
Tractable Real-Time Air Traffic Control Automation

Will C. Meilander, Mingxian Jin and Johnnie W. Baker
Department of Computer Science

Kent State University, Kent, Ohio 44242-0001
Phone: (330) 672-2430 Fax: (330) 672-7824

{willcm, mjin, jbaker}@cs.kent.edu

Abstract
A different paradigm is needed for real-time command and

control (C&C) problems. Past approaches, using
multiprocessors (MP), for real-time computing have had great
difficulty in meeting real problem requirements. We review
some reasons why C&C problems that require a solution on a
MP architecture may be intractable, and then show an
architecture where these reasons for intractability are non-
existent. We describe a polynomial time solution to the air
traffic control (ATC) problem, which is a typical C&C problem.
This solution uses a static, non-preemptive table driven schedule
using a SIMD architecture called an associative processor (AP).
The AP is an ideal processor for set and database operations
since its single thread instruction stream can operate on an
entire set of data with each instruction. The AP eliminates
multi-thread instructions, which account for much of the MP
intractability mentioned above.

Keywords: Real-time processing, air traffic control,
associative processors, multiprocessors

1. Introduction

It has been widely established that almost all real-
time task scheduling problems for a multiprocessor that
require the inclusion of any of several common MP
activities in the solution are NP-hard. Scheduling for the
Air Traffic Control (ATC) system is typical of real-time
scheduling, and all solutions to the ATC problem that
assume a MP is used in any of several conventional ways
will have exponential running time. Further information
can be found in [1, 2, 3].

The ATC system consists of a number of sensors that
report an aircraft position. This data is joined with a track
table which develops the best estimate of current position
and velocity of each flight in the system. Flight plan
information, the intent of each controlled flight system is
maintained, as is weather information, aircraft data,
terminal conditions, etc. The above information is
considered to exist in a client-server database system.
Data is supplied to a number of clients including the ATC
controllers, who are responsible for safety of scheduled
flights, airlines, general aviation pilots, and data is
retained for information and future evaluation.

In a recent special broadcast on ABC news about
current ATC system difficulties [4], they stated that the
cost of the development of the current solution to the
ATC problem through 2005 has been projected to be 44
billion dollars. All attempts at providing a multiprocessor

solution to the ATC problem dating back to 1963 have
failed to meet their performance requirements (CCC
which started in 1963, DABS/IPC in 1974, AAS in 1983,
STARS in 1994.). The STARS project is now over
budget and nearly four years behind schedule.

We offer a distinctly different computational
approach, a new dimension in memory access, for solution
of these ATC problems that are generally considered NP-
hard. We suggest using a simple single instruction stream
multiple data stream (SIMD) associative processor. The
AP is very similar to the conventional von Neumann
processor. It has a similar instruction-processing unit, but
has thousands of arithmetic logical units (ALU) instead of
the single von Neumann ALU. Figure 1 provides an
overview of the AP architecture that is assumed in this
paper. The AP is seen to provide a new dimension of
memory access. Instead of accessing 32 bits in one
memory cycle, an AP with 16,000 ALUs, can access
16,000 bits at one time.

 Figure 1 ATC Associative Processor

We point out the important fact that nearly all SIMDs
that have been proposed and built could not handle the
ATC requirement because of I/O limitations, e.g. MPP by
Goodyear Aerospace Corp and the Connection Machine
by Thinking Machines. This I/O limitation is overcome
by the MDA (multidimensional access) memory [5, 6, 7]
of Figure 1. The flip network is a corner turning network
that provides access to a bit slice of data, in the normal
SIMD mode, or a word slice for I/O. The word direction
of data is compatible with the concept of entries of a
relational database record. The features of Figure 1 exist
in STARAN and ASPRO machines [5, 6, 7, 8].

