break command:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x020055C8 in main at mandelbrot.cn:66
2 breakpoint del y 0x02005638 in main at mandelbrot.cn:67
(gdb)

As you can see both breakpoints are set and they are both enabled but breakpoint 2 will be
deleted once it is hit by the executing code. There are many things you can do with
breakpoints in csgdb and some more advanced features are demonstrated later.

7.3.4 Starting execution
The processor is currently stopped at the reset address and you now want to continue it to
the point where it hits the breakpoint at main. This can be done using the run command.
The run command is a combination of the load and continue commands.

Enter the run command now to start the processor executing:
(gdb) run
Starting program: C:\Program
Files\clearspeed\csx600_m512_le\examples
\csapi\mandelbrot1/mandelbrot.csx

Breakpoint 1, main () at mandelbrot_poly.cn:66
66 for (col_count = 0; col_count < NUMCOLS; col_count++) {
(gdb)

Debugging Cn SDK Introductory Programming Manual

50 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

As you can see csgdb has reported that the breakpoint has been hit and that the processor
has stopped at line 90. Using the info break command you can view the current
breakpoint status.

Note: Breakpoint 1 is now reported as having been hit once.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x020055C8 in main at mandelbrot.cn:66
 breakpoint already hit 1 time
2 breakpoint del y 0x02005638 in main at mandelbrot.cn:67
(gdb)

If you use the continue command to restart execution, you will hit the temporary
breakpoint set at line 67 in mandelbrot.cn:
(gdb) continue
Continuing.
main () at mandelbrot_poly.cn:67
67 x = MINX + col_count * STEPX; // Calculate the x value for
this position
(gdb)

The temporary breakpoint has now been hit and issuing the info break command again
will show the breakpoint state:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x020055C8 in main at mandelbrot.cn:66
 breakpoint already hit 1 time
(gdb)

The temporary breakpoint has been removed and only the one at main remains.

Next you need to get to line 70 and this can be done using the next command. Entering the
next command will run to line 68. Using it again will get us to line 70. Note that a command
can be repeated simply by hitting enter:

(gdb) next
68 y = MINY + (get_penum() * STEPY); // Calculate the y value for
this PE
(gdb)
70 buffer[col_count] = calcres(x, y, RES);
(gdb)

7.3.5 Examining variables
At line 70 the code is just about to call the function calcres. The first two arguments to this
function are a mono floating point value and a poly floating point value. You can now see
how these differ when displayed in csgdb. The debugger understands the poly keyword
and has been extended to allow you to see the values of symbolic variables across all of the
processing elements.

First look at the mono value of variable x. This can be displayed using the print command.
The print command will display values using the type of the object unless otherwise
instructed:

(gdb) print x

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 51
ClearSpeed Technology plc

$1 = -1.5
(gdb) print/d x
$2 = -1
(gdb)

The first output is the floating-point value of x and the second is the value cast to an integer.

The poly value y can be displayed using the same command. This differs from the mono
display by showing the values across all of the processing elements:
(gdb) print y
$3 = {1.25, 1.22395837, 1.19791663, 1.171875, 1.14583337,
1.11979163,
 1.09375, 1.06770837, 1.04166663, 1.015625, 0.989583373,
0.963541687,
 0.9375, 0.911458373, 0.885416687, 0.859375, 0.833333373,
0.807291687,
 0.78125, 0.755208373, 0.729166687, 0.703125, 0.677083373,
0.651041687,
 0.625, 0.598958373, 0.572916687, 0.546875, 0.520833373,
0.494791687,
 0.46875, 0.442708373, 0.416666687, 0.390625, 0.364583373,
0.338541687,
 0.3125, 0.286458373, 0.260416687, 0.234375, 0.208333373,
0.182291746,
 0.15625, 0.130208373, 0.104166746, 0.078125, 0.0520833731,
0.0260417461, 0,
 -0.0260416269, -0.0520832539, -0.078125, -0.104166627, -
0.130208254,
 -0.15625, -0.182291627, -0.208333254, -0.234375, -0.260416627,
 -0.286458254, -0.3125, -0.338541627, -0.364583254, -0.390625, -
0.416666627,
 -0.442708254, -0.46875, -0.494791627, -0.520833254, -0.546875,
 -0.572916627, -0.598958254, -0.625, -0.651041627, -0.677083254, -
0.703125,
 -0.729166627, -0.755208254, -0.78125, -0.807291508, -0.833333254,
 -0.859375, -0.885416508, -0.911458254, -0.9375, -0.963541508, -
0.989583254,
 -1.015625, -1.04166651, -1.06770825, -1.09375, -1.11979151, -
1.14583325,
 -1.171875, -1.19791651, -1.22395825}
(gdb) print/d y
$4 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
 0,
0, 0, 0,
 0,
0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1,
-1, -1}
(gdb)

As you can see the value of y as a float is different across every processing element; the
value of y cast to an integer varies between -1 and 1 due to rounding.

Debugging Cn SDK Introductory Programming Manual

52 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

You can also find out where the variables x and y are located by taking the address of each
variable. This is done in the csgdb command language as in C, by the use of the &
operator.

(gdb) print &x
Address requested for identifier "x" which is in register $16m4
(gdb) print &y
Address requested for identifier "y" which is in register $8p4
(gdb)

7.3.6 Reading registers
The mono variable x is present in register 16:m4 and the poly variable y is contained in
register 8:p4. The $ prefix on the register names indicates that they are variables within the
debugger command language.

All of the registers used by the source code are available as command language variables.
These can be displayed in the same way as variables in the source code by using the
print/f command.

The /f format is required when the print command is used with registers to print the
values in floating point format as they default to hexadecimal.
(gdb) print/f $16m4
$6 = -1.5
(gdb) print/f $8p4
$7 = {-1.25, -1.22395837, -1.19791663, -1.171875, -1.14583337, -
1.11979163, -1.09375, -1.06770837, -1.04166663, -1.015625, -
0.989583373, - 0.963541687, -0.9375, -0.911458373, -0.885416687, -
0.859375, -0.833333373, - 0.807291687, -0.78125, -0.755208373, -
0.729166687, -0.703125, -0.677083373, - 0.651041687, -0.625, -
0.598958373, -0.572916687, -0.546875, -0.520833373, - 0.494791687,
-0.46875, -0.442708373, -0.416666687, -0.390625, -0.364583373, -
0.338541687, -0.3125, -0.286458373, -0.260416687, -0.234375, -
0.208333373, - 0.182291746, -0.15625, -0.130208373, -0.104166746, -
0.078125, -0.0520833731, -0.0260417461, 0, 0.0260416269,
0.0520832539, 0.078125, 0.104166627,
0.130208254, 0.15625, 0.182291627, 0.208333254, 0.234375,
0.260416627, 0.286458254, 0.3125, 0.338541627, 0.364583254,
0.390625, 0.416666627, 0.442708254, 0.46875, 0.494791627,
0.520833254, 0.546875, 0.572916627, 0.598958254, 0.625,
0.651041627, 0.677083254, 0.703125, 0.729166627, 0.755208254,
0.78125, 0.807291508, 0.833333254, 0.859375, 0.885416508,
0.911458254, 0.9375, 0.963541508, 0.989583254, 1.015625,
1.04166651, 1.06770825, 1.09375, 1.11979151, 1.14583325, 1.171875,
1.19791651, 1.22395825}
(gdb)

As you can see the poly registers are displayed in the same way as poly source code
variables: there is a value for every PE. When operating on poly registers in the command
language there is the added advantage of being able to specify which PE’s registers you
want to display:

(gdb) print/f $8p4[5]
$8 = -1.11979163
(gdb)

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 53
ClearSpeed Technology plc

Specifying the PE number in square brackets after the poly register name will display only
the value for that PE.

