MIMD Overview

- MIMDs in the 1980s and 1990s
 - Distributed-memory multicomputers
 - Intel Paragon XP/S
 - Thinking Machines CM-5
 - IBM SP2
 - Distributed-memory multicomputers with hardware to look like shared-memory
 - nCUBE 3
 - Kendall Square Research KSR1
 - NUMA shared-memory multiprocessors
 - Cray T3D
 - Convex Exemplar SPP-1000
 - Silicon Graphics POWER & Origin

- General characteristics
 - 100s of powerful commercial RISC PEs
 - Wide variation in PE interconnect network
 - Broadcast / reduction / synch network

Intel Paragon XP/S Overview

- Distributed-memory MIMD multicomputer
- 2D array of nodes
 - Main memory physically distributed among nodes (16-64 MB / node)
 - Each node contains two Intel i860 XP processors: application processor to run user program, and message processor for inter-node communication

XP/S Nodes and Interconnection

- Node composition
 - 16–64 MB of memory
 - Application processor
 - Intel i860 XP processor (42 MIPS, 50 MHz clock) to execute user programs
 - Message processor
 - Intel i860 XP processor
 - Handles details of sending / receiving a message between nodes, including protocols, packetization, etc.
 - Supports broadcast, synchronization, and reduction (sum, min, and, or, etc.)

- 2D mesh interconnection between nodes
 - Paragon Mesh Routing Chip (PMRC) / iMRC routes traffic in the mesh
 - 0.75 µm, triple-metal CMOS
 - Routes traffic in four directions and to and from attached node at > 200 MB/s

XP/S Usage

- System OS is based on UNIX, provides distributed system services and full UNIX to every node
 - System is divided into partitions, some for I/O, some for system services, rest for user applications

- Users have client/server access, can submit jobs over a network, or login directly to any node

- System has a MIMD architecture, but supports various programming models: SPMD, SIMD, MIMD, shared memory, vector shared memory

- Applications can run on arbitrary number of nodes without change
 - Run on more nodes for large data sets or to get higher performance
Thinking Machines CM-5 Overview

- Distributed-memory MIMD multicomputer
 - SIMD or MIMD operation
- Configurable with up to 16,384 processing nodes and 512 GB of memory
 - Divided into partitions, each managed by a control processor
 - Processing nodes use SPARC CPUs

CM-5 Partitions / Control Processors

- Processing nodes may be divided into (communicating) partitions, and are supervised by a control processor
 - Control processor broadcasts blocks of instructions to the processing nodes
 - SIMD operation: control processor broadcasts instructions and nodes are closely synchronized
 - MIMD operation: nodes fetch instructions independently and synchronize only as required by the algorithm
- Control processors in general
 - Schedule user tasks, allocate resources, service I/O requests, accounting, etc.
 - In a small system, one control processor may play a number of roles
 - In a large system, control processors are often dedicated to particular tasks (partition manager, I/O cont. proc., etc.)

CM-5 Nodes and Interconnection

- Processing nodes
 - SPARC CPU (running at 22 MIPS)
 - 8-32 MB of memory
 - (Optional) 4 vector processing units
- Each control processor and processing node connects to two networks
 - Control Network — for operations that involve all nodes at once
 - Broadcast, reduction (including parallel prefix), barrier synchronization
 - Optimized for fast response & low latency
 - Data Network — for bulk data transfers between specific source and destination
 - 4-ary hypertree
 - Provides point-to-point communication for tens of thousands of items simultaneously
 - Special cases for nearest neighbor
 - Optimized for high bandwidth

Tree Networks (Reference Material)

- Binary Tree
 - \(2^k - 1\) nodes arranged into complete binary tree of depth \(k\)
 - Diameter is \(2(k-1)\)
 - Bisection width is 1
- Hypertree
 - Low diameter of a binary tree plus improved bisection width
 - Hypertree of degree \(k\) and depth \(d\)
 - From “front”, looks like \(k\)-ary tree of height \(d\)
 - From “side”, looks like upside-down binary tree of height \(d\)
 - Join both views to get complete network
 - 4-ary hypertree of depth \(d\)
 - \(4^d\) leaves and \(2^d(2^d+1)\) nodes
 - Diameter is \(2d\)
 - Bisection width is \(2^{d+1}\)
IBM SP2 Overview