Instruction
Memory
and
Control
ProcessorBit

Slice

Word
Slice

F

L

I

P

I/O

1
6
0
0
0

A
L
U
s

MDA
Memory

With the AP, set data processing, as exemplified in
the SQL database language, can be realized at the
hardware level. The AP can process a set of thousands of
operands simultaneously. We, henceforth, call a sequence
of operations on such a set of operands a jobset.

The AP is a much simpler hardware/software
approach to a feasible solution for real-time command and
control systems. We use our Nation’s Air Traffic Control
(ATC) system as an example problem that can be solved
using an AP.

 2. Definitions, assumptions, constraints

 Some of our definitions, assumptions and constraints
differ from those commonly accepted for multiprocessor
scheduling. The justification for the somewhat simpler
definitions is the simplicity of the AP. We use chapter 2
of [9] as a guide in what follows.
• Definitions

“A real-time task is an executable entity of work,
which, at a minimum, is characterized by a worst case
execution time and a time constraint.”[9] In the AP each
task consists of a worst-case set of jobsets. (Unlike
average case, worst case, is based on the maximum
functional requirements of the system under
consideration.)

Compared with conventional understanding of a job
as an instance of a task in the MP, in the AP we consider
a task to be a sequence of jobsets. An example of a task
is detection of conflicts between current flights. In this
operation a future flight envelope is developed for each
flight in the environment. Then one flight is
simultaneously evaluated against all the other flights to
see if some defined minimum separation may be violated.
This is a jobset. Next, each flight is evaluated in similar
fashion to all other flights completing a set of jobsets or a
task. This AP solution is O(n) where n is the number of
flights in the airspace. The usual MP algorithm for this
task is O(n2). In particular a jobset involves simultaneous
execution of multiple jobs. There are three types of
jobsets: periodic, aperiodic, and sporadic. Each is
assigned to a periodic task.

A system period P is the time during which the set of
all tasks must be completed. The system deadline D is the
constraint time for a system period. Task deadlines d are
applied to each task. Deadlines could be hard, soft or
firm. We consider only hard deadlines in the work that
follows. If the summation of task times for the system
period is less than D the static schedule is ready to use on
line, otherwise it is infeasible and must be redesigned.

Periodic tasks T are real-time tasks that are activated
(i. e. released) regularly at predefined times called release
times. Each task has a period p. Different tasks may have
different periods in a system period. Each task has a
release time r deadline time d. Task constraints are
release and deadline times.

Each task is statically scheduled. That static
schedule, developed off-line, is used in the operational
on-line system. The release time ri+1 of any task Ti+1 is

always greater than the deadline time di of the preceding
task Ti. Since the AP has a single thread instruction
stream, only one task can be executing at any time. Thus
there is never a task executing that could interfere with
execution of any other task.

Following Chapter 2 in [12], we next list the
assumptions and constraints implicit in the AP solution to
ATC.

• Assumptions for AP in ATC
1. All tasks are periodic. All are statically scheduled.
2. All tasks are ready to run at their scheduled release

times.
3. All deadlines are known in the task release.
4. Tasks do not suspend themselves. However they can

finish before their deadline.
5 . Tasks are independent in that there is neither

synchronization between them, nor shared resources,
nor precedence dependencies. The static schedule
fixes release times. Deadline times for each task are
also fixed.

6. Overhead costs for interrupt handling are included in
each task cost.

7. Task preemption cannot occur since single instruction
prevents concurrent task execution. All tasks are non-
preemptable.

8. Each task can have only one predecessor task and one
successor task.

• Constraints for AP in ATC
1. Resource constraints - a task may require access to

certain resources other than the processing system,
such as, I/O buffers which are defined to retain
information for non-conflicting use by scheduled tasks
at each task release time.

2 . Precedence relationships - tasks are statically
scheduled in precedence order.

3 . Concurrency constraints - tasks are not allowed
concurrent access to resources.

4 . Communication requirements - a system that has
distributed elements requiring bi-directional
communication paths is not used. Communication is
limited to conventional system input/output.

5. Fault tolerance - when multiple instances of a task are
executed for fault-tolerance, the different instances are
executed simultaneously on different processor
systems.

