
ASC Processor Research

Robert A. Walker, et al.

ASC Processor Group
Computer Science Department

Kent State University

2

Control
Unit
(CU)

Ford Taurus $22,000 Kent

Chevrolet Malibu $12,000 Akron

Ford Taurus $15,000 Akron

Ford Focus $18,000 Kent

Jeep Wrangler $25,000 Akron

Consider this simple automotive database

1 record per PE, each PE searches its local memory

“R” indicates a “responder” (successful match)

PE

PE

PE

PE

PE

R

R

R

R

R

Associative Search

3

Control
Unit
(CU)

Ford Taurus $22,000 Kent

Chevrolet Malibu $12,000 Akron

Ford Taurus $15,000 Akron

Ford Focus $18,000 Kent

Jeep Wrangler $25,000 Akron

PEs search for a key, ones that find it are responders

Find all “Ford” cars for sale

PE

PE

PE

PE

PE

R

R

R

R

R

Associative Search

4

Control
Unit
(CU)

Ford Taurus $22,000 Kent

Chevrolet Malibu $12,000 Akron

Ford Taurus $15,000 Akron

Ford Focus $18,000 Kent

Jeep Wrangler $25,000 Akron

PEs search for a key, ones that find it are responders

Find all “Ford” cars for sale

! “R” indicates a “responder” (successful match)

PE

PE

PE

PE

PE

R

R

R

Associative Search

5

Control
Unit
(CU)

Ford Taurus $22,000 Kent

Chevrolet Malibu $12,000 Akron

Ford Taurus $15,000 Akron

Ford Focus $18,000 Kent

Jeep Wrangler $25,000 Akron

PEs perform a global minimum search

Find the “Ford” car with the lowest price

PE

PE

PE

PE

PE

R

R

R

Associative Search

6

Control
Unit
(CU)

Ford Taurus $22,000 Kent

Chevrolet Malibu $12,000 Akron

Ford Taurus $15,000 Akron

Ford Focus $14,000 Kent

Jeep Wrangler $25,000 Akron

PE with the minimum value is now the only responder

Find the “Ford” car with the lowest price

PE

PE

PE

PE

PE

R

Associative Search

7

Associative SIMD Array

PE

PE

PE

PE

PE

PE

PE

PE

Control
Unit

Associative

Search

Broadcast

Responder

Processing

AnyResponders
PickOne

Global Reduction

Maximum/
minimum B

ro
a
d
c
a

s
t/
R

e
d
u

c
ti
o

n
 N

e
tw

o
rk

P
E

 I
n
te

rc
o

n
n

e
c
ti
o
n

 N
e

tw
o
rk

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

8

Development of an ASC Processor

!! 2001-02 — First 4-PE prototype w/ associative search,
responder resolution, max/min search, not implemented

!! 2003 — Scalable ASC Processor w/50 PEs, implemented on
APEX 20K1000E

!! 2004 — Scalable ASC Processor w/ 1-D and 2-D network,
demonstrated on VLDC string-matching example & image
processing example (edge detection using convolution)

!! 2005 — Scalable ASC Processor w/ pipelined PEs and
reconfigurable network, to be demonstrated

!! 2005 — Scalable ASC Processor w/ augmented reconfigurable
network and row/column broadcast, demonstrated on exact
and approximate match LCS example

!! 2006 — MASC Processor

!! 2008 — Multithreaded ASC Processor

9

Scalable ASC Processor

10

1-D and 2-D PE Interconnection Network

 This version of ASC processor supports both a 1-D
and 2-D PE interconnection network for those
applications that require a network

11

Edge Detection Using Convolution

12

ASC Processor’s Pipelined Architecture

!! Five single-clock-cycle pipeline stages are split

between the SIMD Control Unit (CU) and the PEs

"! In the Control Unit
!! Instruction Fetch (IF)

!! Part of Instruction Decode (ID)

"! In the Scalar PE (SPE), in each Parallel PE (PPE)
!! Rest of Instruction Decode (ID)

!! Execute (EX)

!! Memory Access (MEM)

!! Data Write Back (WB)

