
1

Importance of SIMD Computation Reconsidered

Will C. Meilander, Johnnie W. Baker, and Mingxian Jin
Department of Computer Science

Kent State University, Kent, Ohio 44242-0001
Phone: 330-672-2430 Fax: (330) 672-7824

{willcm, jbaker, mjin}@cs.kent.edu

Abstract

In this paper, SIMD and MIMD solutions for the real-
time database management problem of air traffic control
are compared. A real-time database system is highly
constrained in a multiprocessor and access to the common
database must be made to a limited number of data
elements at a time. This MIMD database access is
contrasted with the comparable SIMD common database
access, which can be several hundred times greater. This
is true because the SIMD can simultaneously access
thousands of pertinent records instead of the limited
number in the MIMD. A relatively simple example is given
of a problem that has a polynomial time solution using a
SIMD but for which a polynomial time solution using a
MIMD is normally impossible. The fact that SIMDs can
support a polynomial time solution for the Air Traffic
Control problem but this problem is normally considered
to be intractable for multiprocessors argues against the
common belief that MIMDs have greater power than
SIMDs. SIMDs are more efficient and powerful for some
critically important application areas.

1. Introduction

Flynn's taxonomy of parallel computers, based on the
numbers of instruction streams and data streams, has been
widely used in the research literature of parallel processing
since it appeared in 1972 [6]. SIMDs and MIMDs are the
most important categories in Flynn’s classification of
computer. Most early parallel computers had a SIMD
design [21]. An associative processor (AP) is a SIMD
machine with additional hardware enhancements that
support constant time broadcasting, associative searches,
and AND/OR and maximum/minimum reductions
(assuming word length is a constant) [11, 25]. Since it is
easy to see that a SIMD can simulate an AP in a low order
polynomial time using its interconnection network, in this
paper we use associative processor (AP) or SIMD
interchangeably. Likewise, multiple processors (MP) and
MIMD will be used interchangeably. APs have a single
instruction-processing unit that broadcasts commands to

the set of processing elements [22]. The commands are
executed simultaneously on the set of processors. On the
other hand, with the MP, each of the processors can
independently execute programs using its individual
instruction processing unit. MP processors exchange
information using shared memory or asynchronous
message passing. Because they can use off-the-shelf
microprocessors, MPs are considered less expensive and
more “state of the art” than APs. MPs dominate today’s
market. As a result of the assumed advantages of MPs, APs
have all but vanished, and many people in the field are
pessimistic about the future of such machines [1,5,13,14].

However, as we investigate real-time database
problems, in particular for some problems in command and
control (C&C) such as air traffic control (ATC), we
observe that claims that MPs are more powerful than APs
are untrue and need to be re-evaluated. For many real-time
problems, efficient polynomial time AP solutions can be
obtained, while extraordinary efforts to date have been
unable to design a polynomial time MP solution for the
same problems. MP systems require dynamic scheduling
and are unable to support a static schedule for problems
like Air Traffic Control. However, because thousands of
person years have been devoted to searching for an
efficient MP solution to problems like ATC, it is generally
believed that these problems are truly NP-hard.

A close look at the ATC problem reveals no reason
why a sequential solution to the problem should not
execute in polynomial time. Nevertheless, Stankovic in
discussing distributed systems states that the problem of
determining an optimal schedule even in a multi-processor
is known to be NP-hard [19]. Virtually all real-time
problems today include a software solution to one or more
dynamic scheduling problems. Since real-time scheduling
problems using MPs cannot normally be solved using a
static scheduling algorithm [19], it is doubtful that a static
scheduling algorithm exists for MPs for C&C problems
like ATC.

Predictability of system performance is the key to
success. If performance can be statically predicted, a
polynomial time solution is assured. With the AP a static
off-line schedule can be developed for the ATC problem,

2

which allows the entire problem to be solved in polynomial
time, and within system deadline time [25, 26] . Similar
performance is expected for other real-time database
problems. Until system performance can be reliably
predicted, as in the AP solution for the worst-case
environment, an adequate solution for problems like ATC
is improbable [26]. MPs have inherent weaknesses because
they have to deal with difficult problems such as
synchronization costs, mutual exclusion of access to shared
resources, data concurrency management, difficulty in
achieving serializability, load balancing, etc [7,19,20].
These same problems are normally non-existent in AP
systems. The full impact of these inherent MP weaknesses
becomes evident when their abilities to manage real-time
databases are considered.