6. Criticalness - all tasks are considered critical to the
mission, and none can be preempted or deleted
without possible adverse effects.

3. Our AP solution

A command and control system may be considered
to consist of a database and methods for processing
transactions on that database. The ATC database can be
represented as a relational database. It should be
observed that the SIMD is the only known architecture
that can directly implement a relational database as

originally described by A. E. Codd in 1970. This implies
no ordering of rows or columns. There are no pointers
except existence in a row of a table and relationships
between entities. This configuration supports AP queries
that can be designed in declarative terms similar to the
widely accepted SQL database language.

3.1 Flight Plan/Track Conformance, Example Jobset
 This section includes an example of a jobset that is
regularly executed in the ATC environment. In this jobset
the previous flight plan (FP) position is updated to current
time, and evaluated to determine its conformance to the
filed plan by comparing the plan and the current sensor
based track information. A one to one relationship exists
between the track and flight plan entities. The pilot is
allowed a distance deviation K1 laterally, a distance
deviation K2 along his flight plan, and an altitude
deviation K3. If the flight is within that space, the flight
is “on track”. If the flight deviates more than K1 or if the
flight deviates from the correct altitude more than K3, the
deviation is flagged to the attention of the controller. If
the flight is off along track (i.e., deviation more than K2),
the flight plan current position is modified to the current
track position. Table 1 shows estimated instruction and
data accessing and processing times for an AP built using
available current technology.

In the Flight plan conformance problem Xf, Yf, Hf,
xd, yd, hd are the flight plan last update position and
velocity increment. Xt, Yt, Ht are the current track
position; sin(hdg), cos(hdg) hdg is the flight plan heading
parameter. Xf1, Yf1, Hf1 are the updated flight plan
position. Each step in Table 1 is executed simultaneously
by all active ALUs.

It is seen from Table 1 that 7.34 microseconds is the
total time required to evaluate track conformation for the
worst-case set of 4,000, or maximum, IFR flights in the
environment. There is no movement of data or
instructions except between memory and processor. (It
should be noted the execution time would be the same if
there were only one flight in the system.) Thus, this is an
O(1) time. The usual MP algorithm for this problem is
O(n) and requires 4,000 iterations.

The analysis in Table 1 is based on work that was
done on the STARAN [5, 6, 7] and ASPRO [8]
architectures. In these machines the time for each
instruction, at the object code level, was available to the
developer. For example, in STARAN, an equal
comparand (exact match) operation over the entire set of
operands was executed in 0.82 + .19n microseconds,
where n is the number of bits in the operand. A
maximum field search took 0.84 + .63n microseconds. An
add fields instruction was executed in 5.7 + .68n
microseconds, where n is the number of bits in the
operands. These operations were done with a single bit
ALU since this was the state of art in 1972 [6, 7]. Similar
performance was realized with ASPRO for the USN
where tracking was both predicted and measured to be
276 time faster than a dual processor for an environment
of 4,000 sensor reports, as reported in [10, 11]. Today’s

AP is assumed to have a number of general purpose
registers and a 32 bit wide ALU which would allow
accessing data only once, storing the data in registers, and
then executing the required operation and storing the
results back to memory.

3.2 An AP static schedule for ATC
A table driven scheduler [1, 9] is static, and is

designed, off-line. The resulting fixed schedule of tasks
provides sufficient time for the worst-case deadlines of
the complete set of system tasks for the ATC system to be
met. Since a static schedule is used, no execution time is
used for scheduling. The periodic tasks run at their
release times and each is completed by its deadline. If the
summation of run times evaluated over the table of tasks
is less than the major period the system is feasible.

Creating a static schedule begins with identification
of the required jobsets. An example was given in 3.1
above. Observe that an aperiodic jobset might be a single
job such as updating runway direction or weather at a
specific terminal. When the jobsets are defined each of
them is evaluated to determine its computation time jj.
Then each jobset is assigned to a task T on the basis of its
function and repetition period. The summation c of the
worst-case set of jobset times jj assigned to each task is
determined.