The whole mono and poly register set can also be viewed using the regs and peregs
commands. These commands take an optional size argument and default to the natural
register size which is 2 bytes for mono and 1 byte for poly.

Displaying the mono registers as 4-byte registers is done as follows:
(gdb) regs 4
pc 0x80015584
ret 0x8001551c
pred 0x0075
0m4 0x80000000
4m4 0x0
8m4 0x0
12m4 0xbfc00000
16m4 0xbfc00000
20m4 0x80016934
24m4 0x0
28m4 0x0
32m4 0x0
36m4 0x0
40m4 0x0
44m4 0x0
48m4 0x0
52m4 0x0
56m4 0x0
60m4 0x80015694
(gdb)

Displaying the poly registers is done in a similar way but using the peregs command.

7.3.7 Stepping to a function call
To find the current location of the program counter within the source code, you use the
where command:

(gdb) where
#0 main () at mandelbrot.cn:70
(gdb)

This informs you that you are presently at line 70 of mandelbrot.cn inside the function
main.

Listing line 70 will give you visibility of the source code around that line. Use the list
command to display the source code around line 70.
(gdb) list
65 /* Iterate over the columns evaluating a complete column each
time */
66 for (col_count = 0; col_count < NUMCOLS; col_count++) {
67 x = MINX + col_count * STEPX; // Calculate the x value for
this position
68 y = MAXY - get_penum() * STEPY; // Calculate the y value for
this PE

Debugging Cn SDK Introductory Programming Manual

54 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

69 /* Evaluate this column for 64 rows of the image in one step
*/
70 buffer[col_count] = calcres(x, y, RES);
71 }
72 /* Print out all rows */
73 dprint_poly_memory_raw(buffer, NUMCOLS);
74 }
(gdb)

You are currently stopped at the call to the function calcres.

In order to progress the debugger to the function calcres you need to use the step
command. This differs from next because it steps into function calls rather than stepping
over them. Enter the command step at the prompt:
(gdb) step
calcres (x=-1.47395837, y=
 {1.25, 1.22395837, 1.19791663, 1.171875, 1.14583337,
1.11979163, 1.09375, 1.06770837, 1.04166663, 1.015625, 0.989583373,
0.963541687, 0.9375, 0.911458373, 0.885416687, 0.859375,
0.833333373, 0.807291687, 0.78125, 0.755208373, 0.729166687,
0.703125, 0.677083373, 0.651041687, 0.625, 0.598958373,
0.572916687, 0.546875, 0.520833373, 0.494791687, 0.46875,
0.442708373, 0.416666687, 0.390625, 0.364583373, 0.338541687,
0.3125, 0.286458373, 0.260416687, 0.234375, 0.208333373,
0.182291746, 0.15625, 0.130208373, 0.104166746, 0.078125,
0.0520833731, 0.0260417461, 0,
-0.0260416269, -0.0520832539, -0.078125, -0.104166627, -
0.130208254,
-0.15625, -0.182291627, -0.208333254, -0.234375, -0.260416627, -
0.286458254,
-0.3125, -0.338541627, -0.364583254, -0.390625, -0.416666627, -
0.442708254,
-0.46875, -0.494791627, -0.520833254, -0.546875, -0.572916627, -
0.598958254,
-0.625, -0.651041627, -0.677083254, -0.703125, -0.729166627, -
0.755208254, -0.78125, -0.807291508, -0.833333254, -0.859375, -
0.885416508, -0.911458254, -0.9375,
-0.963541508, -0.989583254, -1.015625, -1.04166651, -1.06770825, -
1.09375, -1.11979151, -1.14583325, -1.171875, -1.19791651, -
1.22395825}, res=150)
 at mandelbrot_poly.cn:27
27 xcalc = x;
(gdb)

As you can see you have now stopped at the first valid line of code for the function calcres
which is line 27 of mandelbrot.cn. The function calcres takes a poly float as its second
argument and this is displayed in the output as a poly float.

To limit the output, you can use the set print elements command to limit the number of
processing element values that are displayed.

Use the command set print elements 4 to limit the display to the first 4 PEs, then
enter the command where to display the current back-trace limited to the displayed PEs.
(gdb) set print elements 4
(gdb) where

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 55
ClearSpeed Technology plc

#0 calcres (x=-1.47395837, y={1.25, 1.22395837, 1.19791663,
1.171875...},
 res=150) at mandelbrot_poly.cn:27
#1 0x02005740 in main () at mandelbrot_poly.cn:70
(gdb)

The debugger can show the function call trace from main and can traverse up or down the
list of functions. As you can see you are now in the function calcres at line 27.

To move up the call stack and back to main use the up command.

Enter the command up at the prompt to move the debugger view back out of calcres and
into main.
(gdb) up
#1 0x02005740 in main () at mandelbrot_poly.cn:70
70 buffer[col_count] = calcres(x, y, RES);
(gdb)

The program is still at line 52 of calcres but the debugger is able to reconstruct the source
code location and variable values before the function was called.

Print the program counter (PC) at the current location using the print command:

(gdb) print/x $pc
$8 = 0x800155a0
(gdb)

Move back down the call stack into calcres using the down command and print the PC
again:
(gdb) down

#0 calcres (x=-1.47395837, y={1.25, 1.22395837, 1.19791663,
1.171875...},
 res=150) at mandelbrot_poly.cn:27
27 xcalc = x;
(gdb) print/x $pc
$5 = 0x20052ac
(gdb)

As you can see the debugger has the ability to track the registers of the device at different
levels of the call stack.

7.3.8 Viewing the poly enable state
It is useful to be able to view the enable state of the PE array when you are debugging code
in order to tell what PEs are enabled when the code is executing. The enable state is
viewable in the debugger as a pseudo PE register and is viewed in the same way as the
other poly registers.

Print the value of the enable register in the debugger:

(gdb) p/x $enable
$2 = {0xff <repeats 96 times>}
(gdb)

The enable state is an 8 level deep stack and so it is clearer to view the register in binary
format to see each level of the current state.

Debugging Cn SDK Introductory Programming Manual

56 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Print the value of the enable state in binary:

(gdb) p/t $enable
$3 = {11111111 <repeats 96 times>}
(gdb)

This show that all 96 of the PEs are currently enabled at every level.

You now need to move to a location in the code where the enabling and disabling of the
enable state becomes more apparent.

Change:
poly int terminate(poly float x, poly float y) {
 return (x*x + y*y > 4.0f);
}

into:
poly int terminate(poly float x, poly float y) {

poly float result = (x*x +y*y);
if (result > 4.0f){

return 1;
}
else{

return 0;
}

}

and recompile mandelbrot_poly.cn.