In this paper we will compare APs and MPs using a
few real-time problems. An example is given of a problem
with a polynomial time solution using an AP but for which
MP solutions are not polynomial. (In this paper, we assume
P≠NP; hence, no NP-complete problem has a polynomial
time solution.) We will discuss reasons that real-time
scheduling problems for MPs are NP-hard.

It is generally believed that a MIMD can efficiently
simulate a SIMD and hence provide a MIMD solution to a
problem that is as efficient as a SIMD [1]. However, the
usual MIMD simulation of a SIMD cannot provide
efficient, constant time execution of broadcasting,
associative searches, and AND/OR and
maximum/minimum reductions. These operations can
realistically be executed in constant time in an AP [11].
The use of these constant time AP operations is ubiquitous
and pervasive in the AP solution of the ATC problem [25,
26]. However, the continuous use of these “AP constant
time operations” in the AP solution would be much less
efficient for a MIMD. While the MIMD may be able to
execute the polynomial AP solution for the ATC, it is
unreasonable to expect that this solution would be able to
meet real-time deadlines. Moreover, the usual distributed
storage of a database in a MIMD for real-time problems
prevent MIMDs from directly simulating AP solutions. For
real-time problems with deadlines, MIMD solutions
normally use a task scheduling algorithm to ensure
deadlines are met. As noted earlier, most scheduling
problems for MPs are NP-hard. While additional hardware
could be added to a MIMD to support constant time
execution of the AP constant time operations so that it
could simulate SIMD solutions more efficiently, it would
seem more practical to use an AP to execute this solution
instead.

Many may consider the AP to be a machine that has
not been actively used in the real-time environment. We
here dispel that thought. The first associative processor was
installed in the Knoxville ATC terminal in 1969 where it
performed the functions of automatic radar tracking with
secondary radar backup, conflict detection and resolution,

terrain avoidance and automatic voice advisory to
uncontrolled aircraft. The processor had 128 PEs, and was
programmed with less than 2,800 instructions. An editorial
“Back to the Future” by R. Smith in Dec. 1995 “Flying
Magazine” discussed the systems performance from a
pilot’s point of view, and asked what happened to the
system. Reference [17] discusses the rationale for stopping
the program. Several STARAN machines were delivered
with 1,024 or 1536 PEs. The U S Navy used ASPRO in
the E2C Airborne Early Warning system (part of the
Navy’s ATC system). ASPRO, developed in 1977, had
2,000 PEs in .42 cu ft of space, and improved tracking
from a capability of 200 tracks to 2,000 tracks. The
tracking program required only 0.76 seconds per 10 second
period. The Navy installed more than 130 ASPROs, and
found many other uses for ASPRO.

This paper is organized as follows. Section 2
introduces the parallel MP and AP architectures. Section 3
introduces concepts of real-time computing. Section 4
discusses several real-time scheduling problems and shows
some examples. Section 5 examines one of the most
critical aspects of real-time data processing, namely
concurrency management and its limits on performance.
Section 6 considers data bandwidth and its effect on system
performance in both the MP and AP architectures. Section
7 outlines advantages of the AP and the reasons that make
an efficient MP solution to real-time problems difficult or
impossible. Section 8 summarizes the conclusions reached.

2. Parallel computation architectures

APs and MPs each have their particular
characteristics and advantages. All processors of an AP
operate synchronously, and are controlled by a single
instruction stream. The AP acts on a set of data with each
instruction and has advantages of being easily
programmed, cost-effective, highly scaleable, and
especially good for massive fine-grain parallelism [13,15].
Each of the processors making up the MP has its own
program and instruction processor and executes
independently or asynchronously at its own rate. The MP
has the advantages of high flexibility in exploiting various
forms of parallelism, availability by using current high-
speed off-the-shelf microprocessors, and being good for
coarse-grain parallelism [1,14].

An AP consists of an array of processing elements
(PEs) connected by a bus and an instruction stream
processor (IS) that can broadcast commands and data to all
of the PEs on the bus. Each PE, essentially an ALU, uses
its own individual data memory and can perform all the
usual local operations of a sequential processor other than
issuing instructions. Each PE can become active or
inactive, based on the program or data. An active PE
executes the instructions issued by the IS, while an inactive

3

PE receives but does not execute the instructions.
Assuming that the word length is a constant, the AP
supports several important constant time operations,
namely broadcasting, global OR/AND,
maximum/minimum, and associative search. A search
instruction, executed once, identifies all PEs whose data
values match the search pattern (called responders) or do
not match (called non-responders) [11]. Similarly a
MAX/MIN search locates the global maximum/minimum
in constant time. Search results can be logically joined in a
single step. A detailed description of the properties that we
assume for the AP can be found in [4, 16], ([Also see [25]).
Two AP architectures that have been developed and used
in a real-time environment are STARAN and ASPRO
[2,3]. The CM-2 Connection Machine was a SIMD
computer with 64k processors. The AP is easily capable of
a similar number of PEs today.