Some jobsets may be aperiodic or sporadic. These
jobsets will not have a regular period and will be assigned
to a task that handles all the aperiodic jobsets that have
arrived within the last period. We use a one second
period as shown in task 4 in Table 3. During this task all
aperiodic jobsets that have arrived are processed. We
assume there will be no more than 200 such jobsets per
second that require less than 250 microseconds.

Each task T has an ith release time ri, a worst-case
computation time c, and a period p. Its ith deadline di = ri

+ c +.01. The next release time in the table for each task
is the current release time plus its period i.e., ri + 1 = ri +
p. All tasks are non-preemptable. Concurrent tasks are

Operations Memory Time
 Accesses (µs)

1 Select all flight plans 2
2 Get Xf, Yf, Hf, xd, yd, hd 116
3 Xf1 = Xf +xd, Yf1 =Yf+yd, Hf1 = Hf + hd 6 0.06
4 Get Xt, Yt, Ht, sin(hdg), cos(hdg) 116
Calculate displacement of track from FP
5 X’=(Xt-Xf)*cos(hdg)+(Yt-Yf)*sin(hdg) 8 0.12
6 Y’=(Yt-Yf)*cos(hdg)-(Xt-Xf)*sin(hdg) 8 0.12
7 Check X’>K1, if true set alert flag 3 0.06
8 Check Ht – Hf > K3, if true set alert flag 4 0.06
9 Check Y’>K2, if true, update FP 4 0.08
10 Store Xf1, Yf1, Hf1 75

 Total 342 0.50

 Total proc. time with 20 ns memory access time 7.34 µs

Table 1 Flight Plan/Track Conformance Processing

impossible since there is
only one instruction stream
and only one task can be
executing at any time. The
processor will idle when a
task finishes early. (This
condition is expected to
ensue most of the time.) On
the other hand it is
necessary that all tasks be
capable of executing under
the worst-case set of
conditions.

Each task is scheduled
in precedence order. Each
task has a single predecessor
task and a single successor
task. It should be
r e m e m b e r e d w h e n
discussing processing time
that all tasks consist of
jobsets that are executed at run time. Further, tasks may
be composed of different jobset types.

Each jobset within a task executes a set operation.
That is, each jobset can execute the same operation
simultaneously on multiple data items. Additionally the
data for a task may involve a worst-case situation We
emphasize the set operations because the AP is a set
processor. In this example we suggest the maximum set
of operands may be of the order of 16,000. An operation
over the entire set of records is executed simultaneously
(i.e., in lock step) over all the data using one instruction
stream that is executed only once. Table 2 shows the
worst-case environment for the ATC tasks we consider.

When the above tasks are evaluated, using today’s

technology in AP design, the above tasks can be
completed in less than 50% of the time available in the 8-
second system period. Similar performance has been
shown in [7, 11]. Table 3 and Figure 2 show our static
schedule for ATC tasks in an AP.

3.3 Analysis of our solution

The AP provides a simpler solution to the air traffic
control automation problem. In addition to the 250 to 500
times or more increase in data bandwidth that can be
realized the AP virtually eliminates the need for the
following real-time processing software in the ATC
multiprocessor environment:

• processor assignment
• queue management software
• task predictability evaluation
• data assignment
• concurrency control
• memory coherency management
• table and data locking
• cache management
• multitasking
• indexing
• sorting
• mosaicing
• data pointer assignment and update
• preemption control
• iterative processing of items of data.

The AP not only eliminates the extensive and
complex software needed in a multiprocessor, but also
eliminates the processing time needed to execute that
complex software.

Static scheduling assures the predictability of system
performance. A static schedule is both very reliable and
highly adaptable and can easily be modified to
incorporate system changes as needed.

