
Implementing a Scalable ASC Processor

Hong Wang and Robert A. Walker
Computer Science Department

Kent State University
Kent, OH 44242

{honwang, walker}@cs.kent.edu

Abstract

Previous papers [1,2] have described our
implementation of a small prototype processor and control
unit for associative computing, called the ASC Procesor.
That initial prototype was implemented on an Altera
education board using an Altera FLEX 10K FPGA, and
was limited to an unrealistic 4 Processing Elements (PEs).
This paper describes a more complete implementation — a
scalable ASC processor that can scale up to 52 PEs on an
Altera APEX 20KE board, or further on larger FPGAs.
This paper also proposes extensions to support multiple
control units and control parallelism.

1. Introduction

At Kent State University (KSU), a major research focus
has been to develop algorithms, software and hardware for
associative processing [3] – a form of data parallel
processing that accesses memory by content rather than
address. Associative processing is particularly suitable for
massive data searching and manipulation, as might occur
in image processing, data mining, graphics, and relational
databases.

We have developed an initial prototype of a processor
for associative computing, called the ASC processor [1,2].
Our ASC processor is very loosely based on the STARAN
computer developed earlier at Goodyear Aerospace
Corporation, though updated with modern RISC concepts,
FPGA implementation, etc., and on the ASC model of
associative computing developed at Goodyear and at Kent
State University.

We are currently working to support not only the KSU
ASC model of associative computing, which uses a single
Instruction Stream Control Unit, but also the MASC
model (Multiple ASC), which supports control parallelism
through multiple Instruction Stream Control Units. In the
MASC model, each Instruction Stream Control Unit (IS)

has its own set of instructions to execute, and each IS can
broadcast control signals to all PEs. Initially, all PEs listen
to one instruction stream, but can switch to other ISs or be
idle depending on the data in the PE or the instruction
currently being executed.

This paper briefly introduces our earlier initial prototype
of the ASC processor, and then describes how it can be
scaled up on larger FPGAs. We then propose further
extensions to support control parallelism through multiple
Instruction Stream Control Units.

2. Implementing a Prototype ASC Processor

The initial prototype of our ASC processor [1,2] is a
byte serial associative processor. The processor has a
single Instruction Stream Control Unit (variously called
the IS Control Unit, the Control Unit, or simply the IS)
and an Associative Processing Array that contains 4 PEs,
along with responder resolution circuitry and MAX/MIN
circuitry necessary to support associative computing. The
IS Control Unit directs the processing array to perform
associative searches, constant time search for a maximum
or minimum value in a particular field across all
processors, as well as other scalar and parallel arithmetic
and logic operations.

The IS Control Unit has its own data memory and 32 bit
instruction memory as well as scalar arithmetic and logic
operation circuitry. The Control Unit fetches and decodes
instructions stored in the instruction memory. Scalar
operations are executed by the Control Unit directly; for
parallel and associative operations, the Control Unit sends
control signals to the four PEs directing them to perform
the appropriate operation. To perform an associative
search, the search key is stored into the Common Register,
which is readable by both the Control Unit and the PEs,
and instructions are sent to the PEs telling them to
compare the data in the Common Register to data in the
PE’s General Purpose Registers. Since the ASC processor
is byte serial, the Control Unit loops as necessary to
process multiple-byte data.

The Associative Processing Array, shown in Figure 1, is
composed of 4 Processing Element (PE) cells, MAX/MIN
circuitry and responder resolution circuitry. Each PE cell
is composed of a PE and a local data memory. The data
memory usually contains data of several variable-size data
fields which comes from a record of a tabular format data
structure.

Each PE has an 8-bit ALU, a 1-bit ALU, sixteen 8-bit
General Purpose Registers, sixteen 1-bit Logical Register,
a Responder Register, a Mask Stack and
Step/Find/ResolveFirst circuitry. The 8-bit ALU and
sixteen 8-bit General Purpose Registers are used for
normal arithmetic and logic operation.