3. Real-time scheduling – static vs. dynamic

Real-time scheduling differs from classic scheduling
in that tasks must meet specified timing constraints. A real-
time system executes tasks and must ensure not only their
logical correctness but also their timeliness. If the timing
deadlines are not met, the system fails, no matter how
accurately the tasks are executed. Similarly if timing
constraints are met at the expense of accuracy, the database
may become inconsistent.

A real-time task is an executable entity of work that, at
minimum, is characterized by a worst-case execution time
and a time constraint [19]. A job is defined as an instance
of a task. A transaction may be considered a job. Next we
introduce a new term called jobset. An AP is a set
processor, i.e. it can process a set of data with one
instruction. As a result, the AP can execute a set of jobs
involving the same basic operations on different data
simultaneously. This will be called a jobset. A real-time
task can be periodic, which is activated (released) regularly
at a fixed rate (period); aperiodic, which is activated
irregularly at some unknown and possibly unbounded rate;
or sporadic, which is activated irregularly with some
known bounded rate. Typically, real-time scheduling can
be static or dynamic. For static scheduling, the scheduling
algorithm has complete knowledge, a priori, about all
incoming tasks and their constraints such as deadlines,
computation times, shared resource access, and future
release times. In contrast, in dynamic scheduling, the
scheduling algorithm only has knowledge about the
currently active tasks, but does not have knowledge about
future tasks prior to their arrival. The event-driven
schedule produced by a dynamic scheduling algorithm
therefore changes over time.

Real-time scheduling can be executed on a
uniprocessor or a multiprocessor. It has been shown that

there exists an optimal earliest deadline first (EDF)
scheduling algorithm for a uniprocessor system [19]. As
real-time systems become larger and tasks become more
sophisticated, real-time processing has become much more
dependent on parallel systems. Unfortunately, with the
multiprocessor system, optimal scheduling algorithms have
not been found for most problems. Stankovic et.al. [19],
when discussing distributed scheduling, state that “The
problem of determining an optimal schedule even in a
multi-processor system is known to be NP-hard.”
Heuristic scheduling algorithms for multiprocessors
assume restricted conditions and work only under special
circumstances (see examples in [18]). A dynamic
scheduling algorithm is inherently unpredictable. A static
scheduling algorithm is preferable due to its simplicity and
predictability.

4. Real-time processing examples

The motivation for this section is to compare the
performance of Aps and MPs on some real-time database
problems. A real-time static schedule for the air traffic
control (ATC) problem has been given using an AP. A
polynomial time algorithm is described for ATC in [25] for
the AP. In contrast, MP solutions to the ATC problem use
dynamic scheduling. The ATC scheduling problem and
many other similar scheduling problems on a MP have
been shown to be NP-hard. In particular, it is shown in [7]
that a set of real-time tasks that have varied computation
times or shared resources cannot be scheduled on a
multiprocessor in polynomial time. Next, four examples
will be given which show some of the advantages of the
AP over the MP for the ATC problem in particular for real-
time database systems with hard deadlines in general. The
examples shown demonstrate the speed of the jobset
approach to real-time automation.
Example 1 -- ATC conflict detection

For the first example, we look at the problem of
detecting conflicts between aircraft paths in a dense
environment. Earlier we stated that the AP is much more
efficient than the MP because of both the simultaneous and
constant time operations. We consider an ATC
environment that has 12,000 aircraft tracks of which 4,000
are controlled IFR (instrument flight rules) flights. The
other 8,000 are adjacent center IFR and uncontrolled VFR
(visual flight rules), we designate these 8.000 VFR. We
want to determine the possibility of a future conflict
between any pairs of aircraft within a twenty-minute
period. To assure timely evaluation we let the detection
cycle be 8 seconds. A near approach within three miles or
2,000 feet in altitude will be called a conflict.