Now start the csgdb and set a breakpoint in main() and a temporary breakpoint on the
function terminate with the tbreak. Also limit the display to the first 4 PEs :

set print elements 4

(gdb) connect
0x02000000 in _MONO_DEBUG_AREA ()
(gdb) b main
Breakpoint 1 at 0x200568c: file mandelbrot_poly.cn, line 72.
(gdb) tbreak terminate
Breakpoint 2 at 0x2005118: file mandelbrot_poly.cn, line 18.
(gdb) set print elements 4
(gdb)

Then run till you hit the temporary breakpoint and continue execution:

(gdb) run
Starting program: C:\Program
Files\clearspeed\csx600_m512_le\examples\csapi\
mandelbrot1/mandelbrot.csx

Breakpoint 1, main () at mandelbrot_poly.cn:72
72 for (col_count = 0; col_count < NUMCOLS; col_count++) {
(gdb) c
Continuing.
terminate (x={-1.5 <repeats 96 times>}, y=

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 57
ClearSpeed Technology plc

 {1.25, 1.22395837, 1.19791663, 1.171875...}) at
mandelbrot_poly.cn:18
18 poly float result = (x*x +y*y);
(gdb)
28 // Evaluate the termination condition
29 poly int terminate(poly float x, poly float y)
30 {
31 poly float result = (x*x + y*y);
32
33 if (result > 4.0f) {
34 return 1;
35 } else {
36 return 0;
37 }
(gdb)

As you can see, the function terminate uses a poly conditional when checking the value
of result. This will allow you to view the changes in enable state of the processing
elements.

Set breakpoints at lines 20 and 23 to stop on the return statements of the function:

(gdb) b 20
Breakpoint 4 at 0x02005174: file mandelbrot.cn, line 20.
(gdb) b 23
Breakpoint 5 at 0x020051FC: file mandelbrot.cn, line 23.
(gdb)

You also need to remove the limit on the number of PE values displayed by using the set
print elements command:

(gdb) set print elements 0
(gdb)

Debugging Cn SDK Introductory Programming Manual

58 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

This will reset the number of PE values displayed so that they are all now visible.

You can print the variable result to visually inspect the values contained on each PE.
(gdb) print result $1 = {3.8125, 3.74807405, 3.68500423, 3.62329102,
3.56293416, 3.50393343, 3.44628906, 3.3900013, 3.33506942,
3.28149414, 3.22927523, 3.17841244, 3.12890625, 3.08075643,
3.03396273, 2.98852539, 2.94444466, 2.90171981, 2.86035156,
2.82033968, 2.78168392, 2.74438477, 2.70844197, 2.6738553,
2.640625, 2.60875106, 2.57823348, 2.54907227, 2.52126741,
2.49481869, 2.46972656, 2.4459908, 2.42361116, 2.40258789,
2.38292098, 2.36461043, 2.34765625, 2.33205843, 2.31781673,
2.30493164, 2.29340291, 2.2832303, 2.27441406, 2.26695418,
2.26085067, 2.25610352, 2.25271273, 2.25067806, 2.25, 2.25067806,
2.25271273, 2.25610352, 2.26085067, 2.26695418, 2.27441406,
2.2832303, 2.29340267, 2.30493164, 2.31781673, 2.33205843,
2.34765625, 2.36461043, 2.38292098, 2.40258789, 2.42361116,
2.44599056, 2.46972656, 2.49481869, 2.52126718, 2.54907227,
2.57823348, 2.60875106, 2.640625, 2.6738553, 2.70844173,
2.74438477, 2.78168392, 2.82033944, 2.86035156, 2.90171957,
2.94444418, 2.98852539, 3.03396225, 3.08075619, 3.12890625,
3.1784122, 3.22927499, 3.28149414, 3.33506918, 3.39000082,
3.44628906, 3.50393295, 3.56293392, 3.62329102, 3.685004,
3.74807382}
(gdb)

From visual inspection it is clear that none of the PE values are greater than 4.0.

If the code contained a mono compare, you would not expect the first part of the if
statement to be taken. As this is a poly comparison then the whole statement is executed on
all PEs and the enable state is used to determine which PEs are active when the code is
executing.

Use the continue command to move the debugger onto line 20:

(gdb) continue
Continuing.

Breakpoint 3, terminate () at mandelbrot.cn:20
20 return 1;
(gdb)

As you can see you have hit the breakpoint inside the if statement on line 20. The value of
result is not greater than 4.0 on any of the PEs and so in this part of the code you would
expect them all to be disabled.

Display the enable state with the print command to confirm that all the PEs are currently
disabled:

(gdb) print/t $enable
$2 = {11111110 <repeats 96 times>}
(gdb)

As you can see, the first level of the enable state is disabled for all of the PEs at this point.

Continue the processor again using the continue command:

(gdb) c

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 59
ClearSpeed Technology plc

Continuing.

Breakpoint 4, terminate () at mandelbrot.cn:23
23 return 0;
(gdb)

The debugger has now stopped at the second return statement of the terminate function.
As all of the values of result are less than 4.0 all of the PEs should be enabled for this
section of code.

Display the enable state using the print command:

(gdb) print/t $enable
$3 = {11111111 <repeats 96 times>}
(gdb)

All of the PEs are now enabled as the first level of the enable state contains a 1.

7.3.9 Attaching commands to breakpoints
If you continue the processor again using the continue command, you once again hit the
breakpoint on line 20 within the function terminate. But first you are going to attach some
commands to the breakpoints on lines 20 and 23 of terminate.

Use the info break command to list the currently active breakpoints:
(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x0200568c in main at
mandelbrot_poly.cn:72
 breakpoint already hit 1 time
3 breakpoint keep y 0x02005174 in terminate at
mandelbrot_poly.cn:20
 breakpoint already hit 1 time
4 breakpoint keep y 0x020051fc in terminate at
mandelbrot_poly.cn:23
 breakpoint already hit 1 time

The breakpoints you are interested in are numbers 3 and 4 as they are set at the return
statements of the terminate function.

To attach commands to breakpoints you need to use commands. You are going to get
csgdb to display the enable state every time it stops at breakpoints 3 and 4.

Attach the command to print the enable state to breakpoints 3 and 4:

(gdb) commands 3
Type commands for when breakpoint 3 is hit, one per line.
End with a line saying just "end".
>print/t $enable
>end
(gdb) commands 4
Type commands for when breakpoint 4 is hit, one per line.
End with a line saying just "end".
>print/t $enable
>end
(gdb)

Debugging Cn SDK Introductory Programming Manual

60 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Listing the breakpoints using the info break command will show that these commands
have been attached:
(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x0200568c in main at
mandelbrot_poly.cn:72
 breakpoint already hit 1 time
3 breakpoint keep y 0x02005174 in terminate at
mandelbrot_poly.cn:20
 breakpoint already hit 1 time
 print/t $enable
4 breakpoint keep y 0x020051fc in terminate at
mandelbrot_poly.cn:23
 breakpoint already hit 1 time
 print/t $enable
(gdb)

As you can see breakpoints 3 and 4 have the command p/t $enable attached.

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 61
ClearSpeed Technology plc

Continue the processor so that it hits breakpoint 3 again using the continue command:
(gdb) c
Continuing.

Breakpoint 3, terminate () at mandelbrot_poly.cn:20
20 return 1;
$4 = {11111111, 11111111, 11111111, 11111111, 11111111, 11111111,
11111111, 11111111, 11111111, 11111111, 11111110 <repeats 77 times>,
11111111, 11111111, 11111111, 11111111, 11111111, 11111111,
11111111, 11111111, 11111111}
(gdb)

As you can see the first 10 PEs (0..9) and the last 9 PEs (87..95) are enabled and the
middle 77 (10..86) are all disabled. If you continue again, you would expect to see the
reverse of these values at breakpoint 4.