The remaining circuitry inside each PE is used to
implement associative computing. When an associative
search is performed, every PE simultaneously searches a
specified General Purpose Register for a particular search
key; those PEs that find this key are called responders and

are flagged by a ‘1’ in their Responder Register. If this
value is then stored in the top of the mask stack, that PE
will be selected for further processing by masked
instructions, while PEs with a ‘0’ in the top of the mask
stack will not be selected. Additional circuitry handles
more complex search criteria.

The MIN/MAX Unit is based on Falkof’s algorithm [4],
and allows the Processing Array to search for a maximum
or minimum value across all PEs. For our initial prototype
4-PE ASC processor, four 8-bit Shift Registers are used to
process the 8-bit data serially, and four 1-bit Mask
Registers are used to indicate the maxium/minimum value.
The data in the Shift Registers is processed from most
significant bit to least significant bit, ANDing each bit
with the Mask Register bit (which is initially 1 for all
PEs). The results of this AND are ORed together to
indicate whether or not there is at least 1 responder. If the

 Figure 1 — A 4-PE ASC Processor Array

At_least_one_responder

Max/Min Unit Responder Resolution
Unit

8-bit ALU, sixteen
8-bit General
Purpose Registers

Step/Find/
ResolveFirst

1-bit
ALU

Logical
register

Responder
Register

M
ask S

tack

P
E

M
em

ory

P
E

M
em

ory

P
E

M
em

ory

P
E

M
em

ory

PE0
PE1 PE2 PE3

OR result is ‘1’, the Mask Register is set to the
corresponding AND result. Otherwise, there is no
responder, and all PEs are tied, so the Mask Register is not
updated. The remaining bits are then processed, and when
the algorithm terminates all PE(s) that have a ‘1’ in the
Mask Register contain the maximum/minimum value.

The Responder Resolution Unit collects the responder
bit from each of the 4 PEs. After processing, it sends an
At_least_one_responder signal to the Control Unit telling
it that PE(s) responded. The Responder Resolution Unit
also sends a Responders_before_me signal to each PE so
that PEs can be processed sequentially if necessary in the
Step/Find/ResolveFirst circuitry.

The initial prototype ASC processor described above
has been implemented in an Altera FLEX 10K70 field-
programmable gate array (FPGA) as described in [1,2].
Although this prototype has only 4 PEs, the design can be

scaled up substantially in bigger FPGAs. Section 3 of this
paper will the modifications made to scale the processor
up on an Altera APEX 20K1000E chip.

3. Implementing a Scalable ASC model

A FLEX 10K70 FPGA contains only about 70,000
gates, and thus can hold only 1 IS Control Unit and 4 PEs.
In order to design a bigger ASC processor, we moved to
an APEX 20K1000E FPGA board and updated our Altera
design software from Max+PlusII to Quartus2. This
APEX 20K1000E device [5] has 1 million gates available,
grouped into 160 MegaLAB structures, each MegaLAB
containing a group of 24 logic array blocks (LABs), one
Embedded System Block (ESB), and a MegaLAB
interconnect. Each LAB contains 10 Logic Elements (LE),

P
E

(n-1)
At_least_one_responder

…………………

P
E

1

P
E

(n-2)

P
E

M
em

ory

P
E

M
em

ory

P
E

M
em

ory

PE0

M
ax/M

in

R
esponder

R
egister

Selector

P
E

M
em

ory

 Figure 2 - A Scalable ASC Processor

Control unit

Responder Resolution Unit

and each MegaLAB interconnect routes signals within the
MegaLAB structure.

The Embedded System Blocks (ESBs) can implement
either logic or memory. When implementing memory,
each ESB can be configured in any of the following sizes:
128x16, 256x8, 512x4, 1,024x2, or 2,048x1. ESBs can
also be combined to form larger memory blocks — for
example, two 128x16 RAM blocks can be combined to
form one 128x32 RAM block or one 512x4 RAM block.

On the APEX 20K1000E FPGA, our Control Unit
requires 1200 LEs, and each PE requires about 700 LEs.
Given the size of the APEX 20K1000E FPGA (38400
LEs), one such FPGA could implement an ASC processor
with one Control Unit and up to 52 PEs and support
circuitry. Since the Control Unit occupies about 5
MegaLabs, it has 5 ESBs for use as instruction and data
memory, while each PE occupies about 3 MegaLABs,
giving each of them 3 ESBs as memory (another increase
over the limited memory of our prototype ASC processor).