The process is essentially a recursive join on the track
table where the best estimate of each flights future position
is projected as an envelope into future time. The envelope

4

has some uncertainty in its future position which is a
function of the track state, and is modified (to provide a 3
mile minimum miss distance) by adding 1.5 miles to each
x, y edge of the future position and 1000 feet in the
altitude. Then an intersection of each of the future space
envelopes is attempted with every other space envelope in
the environment. This means that every eight seconds we
must evaluate each of the 4,000 IFR flights against the
other 11,999 flights in our environment. It is readily seen
that this process is O(n2) and would require many
operations in a MP. As a test of each flight is completed, it
is removed from the list. The total number of operations is
IFR*(IFR-1)/2 + IFR*VFR or 4,000*(3,999)/2 +
4,000*8,000 which yields 39.998*106 operations. It will
be noted this number does not include any of the data
management functions such as scheduling jobs to be
executed, selecting processors to execute the jobs,
distributing data to the selected processors, assuring data
serializability, maintaining data integrity, concurrency
management managing locking of data, or any of the other
functions that are often associated with NP-hard problems.

In the AP this same process is O(n) and requires only
4,000 operations. The reason for this is as follows. First,
all future flight envelopes are generated simultaneously –
an O(1) job. Then in the AP, the first “trial envelope”, of
the 4,000 controlled future flight envelopes, is compared
for possible conflict with all the other 11,999 flight
envelopes for a look-ahead period of 20 minutes. Thus the
equivalent of 11,999 jobs are completed simultaneously in
this jobset. This occurs because each of the 12,000 records
in the database is simultaneously available to each of the
12,000 PEs that are active in the AP. The next operation
selects the second trial envelope and repeats the conflict
tests against the remaining 11,998 tracks. As in the MP
when a trial envelope has been tested it is marked “done”
in the AP, and future trial envelopes will exclude all prior
trial tracks. When the last of the 4,000 trial envelopes is
tested the AP will have completed 39.998 × 106 jobs just as
the MP did. But due to the simultaneous execution of all
jobs in each jobset, the AP will complete the entire set of
jobs in 4,000 steps. Thus it is O(n).
Example 2 – Radar/track data correlation

A second real world example involves the correlation
of radar reports in relation R with the predicted position of
established tracks for aircraft under observation in relation
T. A track is the best estimate of position and velocity of
each aircraft under observation. (This problem is present in
many database systems and a major limitation in ATC
performance.) A correlated radar report is used to smooth
the position and velocity of the track to obtain the next
estimate of position and velocity. Height information may
be used to produce a better correlation, but we do not
include that operation in the following. Given an
unordered set of tracks, each report must be evaluated with
every track in the system to assure a match (correlation) is

not missed. We must treat multiple matches different than
unique matches, and any reports that do not match a track
are entered as new tentative tracks.

The correlation process proceeds by developing a box
around each track to accommodate track uncertainties. A
box is developed around each report to accommodate
report uncertainties. The two database relations T and R
contain information about points in an (x,y) space. Our
objective is to determine the join of the two relations as the
intersection of two boxes. Each box from R is evaluated
for intersection with every box in T until all boxes from R
have been compared with all boxes in T. T has columns x,
y, x1, y1, j and k. R has columns x, y, r and q. We
develop the box around each point (x, y) with the four
corner points (x±j, y±j) in T. A similar box is developed
about each point (x, y) in R with the four corner points
(x±r, y±r). j is based on the uncertainties of each track in T
and r in R is based on uncertainties in the radar report in R.

r1 t1
r2

t2 r3

Figure 1 Track/Report intersect

The process proceeds by comparing each report in R
with each track in T, as in Fig. 1. If an intersect is found
between one report and one track, e.g r2 and t1 in Fig. 1,
then the report data is entered into x1 and y1 of the
correlated record in T and a correlation flag is set in
column k (this record will be excluded from further testing
with other reports in this period.). If two or more matches
are found, an ambiguity flag is set into the correlated k
values to indicate matches are ambiguous, and associated
tracks are not updated in this period. If no match is found,
a not match flag is set into column q of the correlated
record in R.

When all report boxes have been compared with all
track boxes, the value of j is doubled (the track box is
enlarged) for all tracks that do not have a correlation flag
or an ambiguity flag in column k of T, and the process is
repeated for all reports in R that have the “not match flag”
of column q set. Here we consider the uncertainties that
may be caused by track acceleration, turns or by greater
noise in the report. Where no intersections are found the
process is repeated with j= 3*j. New tentative tracks are
started to detect arrival of new flights for all reports that
remain unmatched. If reports are due to noise, they usually
will be dropped in several seconds. (The E2C could
manage 2,000 tracks based on primary radar data. This is
more than can be done in any MP ATC system today.)