Continue execution using the continue command:

(gdb) c
Continuing.

Breakpoint 4, terminate () at mandelbrot.cn:23
23 return 0;
$5 = {11111110, 11111110, 11111110, 11111110, 11111110, 11111110,
11111110,
 11111110, 11111110, 11111110, 11111111 <repeats 77 times>,
11111110,
 11111110, 11111110, 11111110, 11111110, 11111110, 11111110,
11111110,
 11111110}
(gdb)

As you can see from the display the values of the enable state across the PEs now is the
exact opposite of the values of the enable state at breakpoint 3.

You can now delete breakpoints 3 and 4 and return from the function terminate.

Delete breakpoints 3 and 4 using the delete command:

(gdb) delete 3 4
(gdb)

Debugging Cn SDK Introductory Programming Manual

62 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

7.3.10 Returning from a function
The debugger can return from a function by using the finish command:
(gdb) finish
Run till exit from #0 terminate (x=
 {-0.8125, -0.748074055, -0.685004234, -0.623291016, -
0.56293416, -0.503933311, -0.446289063, -0.390001178, -0.335069418,
-0.281494141, -0.229275227, -0.178412557, -0.12890625, -
0.0807564259, -0.0339627266, 0.0114746094, 0.0555554628,
0.0982801914, 0.139648438, 0.17966032, 0.218315959, 0.255615234,
0.291558146, 0.326144695, 0.359375, 0.391248941, 0.42176652,
0.450927734, 0.478732586, 0.505181313, 0.530273438, 0.554009199,
0.576388836, 0.597412109, 0.61707902, 0.635389566, 0.65234375,
0.66794157, 0.682183266, 0.695068359, 0.70659709, 0.716769695,
0.725585938, 0.733045816, 0.739149332, 0.743896484, 0.747287273,
0.749321938, 0.75, 0.749321938, 0.747287273, 0.743896484,
0.739149332, 0.733045816, 0.725585938, 0.716769695, 0.706597328,
0.695068359, 0.682183266, 0.66794157, 0.65234375, 0.635389566,
0.61707902, 0.597412109, 0.576388836, 0.554009438, 0.530273438,
0.505181313, 0.478732705, 0.450927734, 0.42176652, 0.391248941,
0.359375, 0.326144814, 0.291558266, 0.255615234, 0.218316078,
0.179660559, 0.139648438, 0.0982804298, 0.0555557013, 0.0114746094,
-0.033962369, -0.0807561874, -0.12890625, -0.178412199, -
0.229274988, -0.281494141, -0.33506906, -0.390000939,
-0.446289063, -0.503933072, -0.562933803, -0.623291016, -
0.685003996, -0.748073816},
 y=
 {-2.5, -2.44791651, -2.39583349, -2.34375, -2.29166651, -
2.23958349, -2.1875,
-2.13541651, -2.08333349, -2.03125, -1.97916663, -1.92708325, -
1.875, -1.82291663,
-1.77083325, -1.71875, -1.66666663, -1.61458325, -1.5625, -
1.51041663, -1.45833325, -1.40625, -1.35416663, -1.30208325, -1.25,
-1.19791675, -1.14583325,-1.09375,
-1.04166675, -0.989583313, -0.9375, -0.885416746, -0.833333313, -
0.78125,
-0.729166746, -0.677083313, -0.625, -0.572916746, -0.520833373, -
0.46875,
-0.416666746, -0.364583492, -0.3125, -0.260416746, -0.208333492, -
0.15625,
-0.104166746, -0.0520834923, 0, 0.0520832539, 0.104166508, 0.15625,
0.208333254, 0.260416508, 0.3125, 0.364583254, 0.416666508,
0.46875, 0.520833254, 0.572916508, 0.625, 0.677083254, 0.729166508,
0.78125, 0.833333254, 0.885416508, 0.9375, 0.989583
254, 1.04166651, 1.09375, 1.14583325, 1.19791651, 1.25, 1.30208325,
1.35416651,1.40625, 1.45833337, 1.51041651, 1.5625, 1.61458302,
1.66666651, 1.71875, 1.77083302, 1.82291651, 1.875, 1.92708302,
1.97916651, 2.03125, 2.08333302, 2.13541651, 2.1875, 2.23958302,
2.29166651, 2.34375, 2.39583302, 2.44791651})

at mandelbrot_poly.cn:23

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 63
ClearSpeed Technology plc

0x020054b8 in calcres (x=-1.5, y= {1.25, 1.22395837, 1.19791663,
1.171875, 1.14583337, 1.11979163, 1.09375, 1.06770837, 1.04166663,
1.015625, 0.989583373, 0.963541687, 0.9375, 0.911458373,
0.885416687, 0.859375, 0.833333373, 0.807291687, 0.78125,
0.755208373, 0.729166687, 0.703125, 0.677083373, 0.651041687,
0.625, 0.598958373, 0.572916687, 0.546875, 0.520833373,
0.494791687, 0.46875, 0.442708373, 0.416666687, 0.390625,
0.364583373, 0.338541687, 0.3125, 0.286458373, 0.260416687,
0.234375, 0.208333373, 0.182291746, 0.15625, 0.130208373,
0.104166746, 0.078125, 0.0520833731, 0.0260417461, 0, -
0.0260416269, -0.0520832539, -0.078125,
-0.104166627, -0.130208254, -0.15625, -0.182291627, -0.208333254, -
0.234375,
-0.260416627, -0.286458254, -0.3125, -0.338541627, -0.364583254, -
0.390625,
-0.416666627, -0.442708254, -0.46875, -0.494791627, -0.520833254, -
0.546875,
-0.572916627, -0.598958254, -0.625, -0.651041627, -0.677083254, -
0.703125,
-0.729166627, -0.755208254, -0.78125, -0.807291508, -0.833333254, -
0.859375,
-0.885416508, -0.911458254, -0.9375, -0.963541508, -0.989583254, -
1.015625,
-1.04166651, -1.06770825, -1.09375, -1.11979151, -1.14583325, -
1.171875,
-1.19791651, -1.22395825}, res=150)
 at mandelbrot_poly.cn:47
47 if (terminate(xcalc, ycalc)) {
Value returned is $6 =
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 <repeats 77 times>, 1, 1, 1, 1,
1, 1, 1, 1, 1}
(gdb)

Debugging Cn SDK Introductory Programming Manual

64 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

You are now at line 47 of calcres after returning from the function terminate. You need
to set a breakpoint at the return statement of calcres.
(gdb) list
42
43 for (i = 0; i < res; i++) {
44 /* Only continue calculating if the result has not been
determined yet */
45 if (turnedon) {
46 /* Check to see if the termination condition is met */
47 if (terminate(xcalc, ycalc)) {
48 /* Final result is the number of iterations req. to
terminate */
49 result = i + 1;
50 turnedon = 0;
51 }
(gdb)
52 else {
53 /* Set the values for the next iteration */
54 tx = xcalc * xcalc - ycalc * ycalc + x;
55 ycalc = 2.0f * xcalc * ycalc + y;
56 xcalc = tx;
57 }
58 }
59 }
60 return result;
61 }
(gdb)
62
63 int main() {
64 mono float x;
65 poly float y;

Set a breakpoint at line 60 using the break command and continue the processor using the
continue command:

(gdb) break 60
Breakpoint 5 at 0x0200541C: file mandelbrot.cn, line 60.
(gdb) continue
Continuing.