3.4 A different system approach
When compared with any of today’s MP techniques,

“Associative processing is a different way of storing,
manipulating and retrieving data compared to traditional
computational techniques.” [12]. One main feature of the
AP is a set of processing elements (PEs or ALUs) that can
be used to realize a content addressable memory [6]. As
previously shown an AP system provides very efficient
and natural support for the common database processes
such as insert, retrieve, update and delete over a set of
records. Further the AP eliminates many operations that
are ubiquitous in MP systems such as indexing, sorting,
moving or distributing data etc. None of these operations
can change data.

Task p j c d Proc time
1. Report Correlation & Tracking .5 15 .09 .10 1.44
2. Cockpit Display 750 /sec) 1.0 120 .09 .20 .72
3. Controller Display Update (7500/sec) 1.0 12 .09 .30 .72
4. Aperiodic Requests (200 /sec) 1.0 250 .05 .36 .4
5. Automatic Voice Advisory (600 /sec) 4.0 75 .18 .78 .36
6. Terrain Avoidance 8.0 40 .32 2.93 .32
7. Conflict Detection & Resolution 8.0 60 .36 3.97 .36
8. Final Approach (100 runways) 8.0 33 .2 6.81 .2

 Summation of Tasks in a period P 4.52

The system period P (in which all tasks must be completed) is 8 seconds
p the task period time, is used to determine the next task release time ri + 1 = ri + p,
j is the execution time, in microseconds, for each jobset in a task,
c is the cost for each task for the worst-case set of jobsets,
d the deadline time for each task ri + c + .01 (includes 10 ms interrupt processing per task)

Table 3. Statically Scheduled Solution Time

Reports per second 12,000
IFR flights 4,000
VFR/backup flights 10,000
Controllers 600

Table 2. ATC – Worst-Case Environment

An example is data access. All data in any relational
table must be accessed on the basis of content. In the MP
any significant amount of textual or positional data must
be indexed or sorted. Maintaining a sort or index path to
the data and following this path until the desired object is
found achieves content addressed access. In many
applications many secondary and cluster indexes are
developed to increase access speed. In highly dynamic
real-time systems such as air traffic control the cost of
updating a large set of indexes in a real-time system can
be very high.

In contrast such index/sort structures are never
necessary in an AP since the stored data is physically
content addressable [6, 12, 17]. That is, the characteristic
of the desired data item is entered and in one instruction
cycle is found or is determined to be missing. Similarly a
point in 3-D space is found in a single instruction
sequence by establishing a three-dimensional search box
about the point sought. If they exist, the desired point or
points in this space are easily and quickly located using a
constant time search.

Both text and position search operations can be made
over a set of items stored in memory. While such a
search is order O(1) in an AP, the algorithms used in a
MP (ignoring the additional costs mentioned in Section
3.3 and 3.5) is order O(n) in the MP. When using
indexing or sorting in the MP, the O(n), may be reduced
at the cost of establishing and maintaining an index plus
the cost of using the index. In any case, the cost of
computation and the number of instructions executed for
these operations in an MP is typically much larger than
the same operation in an AP. Also, the detection of
conflicts between flights are order O(n) in an AP but the
normal algorithm for this is O(n2) in a multiprocessor
This occurs because, as discussed earlier, one flight
projection is evaluated for minimum clearance with the
set of other flight envelopes in the AP. In an MP each
flight must be evaluated against every other flight
individually.

4. MP Limitations

We next list and discuss several difficulties
that occur whenever a MP system is used for
scheduling real-time problems. This will lead to
intractability of most real-time scheduling
problems requiring a solution using a MP. In
what follows we do not distinguish between
different classes of multiprocessors. The only
criteria we consider significant are the
possibility of concurrent processes executing in
the machines. It should be noted that a single
processor may exhibit the same problems when
operating under a multitasking operating system.
• Multitasking