In the AP solution, each report is tested with every
track in one operation. That is, the AP time is O(n) where

5

n is the number of reports in this period. In the MP on the
other hand it is seen that the MP process is O(n2) because it
has r × t processes. In a worst case situation we anticipate
12,000 reports per second against 12,000 tracks. For the
AP this is 12,000 operations whereas in the MP it is
144×106.
Example 3 – Flight plan conformance

The third example, flight plan conformance, compares
each IFR track position with the current position developed
from the filed flight plan. In this process each track
position is rotated into the flight plan heading and
compared with the allowable limits of deviation from the
flight plan as shown in Figure 2. This is an O(n) process in
the MP, but is O(1) in an AP as shown in [25]. Execution
for just one IFR flight requires the same time as for 4,000
IFR flights in the AP.

Flight Plan Heading

Current Flight Plan
Position

0

Current Track
Position

X

Figure 2 Flight Plan Conformance

We note that each of the preceding examples can be
solved in polynomial time in both the MP and AP.
However, it should be obvious that the AP solution time
will be much faster because of the reduction of one order
of magnitude in the number of operations executed. Other
important factors must be considered when examining the
MP solution. It seems that the performance of today’s MP
solutions to real-time problems with deadlines are limited
by the inclusion of solutions to many hard problems, some
of which are NP-hard. These include problems such as
scheduling jobs to be executed, selecting processors to
execute the jobs, distributing data to the selected
processors, assuring data serializability, maintaining data
integrity, concurrency management, managing locking of
data, load balancing, etc. Some of these problems are
discussed further in Section 5.

None of these problems play a role in the AP solution.
Scheduling is done statically; i.e. there is no scheduling
algorithm at run time. Processors are selected by their data
content. Except for data input/output and broadcast to all
processors, data is not moved. For example, in ATC, the
data for each plane is stored in the processor for that plane.
Data serializability, data integrity and concurrency
management are achieved by virtue of the single
instruction stream. The single instruction stream also
eliminates the need for data locking (alternatively, all data
is locked at all times). No load balancing is needed.

Example 4 – Multiple task execution
In this example, we consider handling the execution of

k tasks. We assume the first three tasks are those given in
Example 1-3 and the remaining tasks are similar ATC
tasks. Further, we assume that there is a different processor
for each plane and that the data for each of the n planes is
stored in its processor. Due to the obvious data-intensive
nature of these computations, an AP can be significantly
more efficient than a MP where a common multi-user real-
time database is required. Each record of a relation resides
in the memory of one PE. Since the same operation is
often performed on all the involved records, we can
process all the records simultaneously. When using an AP
for this example, all of the n jobs in a jobset are processed
simultaneously where the number of PEs is n. Therefore,
each jobset cost ci (for task Ti) can be calculated at the
instruction level. The following condition establishes
overall system feasibility, where D is the deadline:

Dc
k

i
i ≤∑

=1

(1)

If Equation (1) is satisfied, the jobs can be processed
in order of precedence constraints and all deadlines will be
met.

Now, we consider solving this problem with a MP.
Unfortunately, since all tasks have varied computation
times, there is no known polynomial algorithm using a
multiprocessor to schedule this set of tasks. This is shown
in the following theorem [SS8] from Gary and Johnson [7,
page 238]. Let T be a set of tasks, m∈Z+ (the set of
positive integers), length l(t)∈Z+ for each t∈T, and a
deadline D∈ Z+ . The problem of whether there is an m-
processor schedule for T that meets the overall deadline D
is NP-complete for m ≥ 2, assuming not all tasks have the
same length. (Here, m-processor means a MP with m
processors). This theorem applies directly to our example.

The examples presented in this section are made more
difficult, for a MP than would be the case if all the tasks
were independent and did not share resources. Since all
tasks share the same data source (a common database), the
scheduling problem for this set of tasks with the added
requirement that they be performed on a MP is NP-hard as
observed in [7,19,23]. On the other hand, because of the
simplicity of the AP, a static schedule can be developed.
This schedule will be incorporated into the table-driven
scheduler for this problem.

With regard to the solution of the problem in this
example (not just the scheduling of tasks), a polynomial
time AP algorithm exists for this problem. In fact, details
about a polynomial solution to a more challenging ATC
problem are given in [26]. While the MP could
conceivably also solve the problem in Example 4 by
simulating the AP solution, this AP solution is not the one
normally chosen by professionals working in this area. The

6

reason for this is the inability of the MP to efficiently
simulate an AP algorithm, as explained in Section 1. An
inefficient simulation of the AP algorithm is likely to result
in the MP being unable to meet the required deadlines.

As a result of the preceding discussion, it is apparent
that the AP can solve the problem in Example 4 in
polynomial time, but that an MP cannot normally solve this
problem in polynomial time, especially with real-time
problems since their deadlines are very demanding. The
preceding comments also apply to the ATC problem. In
view of all the attention this problem has received, and
expenditure of hundreds of man-years, it is highly unlikely
to have a polynomial time MP solution.