Breakpoint 5, calcres (x=<n/a>, y=<n/a>, res=<n/a>) at
mandelbrot.cn:60
60 return result;
(gdb)

Note: The values of the arguments to calcres are now all out of scope and so no longer
available to csgdb. This is why x, y and res all now have a value of <n/a>.

The result from the calcres function is a line of the Mandelbrot program output. The type
of the variable result can be displayed using the whatis command.

Use the whatis command on the variable result:

(gdb) whatis result

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 65
ClearSpeed Technology plc

type = poly char <96 PEs>
(gdb)

The debugger displays that it is a poly char and shows that it is available across 96 pro-
cessing elements.

Debugging Cn SDK Introductory Programming Manual

66 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Display the value of result using the print command.

(gdb) print result
$3 = "\002\002\002\002\002\002\002\002\002\002", '\003' <repeats 22
times>,
"\004\004\004\004\005\005\005\005\005\005\005\006\a\a\b\v\000\v\b\a
\a\006\
005\005\005\005\005\005\005\004\004\004\004", '\003' <repeats 22
times>, "\002\002\002\002\002\002\002\002\002"
(gdb)

As the variable is a char type the default output for csgdb is to attempt to display it as a
char value.

Display the value of result as an integer using the print/x command:

(gdb) print/x result
$5 = {0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
 0x3 <repeats 22 times>, 0x4, 0x4, 0x4, 0x4, 0x5, 0x5, 0x5, 0x5,
0x5, 0x5,
 0x5, 0x6, 0x7, 0x7, 0x8, 0xb, 0x0, 0xb, 0x8, 0x7, 0x7, 0x6, 0x5,
0x5, 0x5,
 0x5, 0x5, 0x5, 0x5, 0x4, 0x4, 0x4, 0x4, 0x3 <repeats 22 times>,
0x2, 0x2,
 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2}
(gdb)

The function calcres is called multiple times from main and it is possible to set a condition
on the breakpoint at line 88 so that it will not report the breakpoint hit until a certain count is
reached. To set a counted breakpoint use the ignore command on breakpoint number 5:

(gdb) ignore 5 20

Will ignore next 20 crossings of breakpoint 5.

You can now use the info break command to check what condition the ignore
command has set up on the breakpoint:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x0200568c in main at
mandelbrot_poly.cn:72
 breakpoint already hit 1 time
5 breakpoint keep y 0x0200541c in calcres at
mandelbrot_poly.cn:60
 breakpoint already hit 1 time
 ignore next 20 hits
(gdb)

Breakpoint number 5 now has the condition set that it will ignore the next 20 hits.

Continue the processor using the continue command.

(gdb) continue
Continuing.

Breakpoint 5, calcres (x=<n/a>, y=<n/a>, res=<n/a>) at mandelbrot.cn:60
60 return result;

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 67
ClearSpeed Technology plc

(gdb)

The breakpoint at line 60 has now been hit and using the info break command will show
that it has actually now been hit 22 times:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x0200568c in main at
mandelbrot_poly.cn:72
 breakpoint already hit 1 time
5 breakpoint keep y 0x0200541c in calcres at
mandelbrot_poly.cn:60
 breakpoint already hit 22 times
(gdb)

Breakpoint 5 has been hit 22 times: once before you set the ignore condition, then ignored
20 times and then finally after the condition has expired.

Move up the call stack back into main by typing up:
(gdb) up
#1 0x02005804 in main () at mandelbrot_poly.cn:76
76 buffer[col_count] = calcres(x, y, RES);
(gdb)

Now print the variable col_count using the print command:

(gdb) print col_count
$1 = 21
(gdb)

The loop in main is on its 22nd iteration and this matches up with the number of breakpoint
hits.

Move back down the call stack using the down command:

(gdb) down
#0 calcres (x=<n/a>, y=<n/a>, res=<n/a>) at mandelbrot.cn:60
60 return result;
(gdb)

Now print the value of result using the print/x command:

(gdb) p/x result
$2 = {0x3 <repeats 18 times>, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x5, 0x5,
 0x5, 0x5, 0x5, 0x5, 0x6, 0x6, 0x7, 0x8, 0x9, 0xb, 0xf,
 0x0 <repeats 21 times>, 0xf, 0xb, 0x9, 0x8, 0x7, 0x6, 0x6, 0x5,
0x5, 0x5,
 0x5, 0x5, 0x5, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x3 <repeats 17
times>}
(gdb)

Comparing this to the value displayed earlier, it is clear that this line of the Mandelbrot set
output is different. You can now move the debugger on to a location where you can look at
the final Mandelbrot image.

Delete breakpoint number 5 by using the delete command:

Debugging Cn SDK Introductory Programming Manual

68 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

(gdb) delete 5
(gdb)

Move up the call stack by using the up command:

(gdb) up
#1 0x02005804 in main () at mandelbrot.cn:76
76 buffer[col_count] = calcres(x, y, RES);
(gdb)

Use the list command to list the lines around this location:
(gdb) list
71 /* Iterate over the columns evaluating a complete column each
time */
72 for (col_count = 0; col_count < NUMCOLS; col_count++) {
73 x = MINX + col_count * STEPX; // Calculate the x value for
this position
74 y = MAXY - get_penum() * STEPY; // Calculate the y value for
this PE
75 /* Evaluate this column for 64 rows of the image in one step
*/
76 buffer[col_count] = calcres(x, y, RES);
77 }
78 /* Print out all rows */
79 dprint_poly_memory_raw(buffer, NUMCOLS);
80 }
(gdb)

Set a breakpoint at line 79 as this is where you can examine the completed Mandelbrot set
image in the debugger:

(gdb) break 79
Breakpoint 6 at 0x800155f0: file mandelbrot.cn, line 79.
(gdb)

Continue the program using the continue command (it will take a little while as it
computes the remainder of the image):

(gdb) continue
Continuing.

Breakpoint 6, main () at mandelbrot.cn:79
79 dprint_poly_memory_raw(buffer, NUMCOLS);
(gdb)

You can examine line 22 of the image and check that it matches the values that were
displayed when the debugger was stopped earlier just after it calculated line 22.

Use the print/x command to display the 22nd element of the buffer array:

(gdb) print/x buffer[21]
$3 = {0x3 <repeats 18 times>, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x5, 0x5,
 0x5, 0x5, 0x5, 0x5, 0x6, 0x6, 0x7, 0x8, 0x9, 0xb, 0xf,
 0x0 <repeats 21 times>, 0xf, 0xb, 0x9, 0x8, 0x7, 0x6, 0x6, 0x5,
0x5, 0x5,

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 69
ClearSpeed Technology plc

 0x5, 0x5, 0x5, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4, 0x3 <repeats 17
times>}
(gdb)

This clearly matches up with the value printed earlier, when you were inside the function
calcres.

The variable buffer is a 96 element poly char array. The debugger will tell you this if you
use the whatis command on buffer:

(gdb) whatis buffer
type = poly char [96]<96 PEs>
(gdb)

Each PE has its own copy of buffer; this variable is too large to fit into registers. You can
find the memory address of buffer by using the print/x command and the & operator:

(gdb) print/x &buffer
$4 = 0x1c

The buffer array starts at location 0x1C on each processing element.