Unfortunately, our initial prototype ASC processor [1,2]
is strictly a 4 PE design, whereas a design that more
cleanly scales up to more PEs would be desirable. From an
algorithmic point of view, some algorithms require a
specific number of PE to perform optimally [6]. Later on,
when we add more functionality to our PEs, the number of
PEs the chip can hold will decrease. Similarly, as we
design a multiple Instruction Stream ASC processor, the
design will contain more structures, again decreasing the
number of PEs that a chip of a specific size can hold. For
all these reasons, it is desirable that the associative PE
array be easily scalable.

A scalable version of our ASC processor is illustrated in
Figure 2. In this design, all PEs listen to a single
Instruction Stream bus. Each PE also talks to a central
Responder Resolution Unit — PEs send responder signal
to this unit, and receive Responders_before_me signals
from it.

Unlike the initial prototype of the ASC processor, where
the responder circuitry was distributed partially into each
PE and partially into the Responder Resolution Unit, that
functionality is centralized in the Responder Resolution
Unit in this scalable design. The Responder Resolution
Unit is responsible for processing the responder signal
from the Responder Register in each PE, as well as
responder signals from the Maximum/Minimum Unit
(described next).

Before going to Responder Resolution Unit from PE,
these two sets of signals go through a Selector controlled
by the Instruction Stream Control Unit. For example, if the
current command is to find a responder among PEs, the
Instruction Stream Control Unit will select the responder
signal from the Responder Register to send to the
Responder Resolution Unit. If the current command is to
find a maximum value, the Instruction Stream Control

Unit will select the Maximum/Minimum Unit’s AND
output to send to the Responder Resolution Unit.

The At_least_one_responder signal is sent to both the
Instruction Stream Control Unit and to the PE’s
Maximum/Minimum Unit to find a maximum or minimum
value. It is also sent to Step/Find/ResolveFirst circuitry as
in the prototype ASC processor.

In contrast, the Maximum/Minimum Unit is distributed
across PEs in our new processor design, as illustrated in
Figure 2. Each PE now has its own dedicated
Maximum/Minimum Unit. In the Maximum/Minimum
Unit initially designed by Meido Wu [2], there is a shift
register, a 1-bit mask register and 1 AND gate. The shift
register holds the data from the field to be searched for a
maximum or minimum value. A 1 bit mask register
indicates whether or not it is extreme value. The AND
gate will AND the current bit slice of the shift register
with the current mask register bit and output a responder
signal, which is sent to a central Responder Resolution
Unit. The Responder Resolution Unit then ORs all the
responder signals from all the PEs together to find whether
or not there is At_leaset_one_responder, and broadcasts
this OR output to all the PEs. A PE updates its mask
register with the AND output if it receive a ‘1’, or leaves it
the same if it receive a ‘0’. Compared with the previous
design, this new design is easier to scale up and saves on
design circuitry outside the PE array.

When scaled to larger numbers of PEs, the timing /
performance varies. While the maximum frequency is
about 33.47 MHZ when there are only 5 PEs, the
maximum frequency is 33.63 MHz for 10 PEs and 26.9
MHZ for 50 PEs. For larger FPGAs, it may be necessary
to optimize the current design further to avoid too much
degradation.

Overall, making these changes to our initial prototype
ASC processor to produce this new scalable ASC
processor reduced the circuitry required for the Responder
Resolution Unit and the Maximum/Minimum Unit.
Moreover, the new architecture is particularly supportive
of the MASC mode, where each IS Control Unit will need
only one Responder Resolution Unit instead of having
both its own Responder Resolution Unit and
Maximum/Minimum Unit.