5. Real-time transaction management

Another example of the problems in a multi-user
database considers the serializable execution of
transactions on a common database. It is generally
recognized that many real-time systems use a common
database on which consistent operations must be
performed. Like any database, a real-time database has
schemas, queries, transactions, commit protocols,
concurrency controls, etc. Most real-time databases are
multi-user databases, and as such the maintenance of
adequate control over transaction execution becomes
extremely critical. We address each of the following issues
individually.

Transactions (real-time jobs) must maintain certain
ACID properties: atomicity, consistency, isolation and
durability. Atomicity assures that the set of updates of any
transaction complete or fail as an isolated unit during
execution. Consistency assures that data and operations
used by a transaction do not violate any integrity
constraints established for the database. Isolation assures
that the execution of any transaction is done completely
independently of other transactions that may be
concurrently executing, and assures that the result of any
transaction is independent of any others. Durability
assures that data for each transaction that reaches the
commit stage is never lost to other activity in the system
and that any necessary rollback from an abort is similarly
never lost [23]. It has been argued, in a great paper for
those interested in real-time databases [8] that, in the
interest of timeliness, ACID properties should be relaxed.
In the AP solution to the real-time database problem, this
relaxation of criteria is unnecessary because all the ACID
properties can be supported by the AP.

Serializability is the process of controlling concurrent
transactions so that they are executed as if they were done
one after another, in order to avoid anomalies. When
transactions are executed concurrently, a number of
anomalies such as lost update, dirty read, inconsistent read,
and ghost update may occur if the process is not controlled

to assure these anomalies cannot exist. For example, the
lost update anomaly can occur when transaction T1 reads a
data value X followed by the read of the same value X by
transaction T2. If T1 then writes a new value for X
followed by the write of a new value for X by T2, the
update by T1 is lost. If T1 reads X then updates X before
T2 reads X, the operation would occur in serial fashion and
the “lost update” would not occur. To assure
serializability, a scheduler is maintained to determine if the
order of data reads and writes are view equivalent (reads
and writes appear in the same order in the transaction
schedules) for a schedule of requested transactions.
Concurrent schedules can be evaluated for view
equivalence by an algorithm that has polynomial time
complexity. However, to determine whether a schedule is
view serializable (can be serially executed) requires that it
be evaluated to determine if it is view-equivalent to any
serial schedule. This is an NP-complete problem [23] and
occurs because of the necessity of managing the concurrent
transactions that must be conducted in a MP.

The data locking method of assuring that
serializability is maintained works by “locking” the data
used by a transaction. Initially each transaction acquires a
lock on the data items it needs. This assures serializability
because it prevents any other transaction from accessing
that data during the ongoing transaction. Sometimes the
lock is on the entire database, but it can also be on a table,
record, or an item from a record. While locking assures
serializability, it can severely reduce timely execution of
transactions.

In the AP only one transaction can be executing at any
time. Thus, the NP-complete scheduling problem, one of
the most difficult database management problems in a MP
architecture, is non-existent in the AP. The entire AP
database is effectively locked for each transaction.

6. Database memory access comparisons

The importance of the memory bandwidth to computer
performance is well-known. Fuller [21] observed that if a
single simple parameter of performance had to be selected,
that memory bandwidth would be a good choice. In the
conclusion of his book, Pfister [14] states that for a wide
and increasingly broad class of applications, the best
measure for computer performance is the memory
(bandwidth). The von Neumann "bottleneck" is another
example of bandwidth limitation. Amdahl's law [9] is
based on the fact that the running time of a parallel
program is bounded by the running time of the sequential
parts of that program. We argue that in real-time database
problems, the serial part, accessing the real-time database,
may often substantially exceed the parallel part when using
MPs. This occurs because of the requirement to maintain

7

the ACID properties (section 5) in the common database of
any real-time multi-user system.

For an example, we temporarily assume a rigid
constraint that each operand must be taken from or inserted
into a common database memory one word at a time,
before data can be distributed among the multiprocessors.
In ATC, if we wish to update the X-axis of each track by
adding ∆X, the distance increment for one second, for
12,000 tracks to show new best estimates of X. Then, with
the MP, 36,000 memory accesses are needed to get the data
and return the result to the common database. If we
consider the memory accesses for data fetch, data
distribution, and instruction execution this number will
grow substantially.

Next, we relax the rigid constraint made in the
preceding paragraph and instead assume that a very limited
number of data items in the common database can be
accessed at one time. The resulting smaller number of
required accesses for the MP will still compare very
unfavorably with the number of required memory accesses
for the AP that are obtained in the next paragraph.