7.3.11 Viewing memory
Both mono and poly memory can be displayed in csgdb and there are commands for
viewing each type. The command x is used to examine mono memory and the command
pex is used for poly memory.

List 2 integers at the current PC location in mono memory using the x command:

(gdb) x/2x $pc
0x800155f0 <main+408>: 0x04000060 0x88280940
(gdb)

The argument “2” determines the number of values to print and the “x” specifies that the
output is hexadecimal.

The pex command has identical type syntax.

List 2 hex integers at address location 0x0 in PE memory using the pex command:

(gdb) pex/2x 0x0
(PE 0) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(gdb)

The main difference is that the pex command allows you to see the memory across all the
PEs. The default display is to show only PE 0.

Debugging Cn SDK Introductory Programming Manual

70 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Enter the same pex command again but add the argument 0..10 to the end.

(gdb) pex/2x 0x0 0..10
(PE 0) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 1) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 2) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 3) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 4) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 5) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 6) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 7) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 8) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 9) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(PE 10) 0x0 <__FRAME_BEGIN_POLY__>: 0xdead2222 0x00000000
(gdb)

You can now see 2 integer values for each of the first 11 processing elements.

This will now prove useful as you can restrict your view of the variable buffer so you can
find the center of the Mandelbrot set.

You need to switch off the height checking of the command output for this section of the
code. The debugger will apply a default page size on startup which will prompt you when the
output reaches a certain size to print out the rest.

Switch it off by entering the command set height -1:

(gdb) set height -1
(gdb)

The variable buffer is very large and the amount of data that the debugger has to display
equates to 96x96 characters. Try printing buffer for yourself using the print command.
This is the whole Mandelbrot image that will be displayed by dprint_poly_memory_raw
once the program has continued.

You can be a little more selective in your view of the data by using the pex command.

Use the pex command to display 3 hex integer values at the address of variable buffer on
PEs 33..63.

(gdb) pex/4x &buffer 33..63
(PE 33) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x04040404
0x06060505 0x080a0b08 0x07070707
(PE 34) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050404
0x06060505 0x090b0c08 0x07070708
(PE 35) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050504
0x06060505 0x0b0d0b08 0x090a0a0a
(PE 36) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07060605 0x101a0908 0x0c0d1213
(PE 37) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07060605 0x0b0a0908 0x11132811
(PE 38) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070605 0x0c090907 0x00003613
(PE 39) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070606 0x100a0907 0x00000016
(PE 40) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070706 0x0d0b0a08 0x00001c11

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 71
ClearSpeed Technology plc

(PE 41) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x06050505
0x08080807 0x140f120a 0x0000003a
(PE 42) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0d070605
0x09090808 0x00260d0b 0x00000000
(PE 43) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0b080706
0x0a090a0d 0x00170f0b 0x00000000
(PE 44) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0a080707
0x100d0d0f 0x0000100d 0x00000000
(PE 45) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0a090807
0x1f131b0c 0x00001317 0x00000000
(PE 46) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x100a0a08
0x0000150d 0x00000000 0x00000000
(PE 47) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0e0c0d0b
0x00003c17 0x00000000 0x00000000
(PE 48) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 49) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0e0c0d0b
0x00003c17 0x00000000 0x00000000
(PE 50) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x100a0a08
0x0000150d 0x00000000 0x00000000
(PE 51) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0a090807
0x1f131b0c 0x00001317 0x00000000
(PE 52) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0a080707
0x100d0d0f 0x0000100d 0x00000000
(PE 53) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0b080706
0x0a090a0d 0x00170f0b 0x00000000
(PE 54) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x0d070605
0x09090808 0x00260d0b 0x00000000
(PE 55) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x06050505
0x08080807 0x140f120a 0x0000003a
(PE 56) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070706 0x0d0b0a08 0x00001c11
(PE 57) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070606 0x100a0907 0x00000016
(PE 58) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07070605 0x0c090907 0x00003613
(PE 59) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07060605 0x0b0a0908 0x11132811
(PE 60) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050505
0x07060605 0x101a0908 0x0c0d1213
(PE 61) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050504
0x06060505 0x0b0d0b08 0x090a0a0a
(PE 62) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x05050404
0x06060505 0x090b0c08 0x07070708
(PE 63) 0x1c <__FRAME_BEGIN_POLY__+28>: 0x04040404
0x06060505 0x080a0b08 0x07070707
(gdb)

The start of the Mandelbrot image can be seen on PE 48 with the value 0x00000000 in the
first column.

Debugging Cn SDK Introductory Programming Manual

72 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

If you press enter again, you will automatically get the next 4-integer values of the image
without having to re-enter the pex command.

(gdb)
(PE 33) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x080d0807
0x07070707 0x08070707 0x0c0a0808
(PE 34) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x0a100908
0x07070808 0x08080707 0x1f0f0908
(PE 35) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x0b100b09
0x08090909 0x09080808 0x002c0a09
(PE 36) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x210f0c0b
0x0a1f0b0e 0x09090909 0x150f0b0a
(PE 37) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x29130e0e
0x0f160f19 0x0a0a0a0b 0x00380d0a
(PE 38) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x001b0014
0x19000022 0x0b0b0c19 0x00170d0c
(PE 39) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x3c000000 0x0c0e1100 0x00000f0d
(PE 40) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x0e132600 0x0000000e
(PE 41) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x27000000 0x00002610
(PE 42) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x27000000 0x00001813
(PE 43) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000018
(PE 44) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00003d00
(PE 45) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 46) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 47) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 48) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 49) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 50) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 51) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000000
(PE 52) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00003d00
(PE 53) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x00000000 0x00000018
(PE 54) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x27000000 0x00001813
(PE 55) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x27000000 0x00002610
(PE 56) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x00000000 0x0e132600 0x0000000e

SDK Introductory Programming Manual Debugging Cn

Document No. 06-UG-1117 Revision: 2.E 73
ClearSpeed Technology plc

(PE 57) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x00000000
0x3c000000 0x0c0e1100 0x00000f0d
(PE 58) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x001b0014
0x19000022 0x0b0b0c19 0x00170d0c
(PE 59) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x29130e0e
0x0f160f19 0x0a0a0a0b 0x00380d0a
(PE 60) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x210f0c0b
0x0a1f0b0e 0x09090909 0x150f0b0a
(PE 61) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x0b100b09
0x08090909 0x09080808 0x002c0a09
(PE 62) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x0a100908
0x07070808 0x08080707 0x1f0f0908
(PE 63) 0x2c <__FRAME_BEGIN_POLY__+44>: 0x080d0807
0x07070707 0x08070707 0x0c0a0808
(gdb)

You can see the number of 0x00000000 values getting larger as the Mandelbrot image
spreads out.

All that is left is to continue the application until it exits and returns from main.

7.3.12 Terminating the program
Enter the continue command at the prompt.

(gdb) c
Continuing.
..... mandelbrot image from dprint_mono_memory_raw() will appear in
terminal

Processor 0 has terminated.
Program exited normally.
(gdb)

The debugger has reported that the program has exited normally and that the processor has
terminated. You can now quit csgdb by using the quit command and entering y when
prompted.

You will now be back at the command line prompt as the debugger has exited.