When multiprocessors are used, tasks must
be partitioned and assigned to individual
processors. Since the PARTITION problem of a
finite set is a basic NP-complete problem, so is

the problem of assigning a set of real-time tasks with
deadlines to a multiprocessor (The detailed proof can be
found in [13] [SS8], 17). The MP has multiple instruction
streams; therefore, tasks must be partitioned to allow
concurrent executions while carefully avoiding the
undesirable effects of concurrent operations.
Consequently, most scheduling problems for
multiprocessors are NP-hard [3].
• Shared resources

Shared resources usually cause NP-hardness in real-
time scheduling problems [2, 9]. In air traffic control a
real-time database is required as a common resource
accessible by all tasks. Generally, resource sharing can
be realized by mutual exclusion constraints.
Unfortunately, there is no optimal solution for scheduling
a set of real-time tasks with mutual exclusion constraints
because mutually exclusive scheduling blocks h a v e
different computational times that cause NP-hardness as
shown earlier using the partition problem [9].
• Preemption

When preemption on an MP is allowed, one must
consider the difficulty of predicting overhead,
asynchronous execution of tasks distributed on different
processors, synchronization of task execution after
preemption, etc. Preemption may also worsen task
migration and load balance among processors commonly
existing in MP systems. Inclusion of these difficulties
will substantially increase the complexity of a solution to
the real-time scheduling problem.
• Precedence constraints

The existence of precedence constraints can be
another reason for NP-hardness in real-time scheduling
problems. Precedence constraints may require waiting for
higher priority tasks or preemption of lower priority tasks.
When tasks have to meet a certain order of execution, an
MP has to handle problems such as idle processor time,
expensive overhead, task migration, load balancing,
communication delays, etc. The scheduling problem
becomes intractable in most cases [9]. In contrast the AP
schedules real-time tasks for air traffic control statically.

T1

T2 T3 T4

T5

T6 T7 T8

4, 12, 0
start

0.5 sec

1.0 sec

4.0 sec

8.0 sec

Figure 2. AP ATC schedule

 1, 3, 5, 7,
9, 11, 13,

6 8 14

10 2

It takes advantage of its synchronous data parallel
capabilities and uses a predefined precedence to assure
enough time to complete worst-case time tasks. The order
of task execution is stored in the table driven scheduler.
• Concurrent instructions

When the ATC problem is considered from a
functional point of view, there seems to be no reason why
the problem should be intractable. All the parameters in
the ATC problem have a limited upper bound. None of
the flights, sensor reports, terminals, controllers, control
sectors, etc. are increasing exponentially. Then why do
multiprocessor problems exist? They are the result of
concurrent instruction streams [14]. Other reasons for
these problems given in [3] and [9] involve the concurrent
execution of multiple tasks The AP eliminates these
problems by eliminating the condition that causes them.
That is, the problem disappears through elimination of
concurrent operations on the database. A single
instruction stream cannot have concurrent actions.

We next quote from other researchers concerning
real-time processing.

Klein et al [15] write about real-time scheduling in
an MP: "It is tempting to think that speed (for example,
processor or communication bandwidth) is the sole
ingredient in meeting system timing requirements, but
speed alone is not enough.” The problem, according to
Klein, et al is "…predictability, the ability to determine
for a given set of tasks whether the system will be able to
meet all the requirements of those tasks.” We can see that
All current ATC approaches use "probabilistic” or
“dynamic” scheduling which is inherently unpredictable.
Klein, et al continue; “Optimal methods are seldom
useful in real-time systems because most realistic
problems incorporating practical issues such as task
blocking, and transient overloads are NP-hard.” Garey,
Graham and Johnson, write: “In fact, all but a few
schedule optimization problems are considered insoluble.
For these scheduling problems no efficient optimization
algorithm has yet been found, and indeed, none is
expected.”[16]. “The problem of determining an optimal
schedule even in a multi-processor system is known to be
NP-hard. … These factors often necessitate a heuristic
approach …” p. 247 [9].

Stankovic et al [3]: state that “One of the goals of
hard real-time scheduling is to find feasible schedules for
a multiprocessor system. It is a difficult problem and has
been shown to be NP-complete …even for simple
models“ they further write: “…complexity results show
most real-time multiprocessing scheduling is NP-hard.”