In the AP, only 96 data memory accesses are needed
for all 12,000 operations. This is true because the AP is a
set processor, i.e. it can operate on an entire set of data
with a single instruction. As mentioned above all
operations on the set of 12,000 track operands are executed
simultaneously. This process is O(1).

In the MP operations of searching are often dependent
on sorting or indexing, which adds to the required memory
accesses to establish the sort and increases processing time.
On the other hand, in the AP, these operations are never
needed. When sorting is examined carefully it is seen that
the only reason for the sort is to achieve "content
addressability". In the AP content addressability is an
inherent hardware feature thus sorting or indexing is not
normally needed.

7. APs vs. MPs for real-time problems

In [24,25], we have addressed in detail the advantages
of APs and the difficulties of an efficient MP solution for a
real-time database problem such as ATC. In this section,
we summarize some of the ideas presented. An AP has
three major features that make it possible to efficiently
solve real-time database problems. First, an AP eliminates
synchronization costs in MPs. Synchronization costs are
high and can cause significant time delays in worst case
environments. The significance of this has been
underestimated, as most current studies on synchronization
costs are based on an average case, which is not applicable
in real-time problems. Second, since an AP locates data by
content rather than by address. Sorting and indexing that
are normally required in MPs are not needed. Thus, the
complexity of the software on an AP is significantly

reduced and the real-time deadline is much more easily
met. Third, an AP has extra-wide memory bandwidth.

The traditional memory access bottleneck does not
exist in the AP. A data item can be broadcast to one or
more PEs in one step. This is in stark contrast to either
shared-memory MIMD systems or distributed memory
MIMD systems that use a much more complicated
communication mechanism.

A real-time scheduling problem using a MP is usually
NP-hard. Normally, the problem of scheduling a set of
tasks is solvable on a uniprocessor in polynomial time.
However, when one or more of the MP-type requirements,
such as multitasking and shared resources, are involved,
there is no known polynomial time algorithm to schedule a
set of real-time tasks. This leaves the fact that most real-
time problems are not solvable on MPs.

There are difficulties whenever a MP is used for
scheduling problems. These include multitasking, shared
resources, preemption, varied release times, precedence
constraints, etc. All of these factors have to be dealt with in
a MP environment when solving real-time problems. They
are all involved in one or more NP-complete problems
given in [7]. Therefore, for a real-time problem, e.g., air
traffic control, with a set of tasks that need to be scheduled,
it is not expected that one could find a polynomial time
solution using a MP.

8. Conclusions

In this paper, we have shown that that the common
belief that MPs are more powerful than APs is unjustified
and ignores the many intrinsic weaknesses of MPs. In
particular, we cite the ATC problem which can be solved
in polynomial time on an AP, but cannot be solved in
polynomial time on a MP. The problems with MPs were
not fully recognized until their ability to solve real-time
scheduling problems were considered. MP solutions of the
ATC problem have repeatedly failed to meet the Federal
Aviation Administration air traffic control requirements.
One notable example is the ten-year effort to develop the
Automated Air Traffic Control System (AAS). The AAS
program was canceled in June 1994 after expenditure of
several billion dollars [17]. A USA Today editorial [10]
sees the problem this way: “This time, the FAA has only
itself to blame. Back in 1995, Congress freed the FAA
from cumbersome procurement rules that the FAA claimed
were the main cause for the unrelenting delays and cost
overruns plaguing the 17-year, $41 billion modernization
effort.” On the other hand, the ability of associative
SIMDs to successfully handle air traffic control problems
has been demonstrated [12,17].

Our research has shown that SIMDs are not outdated,
as many professionals in parallel computation currently
believe. They are efficient and powerful enough to provide

8

satisfactory solutions to problems that are considered
intractable for MP systems. Moreover, considering the
AP's advantages of simple programming style and simple
hardware implementations, it obviously deserves more
attention and utilization if we want to solve today's real-
time problems.

Acknowledgement
The authors wish to thank an anonymous referee of

this paper for their valuable comments.