Programming host applications SDK Introductory Programming Manual

74 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

8 Programming host applications

This section provides a brief introduction to the ClearSpeed Application Programming
Interface (CSAPI) used to communicate between a program running on the host and the
code on the CSX processor. For reasons of brevity, an outline of the method is presented
here with some example code fragments. For more detailed information, see the
appropriate chapter of the CSX600 Runtime Software User Guide.

The API being described is designed to assist end-users in the creation of host applications
using multithreaded array processors for executing speed-critical code. The programming
model is best illustrated by the chart in Figure 10.

Figure 10. Timeline for driver interactions

Create API instance

Load code from csx file

Run code Processing loop

Write data to mono memory

Signal to start processing

Read data
Process dataWait for the data to be processed

Prepare next batch while waiting Write results

Signal data ready

Read results from mono memory

Delete API instance

APIHost Driver CSX card

with semaphore
synchronization

Time

SDK Introductory Programming Manual Programming host applications

Document No. 06-UG-1117 Revision: 2.E 75
ClearSpeed Technology plc

There are a number of tasks to be performed when a program is split between the host and
the array processor:
1. Initialization
2. Synchronization
3. Data transfer

8.1 Initialization
The first step is to initialize the state of the API interface. The host program can then
connect to the driver and boot the program. The functions involved here are:

CSAPI_new

Creates a new instance of the API state.

CSAPI_connect

Connects to the driver on a specified host name or IP address.

CSAPI_load

Loads the executable code from the specified object file onto the processor.

CSAPI_run

Runs the code loaded onto the processor.

Once the driver and the processor have been initialized, the host program can start
communicating with code on the array processor.

8.2 Synchronization and communication
CSAPI_semaphore_signal

CSAPI_semaphore_wait

These two functions use semaphores to synchronize with the program on the
ClearSpeed processor.

CSAPI_get_symbol_value

This function is used to get the value of a symbol. This will typically be the address of a
variable or of a label in the code.

CSAPI_write_mono_memory

CSAPI_read_mono_memory

These functions are used to transfer data between the host and the memory of the
array processor.

Programming host applications SDK Introductory Programming Manual

76 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

8.3 Sample code
Here is a simple example of a host program. It shows how to create a CSAPI state object
and connect it to a card. It will then reset processor zero, load and run a program and wait
for the program to terminate. Finally it will obtain the exit code.
void main()
{

CSAPIErrno ret;
struct CSAPIState *s;
struct CSAPIProcess *process;
int csx_exit_code;

s = CSAPI_new();

ret = CSAPI_connect(s, CSH_Private, CSC_Direct, “localhost”,
CSAPI_INSTANCE_ANY, 0);

ret = CSAPI_reset(s, 0, CSR_FullReset, CSAPI_NO_TIMEOUT);

ret = CSAPI_load(s, 0, CSX_FILE_NAME, NULL, &process,
CSAPI_NO_TIMEOUT);

ret = CSAPI_run(s, process, NULL);

ret = CSAPI_wait_on_terminate(s, process, CSAPI_NO_TIMEOUT);

ret = CSAPI_get_return_value(s, process, &csx_exit_code);

CSAPI_delete(s);
}

The return code from each CSAPI call is not checked in this simple example. For more
complete examples refer to the source code provided as part of the SDK installation.

SDK Introductory Programming Manual Programming hints

Document No. 06-UG-1117 Revision: 2.E 77
ClearSpeed Technology plc

9 Programming hints

This chapter contains a few tips for avoiding the common problems encountered during
initial experience programming in Cn.

Basic hints:
avoid use of mono variables in poly expressions
use short rather that int where you can
remember poly-if is ‘cheap’ and it isn't a branch, it is a 'where'
don't assume that you should always double buffer
don't assume that vectorization is always a huge success, particularly in the case of
sets of expressions with lots of variables
good programs do virtually no floating point maths in mono. Send to poly, compute then
pull back (hence you will have to write your own dot_product() for example)

9.1 Effects of function return type
Care must be taken when using return inside a function. The behavior will change
depending on the return type. Section 5.6: Functions provides more detail.

Essentially, a poly return type means that the function will not actually return until the end of
the function, and all mono operations will be carried out.

A mono return type means that the function will return as soon as the return statement is
encountered.

9.2 Use of mono variables inside poly conditionals
This is also discussed in some detail in Section 5.5.1: If statements.

In general, if a poly expression is used for flow control, then all alternatives will be executed,
each branch being enabled on a different subset of the PEs.

This has important implications for mono objects that are used inside poly flow control
statements. Consider the following code snippet:

poly short penum = get_penum();
mono int i;

if (penum < 32) {
 ... /* Do some work */
 i = 0; /* Set mono variable */
}
else {
 ... /* Do some other work */
 i = 1; /* Set mono variable */
}

What is the value of i after this statement has finished? It will, in fact, be 1. Operations on
poly data are controlled by the condition in the if statement, but mono operations are not;

Programming hints SDK Introductory Programming Manual

78 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

because the code for both branches is executed, the variable i is initially set to 0 and then
to 1.

9.3 Debugging tips

9.3.1 Random errors occuring
Try running the code on the simulator. If, for instance, you've passed the end of the 6kB poly
memory, the hardware eventually wraps the address (masking off irrelevant bits - so 8kB will
become 0kB). The simulator will tell you if you've fallen off the end of the memory map.

This is not always intuitive and can cause unexpected results for the unwary programmer.
Even if all the poly variables used in the if statement fulfil the condition, the mono variables
are still updated as if both branches are executed. Consider the following nonsensical piece
of code:

poly int value = 0;
mono int i;
if (value == 0) {
 i = 1;
}
else {
 i = 2;
}

In this case, even though all of the PEs fulfil the condition (and hence none should execute
the else clause), the compiler will emit code to execute both branches and the processor
will execute it.

Although you have used if statements in these examples, the same considerations apply
to any conditional code including loops and the operators ?:, && and ||.

9.4 Mixing mono and poly conditions
There are also cases of conditional execution where the conditional behavior is not explicit.
One example is the use of boolean operators, typically to combine conditional expressions.

The && and the || operators are guaranteed to do lazy evaluation; only evaluate the right
hand subexpression if it is necessary to determine the truth or falsehood of the expression.
This means that the evaluation of the second subexpression is conditional, with implications
when the expression mixes mono and poly subexpressions.

In the following code fragment, the evaluation of the second part of the expression is
conditional on the result of the first:

mono int m;
poly int p;
...
if ((m == 0) && (p == 0))

Here, if m is not zero, then it is known that the whole expression is false and the value of p is
never tested. This is as expected, but now consider what happens when the conditional
expression is rewritten as:

SDK Introductory Programming Manual Programming hints

Document No. 06-UG-1117 Revision: 2.E 79
ClearSpeed Technology plc

if ((p == 0) && (m == 0))

In this case, the value of p is tested first. However, if this is false it simply disables the
execution of further poly code. The processor will continue executing mono code and,
specifically, it will evaluate the second expression to determine the value of m. This means
that the second expression is always evaluated and any side-effects of its evaluation will
always occur.

Note: Despite this, the overall condition is still a poly expression and so the behavior of the
conditional statement is as described in Section 9.2: Use of mono variables inside poly
conditionals.

9.5 Dereferencing mono*poly pointers
A mono value can, in general, be assigned to a poly variable. One case that can cause
confusion is dereferencing (implicitly or explicitly) a mono*poly pointer (see Section 5.3.3:
Pointers to mono data).