5. Conclusion

We show a simple predictable polynomial time
solution for our nations air traffic management problems.
While all current MP approaches use a heuristic
scheduling algorithm that is dynamically dependent on
the current system state, the AP schedule is developed as
part of the initial system programming effort and remains
static and unchanged at run-time. We believe a working

model can be fabricated and programmed to manage a
system by using the schedule shown in Table 3. and
performing the functions on the ATC environment shown
in Table 2. Development of the necessary hardware and
software, based on prior completed work, will be
straightforward and simple. Because of the systems
simplicity and performance predictability the risk of
failure is near zero. In the view of the repeated failures of
MP ATC systems from the late 1960s to the current time
it is time to try a better approach. It only has to be done.

References:

 [1] C. Murthy, G. Manimaran, “Resource Management in Real-
Time Systems, MIT Press, 2001
[2] J. A. Stankovic, “Read-Time and Embedded Systems,” The
Computer Science and Engineering Handbook, Ed. Allen B.
Tucker, Jr., CRC Press, 1997, pp. 1709-1724.
[3] J. A. Stankovic, M. Spuri, M. Di Natale, G. C. Buttazzo,
Implications of Classical Scheduling Results for Read-Time
Systems, Computer June, 1995, pp. 16-25.
[4] J Yang, “$2 Billion Control System Not Ready for Use.”,
ABC News, June 5, 2002 http://abcnews.go.com/sections/
wnt/DailyNews/yang_faa020605.html
[5] K. E. Batcher, STARAN parallel processor system hardware,
“Procs. National Computer Conf.,” pp. 405-410, AFIPS, 1974
[6] W. C. Meilander, “STARAN an associative approach to
multiprocessing”, Multiprocessor Systems, Infotech State of the
Art Reports, Infotech International 1976 pp 347-372.
[7] J. A. Rudolph, “A Production Implementation of an
Associative Array Processor – STARAN”, The Fall Joint
Computer Conference (FJCC) December 5-8, 1972, Los
Angeles, California, USA
[8] ASPRO-VME Hardware/Architecture ER3418-5 LORAL
Defense Systems Akron, OH June 1992
[9] "Deadline Scheduling for Real-time Systems” John
Stankovic et al, Kluwer, 1998
[10] Will C. Meilander, Jerry L. Potter, Kathy Liszka, Johnnie
W. Baker; “Real-Time Scheduling in Command and Control.”
Midwest Parallel Processing Conference, August 20, 21 1999.
(Unofficial version at www.cs.kent.edu/~parallel)
[11] L. Qian, Complexity Analysis of an Air Traffic Control
System Using an Associative Processor, Master’s Thesis, Kent
State University, 1997
[12] A. Krikelis, C. C. Weems “Associative Processing and
Associative Processors” IEEE Computer Society, 1994
 [13] Garey and Johnson “Computers and Intractability A
Guide to the Theory of NP-Completeness”, W. H. Freeman,
1979.
 [14] J. Potter, W. Meilander “ Interarchitecture Comparative
Analysis”, Proc. International Conference On Communications
In Computing, June 26, 2000, See www.cs.kent.edu/~parallel
 [15] Mark H. Klein, et al “Rate-Monotonic Analysis for Real-
Time Industrial Computing,” Computer, January 1994.
 [16] M.R.Garey, R.L.Graham and D. S. Johnson, “Performance
Gaurantees for Scheduling Algorithms,”Operations Research.
Vol. 26, No. 1, Jan,-Feb. 1978 pp 3-21
[17] "The Power of SIMDs vs. MIMDs in Real-Time
Scheduling", Mingxian Jin, Johnnie W. Baker, and Will C.
Meilander, Proc. of the 17th International Parallel and
Distributed Processing Symposium (Workshop in Massively
Parallel Processing), IEEE Digital Library, April 2002
(Unofficial version: www.cs.kent.edu/~parallel)