- Distributed-memory MIMD multicomputer
- Scalable POWERparallel 1 (SP1)
- Scalable POWERparallel 2 (SP2)
 - RS/6000 workstation plus 4–128 POWER2 processors
 - POWER2 processors used IBM’s in RS 6000 workstations, compatible with existing software

SP2 System Architecture

- RS/6000 as system console
- SP2 runs various combinations of serial, parallel, interactive, and batch jobs
 - Partition between types can be changed
 - High nodes — interactive nodes for code development and job submission
 - Thin nodes — compute nodes
 - Wide nodes — configured as servers, with extra memory, storage devices, etc.
- A system “frame” contains 16 thin processor or 8 wide processor nodes
 - Includes redundant power supplies, nodes are hot swappable within frame
 - Includes a high-performance switch for low-latency, high-bandwidth communication

SP2 Processors and Interconnection

- POWER2 processor
 - RISC processor, load-store architecture, various versions from 20 to 62.5 MHz
 - Comprised of 8 semi-custom chips: Instruction Cache, 4 Data Cache, Fixed-Point Unit, Floating-Point Unit, and Storage Control Unit
- Interconnection network
 - Routing
 - Packet switched = each packet may take a different route
 - Cut-through = if output is free, starts sending without buffering first
 - Wormhole routing = buffer on subpacket basis if buffering is necessary
 - Multistage High Performance Switch (HPS) network, scalable via extra stages to keep bw to each processor constant
 - Guaranteed fairness of message delivery

nCUBE 3 Overview

- Distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)
 - If access is attempted to a virtual memory page marked as “non-resident”, the system will generate messages to transfer that page to the local node
- nCUBE 3 could have 8–65,536 processors and up to 65 TB memory
 - Can be partitioned into “subcubes”
- Multiple programming paradigms: SPMD, inter-subcube processing, client/server
nCUBE 3 Processor and Interconnect

- Processor
 - 64-bit custom processor
 - 0.6 μm, 3-layer CMOS, 2.7 million transistors, 50 MHz, 16 KB data cache, 16 KB instruction cache, 100 MFLOPS
 - ALU, FPU, virtual memory management unit, caches, SDRAM controller, 18-port message router, and 16 DMA channels
 - ALU for integer operations, FPU for floating point operations
 - Argument against off-the-shelf processor: shared memory, vector floating-point units, aggressive caches are necessary in workstation market but superfluous here

- Interconnect
 - Hypercube interconnect
 - Wormhole routing + adaptive routing around blocked or faulty nodes

nCUBE 3 I/O

- ParaChannel I/O array
 - Separate network of nCUBE processors
 - 8 computational nodes connect directly to one ParaChannel node
 - ParaChannel nodes can connect to RAID mass storage, SCSI disks, etc.
 - One I/O array can be connected to more than 400 disks

MediaCUBE Overview

- For delivery of interactive video to client devices over a network (from LAN-based training to video-on-demand to homes)
 - MediaCUBE 30 = 270 1.5 Mbps data streams, 750 hours of content
 - MediaCUBE 3000 = 20,000 & 55,000

Kendall Square Research KSR1 Overview and Processor

- COMA distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)

- Multiple variations
 - 8 cells ($500K): 320 MFLOPS, 256 MB memory, 210 GB disk, 210 MB/s I/O
 - 1088 cells ($30M): 43 GFLOPS, 34 GB memory, 15 TB disk, 15 GB/s I/O

- Each APRD (ALLCACHE Processor, Router, and Directory) Cell contains:
 - Custom 64-bit integer and floating-point processors (1.2 μm, 20 MHz, 450,000 transistors, on a 8x13 printed circuit board)
 - 32 MB of local cache
 - Support chips for cache, I/O, etc.