In this case, each PE’s instance of the pointer can point to a different location in mono
memory. This means that dereferencing the pointer would require a complex operation
where a different memory location is copied to each PE--this can be done, but requires the
use of library functions such as memcpym2p().

As an example, consider the code below:

mono int array[96];
mono int * poly p;
poly int x, n;
int i;

for (i = 0; i < 96; i++) {
array[i] = i; // initialise array contents
x = i; // a legal mono to poly assignment

}

n = get_penum(); // different value on each PE
p = array + n; // calculate a different address on each PE
x = *p; // illegal explicit dereference

x = array[n]; // illegal (implicit) dereference

This is illegal and will be reported as an error by the compiler.

Bibliography SDK Introductory Programming Manual

80 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

Bibliography

1. SDK Reference Manual
Document Number: 06-UG-1136
ClearSpeed Technology, 2004

2. The Cn Standard Libraries Reference Manual
Document Number: 06-RM-1139
ClearSpeed Technology, 2004

3. The C Programming Language
Brian W. Kernighan & Dennis M. Ritchie
ISBN: 0131103628
Prentice Hall, 1988

4. ISO/IEC 9899: Programming Languages – C
Reference number: ISO/IEC 9899 : 1990 (E)
ISO/IEC Copyright Office
Case Postale 56
CH-1211 Genève 20
Switzerland

5. The Mandelbrot Set Explorer
http://math.bu.edu/DYSYS/explorer/index.html

6. CSX Processor Architecture
White Paper 02-WP-1110
ClearSpeed Technology

7. Instruction Set Reference Manual
Document Number: 06-RM-1137
ClearSpeed Technology

8. CSX600 Runtime Software User Guide
Document Number: 06-UG-1345
ClearSpeed Technology

http://math.bu.edu/DYSYS/explorer/index.html

SDK Introductory Programming Manual Revision history

Document No. 06-UG-1117 Revision: 2.E 81
ClearSpeed Technology plc

Revision history

Date Revision Changes

Jul 2007 2.4 Initial version into the corporate standard. Change of title to reflect
document contents.

Jan 2008 2.E New corporate standard and mulitple amendments to contents.

Table 1. Document revision history

SDK Introductory Programming Manual

82 Document No. 06-UG-1117 Revision: 2.E
ClearSpeed Technology plc

1. Information and data contained in this document, together with the information contained in any and all associated ClearSpeed
documents including without limitation, data sheets, application notes and the like ('Information') is provided in connection
with ClearSpeed products and is provided for information only. Quoted figures in the Information, which may be performance,
size, cost, power and the like are estimates based upon analysis and simulations of current designs and are liable to change.

2. Such Information does not constitute an offer of, or an invitation by or on behalf of ClearSpeed, or any ClearSpeed affiliate to
supply any product or provide any service to any party having access to this Information. Except as provided in ClearSpeed
Terms and Conditions of Sale for ClearSpeed products, ClearSpeed assumes no liability whatsoever.

3. ClearSpeed products are not intended for use, whether directly or indirectly, in any medical, life saving and/ or life sustaining
systems or applications.

4. The worldwide intellectual property rights in the Information and data contained therein is owned by ClearSpeed. No license
whether express or implied either by estoppel or otherwise to any intellectual property rights is granted by this document or
otherwise. You may not download, copy, adapt or distribute this Information except with the consent in writing of ClearSpeed.

5. The system vendor remains solely responsible for any and all design, functionality and terms of sale of any product which
incorporates a ClearSpeed product including without limitation, product liability, intellectual property infringement, warranty
including conformance to specification and or performance.

6. Any condition, warranty or other term which might but for this paragraph have effect between ClearSpeed and you or which
would otherwise be implied into or incorporated into the Information (including without limitation, the implied terms of satis-
factory quality, merchantability or fitness for purpose), whether by statute, common law or otherwise are hereby excluded.

7. ClearSpeed reserves the right to make changes to the Information or the data contained therein at any time without notice.

© Copyright ClearSpeed Technology plc 2007. All rights reserved.

Advance is a registered trademark of ClearSpeed Technology plc

ClearSpeed, ClearConnect, Advance and the ClearSpeed logo are trade marks or registered trade marks of ClearSpeed
Technology plc. All other brands and names are the property of their respective owners.

ClearSpeed Technology, Inc.
3031 Tisch Way, Suite 200
San Jose, CA 95128
United States of America

Tel: +1 408 557 2067
Fax: +1 408 557 9054

Email: info@clearspeed.com

Web: http://www.clearspeed.com

Support: http://support.clearspeed.com

ClearSpeed Technology plc
3110 Great Western Court

Hunts Ground Road
Bristol BS34 8HP

United Kingdom

Tel: +44 (0)117 317 2000
Fax: +44 (0)117 317 2002

	Table of contents
	1 Overview of the architecture
	1.1 Terminology
	1.2 Programming model

	2 Simple Cn programs
	2.1 Aim of this document
	2.2 Example 1: Hello world
	2.3 Example 2: A first poly program

	3 Building and running Cn programs
	3.1 A brief description of the tool chain
	3.2 Compiling program
	3.2.1 File naming conventions
	3.2.2 Compiling as C

	3.3 Running your code
	3.3.1 Running on a simulator

	4 Parallel programming in Cn
	4.1 Sequential code and parallel code
	4.2 Using the debugger
	4.3 Start the program
	4.4 Exit the debugger

	5 Cn for the working C programmer
	5.1 Comments
	5.2 Data types
	5.3 Mono and poly specifiers
	5.3.1 Basic types
	5.3.2 Pointer types
	5.3.3 Pointers to mono data
	5.3.4 Pointers to poly data
	5.3.5 Illegal casts
	5.3.6 Array types
	5.3.7 Struct and union types
	5.3.8 Typedefs

	5.4 Mixing mono and poly variables
	5.5 Flow control
	5.5.1 If statements
	5.5.2 For, while and do..while loops
	5.5.3 Goto statement
	5.5.4 Labeled breaks
	5.5.5 Switch statements

	5.6 Functions
	5.7 Other architectural features
	5.7.1 Data transfers between mono and poly

	6 More Cn programs
	6.1 Example 1: Mandelbrot set
	6.1.1 Standard (mono) implementation
	6.1.2 Parallel (poly) implementation

	6.2 Exercise 2: Input and output
	6.3 Example 3: Asynchronous I/O

	7 Debugging Cn
	7.1 Compiling for debug
	7.2 Starting csgdb
	7.3 Using csgdb to investigate mandelbrot_poly.cn
	7.3.1 Listing source code
	7.3.2 Connecting to the device
	7.3.3 Setting breakpoints
	7.3.4 Starting execution
	7.3.5 Examining variables
	7.3.6 Reading registers
	7.3.7 Stepping to a function call
	7.3.8 Viewing the poly enable state
	7.3.9 Attaching commands to breakpoints
	7.3.10 Returning from a function
	7.3.11 Viewing memory
	7.3.12 Terminating the program

	8 Programming host applications
	8.1 Initialization
	8.2 Synchronization and communication
	8.3 Sample code

	9 Programming hints
	9.1 Effects of function return type
	9.2 Use of mono variables inside poly conditionals
	9.3 Debugging tips
	9.3.1 Random errors occuring

	9.4 Mixing mono and poly conditions
	9.5 Dereferencing mono*poly pointers

	Bibliography
	Revision history

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