References

[1] Selim G. Akl, The Design and Analysis of Parallel
Algorithms, Prentice Hall, New Jersey, 1989

[2] K. Batcher, STARAN Parallel Processor System Hardware,
Proc. Of the 1974 National Computer Conference (1974),
pp. 405-410

[3] Loral Defense Systems-Akron, ASPRO-VME Hardware and
Architecture, June, 1992

[4] J. W. Baker and M. Jin, "Simulation of Enhanced Meshes
with MASC, a MSIMD Model", in Proc. of the 11th
International Conference on Parallel and Distributed
Computing Systems, pages 511-516, November 1999
(Unofficial version: http://vlsi.mcs.kent.edu/~parallel/
papers/ baker99b.pdf)

[5] T. Blank, J. Nickolls, "A Grimm Collection of MIMD Fairy
Tales", Proc. of the 4th Symp. on the Frontiers of Massively
Parallel Computation, pp. 448-457, 1992

[6] M. Flynn, "Some computer organizations and their
effectiveness." IEEE Transactions on Computers, pp. 948-
960, Sep., 1972

[7] M. R. Garey and D. S. Johnson, Computers and
Intractability: a Guide to the Theory of NP-completeness,
W.H. Freeman, New York, 1979, pp.65, pp. 238-240

[8] Stankovic, Son, Hansson, “Misconceptions About Real-
Time Databases“ Computer, June 1999

[9] G. Amdahl, Validity of the single-processor approach to
achieving large-scale. Proceedings of the AFIPS Conference
pages 483-485, 1967.

[10] April 19 USA Today editorial
[11] M. Jin, J. Baker, and K. Batcher, "Timings of Associative

Operations on the MASC model", Proc. of the Workshop in
Massively Parallel Processing of IPDPS ’01, San Francisco,
CA, April, 2001 (Unofficial version:
http://vlsi.mcs.kent.edu/~parallel/papers/jin01.pdf)

[12] W. C. Meilander, J. W. Baker, and J. L. Potter,
"Predictability for Real-time Command and Control", Proc.
of the Workshop in Massively Parallel Processing of IPDPS
’01, San Francisco, CA, April, 2001 (Unofficial version:
http://vlsi.mcs.kent.edu/~parallel/papers/ meilander01.pdf)

[13] B. Parhami, “SIMD Machines: Do They Have a Significant
Future?” Report on a Panel Discussion at The 5th

Symposium on the Frontier of Massively Parallel
Computation, McLean, LA, Feb., 1995

[14] Gregory F. Pfister, In Search of Clusters, 2nd Edition,
Prentice Hall, New Jersey, 1998

[15] J. L. Potter, Associative Computing: A Programming
Paradigm for Massively Parallel Computers, New York;
Plenum Press, 1992

[16] J. L. Potter, J. W. Baker, S. Scott, A. Bansal, C.
Leangsuksun, C. Asthagiri, "ASC: An Associative-
Computing Paradigm", Computer, 27(11), 19-25, 1994

[17] L. Qian, Complexity Analysis of an Air Traffic Control
System Using an Associative Processor, Master's Thesis,
Kent State University, 1997

[18] K. Ramamritham, J. A. Stankovic, and W. Zhao,
“Distributed Scheduling of Tasks with Deadlines and
Resource Requirements.” IEEE Trans. On Computers, Vol.
38, No. 8, August 1989, pp.1110-1123

[19] J. A. Stankovic, M. Spuri, K. Ramamritham and G. C.
Buttazzo, Deadline Scheduling for Real-time Systems,
Kluwer Academic Publishers, 1998

[20] J. A. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo,
“Implications of Classical Scheduling Results for Real-time
Systems”, IEEE Computer, June, 1995

[21] S. H. Fuller, Introduction to Computer Architecture (edited
by Stone) Science Research Associates, 1980, pp 530

[22] Proceedings of the 1973 Sagamore Conference on Parallel
Processing, (August, 1973). A general conference on
SIMDs.

[23] Atzeni, Ceri, Paraboschi and Torlone, Database Systems,
McGraw-Hill, 2000

[24] Jin, Baker, Meilander, The Power of SIMDs and MIMDs in
Real-time scheduling, IPDPS 2002, MPP workshop, IEEE
Digital Library, (Unofficial version: http://vlsi.mcs.kent.edu/
~parallel/papers)

[25] Meilander, Jin, Baker, Tractable Real-Time Control
Automation, Proc. of the 14th IASTED Inte'l Conf. on
Parallel and Distributed Systems (PDCS 2002), pp. 483-488
(Unofficial version:http://vlsi.mcs.kent.edu/~parallel/papers)

[26] Meilander, Baker, Jin, Predictable Real-Time Scheduling for
Air Traffic Control, Fifteenth International Conference on
Systems Engineering, August 2002, pp 533-539 (Unofficial
version:http://vlsi.mcs.kent.edu/~parallel/papers)

	Example 2 – Radar/track data correlation
	Figure 1 Track/Report intersect
	Example 3 – Flight plan conformance
	References