4. Implementing Multiple Instruction
Streams in the MASC Model

The Kent State Multiple Associative Computing
(MASC) model [3] is illustrated in Figure 3. As in the
ASC model described earlier in this paper, each PE has its
own data memory. Multiple instruction streams can
broadcast to all PEs in constant time. A PE cell listens to
one Instruction Stream Control Unit (IS) at a time, but can

Figure 3 – MASC Architecture

PE1

Figure 4 – Implementing the MASC Architecture

………………………

Satellite Controller

IS Control
Unit 0

IS Control
Unit 1

PE0

P
E

(n-2)

PE
(n-1)

Resolver0 Resolver1

Control Resolution Unit

Selector

be dynamically assigned to any Instruction Stream as
necessary. Once assigned to an IS, a PE actively executes
instruction from that IS when its Mask bit is ‘1’ and stays
idle when the Mask bit is ‘0’.

We are proposing to adapt our scalable ASC processor
to implement the MASC model, as described in this
section. To simplify the explanation, we will describe only
a two-IS MASC model in this paper (Figure 4), though
designs with more ISs are a simple extension. In Figure 4,
only the leftmost PE shows how the responder signal from

the Responder Register and the Maximum / Minimum
Unit is connected with Responder Resolution Unit and
how the resolved signal goes back to the PE, but the other
PEs are implemented the same way. The Control Unit
Array in the two IS MASC model has two Instruction
Stream Control Units (ISs). Each IS has its own sequential
supporting circuitry, and data memory, but the ISs share
an instruction memory. Each IS can broadcast control
signals to all the PEs in the Associative Processing Array.
Initially all the PEs listen to IS zero (IS0), while no PEs
listen to IS one (IS1). If IS0 needs IS1

 to execute a block of instructions, it sends the starting
address in the shared instruction memory to IS1, and IS1
executes that block of instructions, while IS0 executes its
own block of instructions at the same time.

To ensure that each PE listens to the correct IS, a
Satellite Control Unit is placed in each PE. When IS0
sends SWITCH conditions to a PE’s Satellite Control
Unit, that Satellite Control Unit will generate an ID signal
to select control signals from the correct IS. Similarly, this
ID signal is used to control outputs to the Responder
Resolution Array and to select the resolved signal from the
correct Responder Resolution Unit. For example, suppose
a program must execute separate blocks of instructions on
two groups of PEs based on the Brand field of the PE’s
memory. If this field contains TOYOTA, the PE should
listen to IS0, otherwise it should listen to IS1.

PE’s Satellite Control Unit compares TOYOTA with its
local data and generates IS0’s ID signal if the comparison
is true, or IS1’s ID signal if false. This ID signal then lets
the control signals entering this PE from the appropriate IS
go through.

The Responder Resolution Array is composed of two
Responder Resolution Units corresponding to the two IS
Control Units. All PEs can send their Responder output to
both units, but a PE should only send its output to the
Responder Resolution Unit of the IS to which it is
currently listening. This selection is done as follows, and
is illustrated in Figure 5: a PE sends signals to both
Responder Resolution Units separately through two

selectors, each representing an IS Control Unit. Under the
control of the Satellite Control Unit’s ID signal, the
correct selector sends output bits to the corresponding
Responder Resolution Unit. Other selectors only send ‘0’,
because ‘0’ does not contribute to the output of the
Resolution Unit.

To coordinate the IS Control Units, IS0 also contains an
IS Resolution Unit. IS1 sends an I_am_done signal with a
value of ‘1’ to IS0’s IS Resolution Unit when its control
parallel block is finished. IS0 also sends an I_am_done bit
to the IS Resolution Unit when it finishes. The IS
resolution unit ANDs these I_am_done signals together,
and if the result is ‘1’ then every control unit is finished so
the Satellite Contol Units of both PEs will be set to listen
to IS0. The program then starts from the next instruction
after the control parallel blocks on IS0.

Continuing the previous example, when processing the
data illustrated in Figure 6, suppose the price of all
Toyotas must be decreased by $500 and the price of all
Hondas must decrease by 5%. To perform this operation
in MASC, a program has two separate instruction blocks
for IS0 and IS1. First IS0 need to broadcast the conditions
to both PE’s Satellite Control Unit: Toyota and Honda in
BRAND field. After the PEs have chosen the correct IS to
listen according to the method described above, IS0 starts
executing instruction block 0 to deduct $500 from the
original price of the Toyota cars. IS0 also gives IS1 the
address of instruction block 1, so that it can begin
executing the code to decrease the price of the Honda cars

