Programming Assignment 1

Febuary 18, 2011

1) Provide pseudocode (as in the book and class notes) for a correct and efficient parallel implementation in C of the parallel prefix computation (see Fig. 1.4 on page 14). Assume your input is a vector of n integers, and there are n/2 processors. Each processor is executing the same thread code, and the thread index is used to determine which portion of the vector the thread operates upon and the control. For now, you can assume that at each step in the tree, the threads are synchronized.
1) Write the prefix sum computation from Step 1 above in OpenMP.
a) Test to find the parallel speedup of your code
b) If your code does not speed up, you will need to adjust the parallelism granularity, the amount of work each processor does between synchronization points.

c) You can adjust this by changing numbers of threads, and frequency of synchronization.
d) You may also want to think about reducing the parallelism overhead, as the solutions we have discussed introduce a lot of overhead.

What happens when you try different numbers of threads or different schedules?

2) What to turn in:

a) Your source code so we can see your solution

b) A README file that describes at least three variations on the implementation or parameters and the performance impact of those variations.
3) Debugging and Programming Comments
a) Use gdb or some other debugger
b) It will pay off in being a more efficient programmer
c) This is an important skill to be successful in a job that requires programming
d) Solve the problem in steps

e) Started the assignment immediately

f) Study OpenMP using class slides and references given

4) Techniques for Writing/Debugging Parallel Code
a) Start by writing nearby sequential code and debugging that code.
b) Initially, use very small problem sizes so that you can compute the solution by hand and prove the computed solution is correct

c) Once you believe your sequential code is correct, then you can add parallel constructs

d) Debug parallel code that uses a single thread on a small problem size

e) Once you believe your single-thread parallel code is working, try a small number of multiple threads on a small problem size