13

ID/EX Latch

EX/MEM Latch

MEM/WB Latch

Data Memory

Register File

IF/ID Latch

Instruction
Memory

Decoder

Control Unit (CU)

Sequential PE (SPE)

Parallel PE (PPE) Array

Immediate
Data

Broadcast
Register

Data

Pipelined ASC Processor

14

R
e
g

is
te

r
F

ile

D
a
ta

 S
w

it
c
h

 C
o
m

p
a

ra
to

r

ID
/E

X
 L

a
tc

h

Mask

E
X

/M
E

M
 L

a
tc

h

M
E

M
/W

B
 L

a
tc

h

D
a
ta

 M
e
m

o
ry

M
U

X

Processing Element (PE)

!! Comparator implements associative search, pushes

‘1’ onto top of stack for responders, ‘0’ otherwise

!! Top of mask of ‘0’ disables ID/EX Latch

15

Reconfigurable PE Network

!! Our pipelined ASC Processor also has a reconfigurable PE

interconnection network

!! Reconfigurable PE network supports associative computing by

allowing arbitrary PEs in the PE Array to be connected via

"! Linear array (currently implemented), or

"! 2D mesh (shown in the next chapter)

 without the restriction of physical adjacency

!! Each PE in the PE Array can choose its own connectivity

"! Responders choose to stay in the PE interconnection network,
and

"! Non-Responders choose to stay out of the PE interconnection
network, so that they are bypassed by any inter-PE
communication

16

ID/EX Latch

EX/MEM Latch

MEM/WB Latch

Data Memory

Register File

IF/ID Latch

Instruction
Memory

Decoder

Control Unit (CU)

Sequential PE (SPE)

Parallel PE (PPE) Array

Immediate
Data

Broadcast
Register

Data

Reconfigurable PE Network

17

Data Switch

Register
File

Register
Data

(from SPE)

Immediate
Data

(from CU)

Left
Neighbor

Right
Neighbor

Top of
Mask Stack

Comparator &
ID/EX Latch

Reconfigurable Network Implementation

!! Data switch

"! Passes register, broadcast, and immediate data to the PE
and to its two neighbors

"! Routes data from the PE’s neighbors to its EX stage

!! Reconfigurable network — supports Bypass Mode to

remove the PE non-responders from the network

"! Will be needed by MASC Processor
18

Overview of LCS Algorithm

!! Given two strings, find the LCS common to both

strings

!! Example:

"! String 1: AGACTGAGGTA

"! String 2: ACTGAG

!! AGACTGAGGTA

!! - -ACTGAG - - - list of possible alignments

!! - -ACTGA - G- -

!! A- -CTGA - G- -

!! A- -CTGAG - - -

!! The time complexity of this algorithm is clearly

O(nm)

19

Overview of LCS Algorithm

1 1 1 1 1

1 1

2 1 1 1

1 2 2 2 2 2 2

1 1 1 1 1 1

3

1

1

1

4 4 4 4 3 2 2 2

3 3 3 3

4 3 3 3 2

5

5 5

4 3 3 3 2 6

5

4

3

2 2

6 6 6

5 5

4

3

 0 0 0 0 0 0 0 0 0 0 0 0

A G A C T G A G G T A

0

0

0

0

0

0

A

C

T

G

A

G

20

PE’s Form Coteries

5 x 5 coterie network with switches shown in “arbitrary”
 settings. Shaded areas denotes coterie (the set of PEs Sharing same circuit)

21

Reconfigurable 2D Network

!! Key to reconfigurability is the
Data Switch inside each PE:

"! The Data Switch is
expanded to connect to its
four neighbors (N-E-S-W)
to form a 2D
Reconfigurable Network

"! Data switch has bypass
mode to allow PE
communication to skip non-
responders, so as to
support associative
computing S