PE

IS ID signal

Selector0

Selector1

Max/Min

Responder
Register

Responder
Resolution Unit 0

Responder
Resolution Unit 1

Resolved
Signal 0

Resolved
Signal 1

Figure 5 – Responder Resolution Circuitry

Table 1 - Additional Machine Instructions for MASC

Instruction Example Meaning
Load PE data to register
in Satellite Control Unit
(SCR)

SCLOAD 0X2F, SCR0 Load content of (0X2F) to SCR0

Broadcast conditions for
choosing IS to PEs

PSENDC $CR0, $CR1 Send data in Common Registers to all
PE's Satellite Control Unit

Send instruction blocks
to ISs

PSENDI 0X5F, 0X6F
Send Instruction Memory address
(0X5F) to IS0, (0X6F) to IS1 and
enable instruction streams

End of the instruction
thread

ENDIS Send 1 to control resolution unit,
Meaning "I am finished"

by 5%. When each PE finishes its price updates, IS0 and
IS1 set their I_am_done signal to IS Resolution Unit to
‘1’. When IS Resolution Unit’s output signal becomes 1,
IS1 sends instruction to set all PEs that is listening to it to
listen to IS0. IS1 then becomes idle and IS0 starts the code
after the two control parallel blocks.
As another example, the maximum price for all Hondas
can be found at the same time as the maximum price for
all Toyotas. As in the previous example, IS0 and IS1 both
have their own instructions to execute, those for finding
maximum price. PEs listening to either IS broadcast their
signal from the Maximum/Minimum Unit to the
Responder Resolution Units representing IS0 and IS1.
However, PEs listening to IS0 will only send 0 to
Responder Resolution Unit 1 no matter what its output is;
they send their actual output to Responder Resolution Unit
0. PEs listening to IS1 do the inverse. When resolved
signal goes back to PEs, only the correct signal is chosen
to pass through Satellite control unit.

5. Machine Instructions for MASC

To implement the MASC architecture, we must add the
instructions shown in Table 1 to the existing ASC
instruction set. This instruction set is designed for the two
IS architecture. If there are more than two control parallel
conditions, we have to issue multiple MASC instruction.
As example, if there are 4 control parallel conditions,
After SCLOAD, the program issue PSEND, PSENDI and
ENDIS for the first two conditions, and then it issues
another PSEND, PSENDI and ENDIS once again for the
other two conditions.

6. Conclusion and Future Work

This paper has described the extension of our initial
prototype ASC processor into a scalable ASC processor
on APEX 20K1000E device. This design has been

completed, and a scalable ASC processor with one
Instruction Stream and 50 PEs is currently running on this
device, where the functionality will be improved and
existing ASC algorithms will be tested. This paper has
also described our proposed MASC architecture and its
implementation that is currently under way.

References:

[1] R. Walker, J. Potter, Y. Wang, and M. Wu, “Implementing
Associative Processing: Rethinking Earlier Architectural
Decisions”, in Proc. of the 15th International Parallel and
Distributed Computing Symposium (Workshop on Massively
Parallel Processing), abstract on p. 195, full text on
accompanying CDROM. IEEE, San Francisco, California, April
2001.

[2] "Implementing Associative Search and Responder
Resolution"", Meiduo Wu, Robert A. Walker, and Jerry Potter, in
Proc. of the 16th International Parallel and Distributed
Processing Symposium (Workshop in Massively Parallel
Processing), abstract on page 246, full text on CDROM, April
2002.

[3] J.L. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun,
and C. Asthagiri, “ASC: An Associative Computing Paradigm,”
IEEE Computer, November 1994, pp. 19-26.

[4] A. Falkoff, “Algorithms for Parallel Search Memories”,
Journal of Associative Computing. March 9 1962, pp. 488-511.

[5] ALTERA DATA SHEET
http://www.altera.com/literature/ds/apex.pdf

 [6] M. Jin, J. Baker, and K. Batcher, “Timings for Associative
Operations on the MASC Model”, in Proc. of the 15th
International Parallel and Distributed Computing Symposium
(Workshop on Massively Parallel Processing), abstract on p.
193, full text on accompanying CDROM. IEEE, San Francisco,
California, April 2001.