KSR1 System Architecture

- The ALLCACHE system moves an address set requested by a processor to the Local Cache on that processor
 - Provides the illusion of a single sequentially-consistent shared memory

- Memory space consists of all the 32 KB local caches
 - No permanent location for an “address”
 - Addresses are distributed and based on processor need and usage patterns
 - Each processor is attached to a Search Engine, which finds addresses and their contents and moves them to the local cache, while maintaining cache coherence throughout the system
 - 2 levels of search groups for scalability
Cray T3D Overview

- NUMA shared-memory MIMD multiprocessor
 - Each processor has a local memory, but the memory is globally addressable
- DEC Alpha 21064 processors arranged into a virtual 3D torus (hence the name)
 - 32–2048 processors, 512MB–128GB of memory
 - Parallel vector processor (Cray Y-MP / C90) used as host computer, runs the scalar / vector parts of the program
 - 3D torus is virtual, includes redundant nodes

T3D Nodes and Interconnection

- Node contains 2 PEs; each PE contains:
 - DEC Alpha 21064 microprocessor
 - 150 MHz, 64 bits, 8 KB L1 I&D caches
 - Support for L2 cache, not used in favor of improving latency to main memory
 - 16–64 MB of local DRAM
 - Access local memory: latency 87–253ns
 - Access remote memory: 1–2µs (~8x)
 - Alpha has 43 bits of virtual address space, only 32 bits for physical address space — external registers in node provide 5 more bits for 37 bit phys. addr.
- 3D torus connections PE nodes and I/O gateways
 - Dimension-order routing: when a message leaves a node, it first travels in the X dimension, then Y, then Z

Cray T3E Overview

- T3D = 1993, T3E = 1995 successor (300 MHz, $1M), T3E-900 = 1996 model (450 MHz, $.5M)
- T3E system = 6–2048 processors, 3.6–1228 GFLOPS, 1–4096 GB memory
 - PE = DEC Alpha 21164 processor (300 MHz, 600 MFLOPS, quad issue), local memory, control chip, router chip
 - L2 cache is on-chip so can't be eliminated, but off-chip L3 can and is
 - 512 external registers per process
 - GigaRing Channel attached to each node and to I/O devices and other networks
 - T3E-900 = same w/ faster processors, up to 1843 GFLOPS
- Ohio Supercomputer Center (OSC) had a T3E with 128 PEs (300 MHz), 76.8 GFLOPS, 128 MB memory / PE

Convex Exemplar SPP-1000 Overview

- ccNUMA shared-memory MIMD
 - 4–128 HP PA 7100 RISC processors, 256 MB – 32 GB memory
 - Hardware support for remote memory access
- System is comprised of up to 16 “hypernodes”, each of which contains 8 processors and 4 cache memories (each 64–512MB) connected by a crossbar switch
 - Hypernodes are connected in a ring
 - Hardware keeps caches consistent with each other
Silicon Graphics
POWER CHALLENGE Array Overview

- ccNUMA shared-memory MIMD

- “Small” supercomputers
 - POWER CHALLENGE — up to 144 MIPS
 R8000 processors or 288 MISP R1000
 processors, with up to 128 GB memory
 and 28 TB of disk
 - POWERnode system — shared-memory
 multiprocessor of up to 18 MIPS R8000
 processors or 36 MIPS R1000
 processors, with up to 16 GB of memory

- POWER CHALLENGE array consists of
 up to 8 POWER CHALLENGE or
 POWERnode systems
 - Programs that fit within a POWERnode
 can use the shared-memory model
 - Larger program can span POWERnodes

Silicon Graphics
Origin 2000 Overview

- ccNUMA shared-memory MIMD
 - SGI says they supply 95% of ccNUMA
 systems worldwide

- Various models, 2–128 MIPS R1000
 processors, 16 GB – 1 TB memory
 - Processing node board contains two
 R10000 processors, part of the shared
 memory, directory for cache coherence,
 plus node
 and I/O
 interface

- File serving,
 data mining,
 media serving,
 high-performance
 computing