N

W E

DATA Communication

22

1,1 1,2 1,3 1,4 1,5

0 2,1

0 0 0 3,1

0 0 2,8 0 0 0 2,4

1,11 1,10 1,9 1,8 1,7 1,6

3,5

4,1

6,1

5,1

0 0 0 4,6 0 0 0 4,2

3,9 0 0 0

0 0 0 5,3 0

0

0 5,7

0 0 6,4 0 0 6,8

0

4,10

0

0 0

0 0 0

0 5,11

0

0

 A G A C T G A C T G A

A

C

T

G

A

C

LCS on Reconfigurable 2D Network

23

MASC is an MSIMD
 (multiple SIMD) version
 of ASC that supports
 multiple Instruction
 Streams (ISs)

In our dynamic MASC
 Processor, tasks are
 assigned to available
 ISs from a common
 pool as those ISs
 become available

Task Manager (TM) and Instruction Stream (IS)

 Pools in the MASC Processor

Multiple Instruction

stream

IS0 IS1 IS2
TM0

TM2

TM1

TM POOL IS POOL

PE0 PE1
PE

(n-1)

PE

(n)

Task Allocation

Control Signal

Control and

Instructions

MASC Architecture

24

25

Broadcast/Reduction Bottleneck

!! Time to perform a broadcast

or reduction increases as

the number of PEs increases

!! Even for a moderate number

of PEs, this time can

dominate the machine cycle

time

!! Pipelining reduces the cycle

time but increases the

latency

!! Additional latency causes

pipeline hazards

26

Instruction Types

!! Scalar instructions

"! Execute entirely within the control unit

!! Broadcast/Parallel instructions

"! Execute within the PE array

"! Use the broadcast network to transfer instruction and data

!! Reduction instructions

"! Execute within the PE array

"! Use the broadcast network to transfer instruction and data

"! Use the reduction network to combine data from PEs

27

Scalar Pipeline

!! Instruction Fetch (IF)

!! Instruction Decode (ID)

!! Execute (EX)

!! Memory Access (M)

!! Write Back (W)

28

Hazards in a Scalar Pipeline

29

Pipeline Organization

!! Separate paths for each instruction type so

instructions only go through stages that they use

!! Stalls less often than a unified pipeline organization

30

Hazards

31

Effect of Hazards on Pipeline Utilization

32

Multithreading

!! Pipelining alone cannot eliminate hazards caused by

broadcast and reduction latencies

!! Solution: use instructions from multiple threads to

keep the pipeline full

!! Instructions from different threads are independent

so they cannot generate stalls due to data

dependencies

!! As long as there are a sufficient number of threads,

it is possible to fill any number of stall cycles

33

Reduction Hazard with a Single Thread

34

Reduction Hazard with Multiple Threads

35

Types of Multithreading

!! Coarse-grain multithreading switches to a new

thread when the current thread encounters a high

latency operation

!! Fine-grain multithreading switches to a new thread

every clock cycle

!! Simultaneous multithreading can issue instructions

from multiple threads in the same clock cycle

!! For a SIMD processor, fine-grain or simultaneous

multithreading is necessary as pipeline stalls are
relatively short and occur frequently

36

Types of Multithreading

37

Multithreaded Control Unit

38

Pipeline Utilization with Multithreading

39

Associative QuickHull

40

Associative QuickHull

east$
west$ group$ = 0

group$ = 1

41

Associative QuickHull

north$

east$
west$

group = group$ = 1

group$ = 0

42

Associative QuickHull

west$

east$
west$

group = group$ = 1

group$ = 0

group$ = 3

group$ = 2

east$

43

Associative QuickHull

east$
west$

group$ = 1

group$ = 0

group$ = 2

east$

group$ = 5

44

Associative QuickHull

45

Some Currently Open Problems

!! Implement & demonstrate “virtual PEs” on

associative String Match and/or LCS algorithm

!! Continue LCS algorithm research

"! Investigate further the presence of “gaps”

"! Find “best” CS instead of “longest” CS

!! Implement & demonstrate one or more associative

algorithms on ASC and/or MASC Processor

"! Convex Hull, video/media processing

!! Augment first MASC Processor to support nested

conditionals and loops and to support network

operations

46

Some Currently Open Problems (cont’d)

!! Modify the ASC compiler to generate assembly

language for one of the ASC processor prototypes

!! Add I/O support to processor

