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Abstract

In a paper presented last year at WMPP’01 [Walker01],
we described the initial prototype of an associative
processor implemented using field-programmable logic
devices (FPLDs).  That paper presented an overview of
the design, and concentrated on the processor’s
instruction set and its implementation using FPLDs.  This
paper describes the implementation of the processor’s
associative operation — associative searching and
responder resolution — in more detail.

1 Overview of Prototype ASC Processor

Developed at Kent State, the ASC (ASsociative
Computing) model [Potter92, Potter 94] of associative
computing grew out of work on the STARAN and MPP
computers at Goodyear Aerospace Corporation.
Associative processors store one record of data in each
PE, and can search for a key value across all PEs, or find
the maximum value in a field across all PEs, in constant
time.

The initial prototype of our ASC processor [Walker01] is
a byte serial associative processor consisting of a single IS
Control Unit, and an Associative Processing Array that
contains 4 PE cells as well as some support circuitry.
Under the direction of the IS Control Unit, the
Associative Processing Array performs associative
searches and other operations.  The IS Control Unit is also
responsible for processing multi-byte operations.

The Associative Processing Array, shown in Figure 1,
consists of an array of Processing Element (PE) Cells,
along with MAX/MIN circuitry and responder resolution
circuitry.  Each PE Cell consists of a PE and a local data
memory.  The local data memory usually stores one
record out of a tabular data structure, where a record
consists of several variable-size fields. The MAX/MIN
circuitry can find the maximum or minimum value in a
particular field across all the data memories in the PE
array in constant time, while the responder resolution
circuitry can recognize the existence of at least one
responder in constant time.

Each PE is composed of an 8-bit ALU, a 1-bit ALU,
sixteen 8-bit General-Purpose Registers, sixteen 1-bit
Logical Registers, a Responder Register, a Mask Stack,
and Step/Find/ResolveFirst circuitry. The 8-bit ALU and
the sixteen 8-bit General-Purpose Registers ($GR0 to
$GR15) is the portion of the CPU that performs the actual
arithmetic and logical operations. The 1-bit ALU and the
sixteen 1-bit Logical Registers ($LR0 to $LR15) are used
to perform logical operations.

In conjunction with the responder resolution and selection
circuitry (the Responder Register, the Mask Stack, and the
Step/Find/ResolveFirst circuitry), the 1-bit ALU and the
Logical Registers are also used to support associative
processing. The 1-bit Responder Register is used to
indicate whether a PE is a responder to a particular
associative search or not. The Step/Find/ResolveFirst
circuitry is used to iteratively step through multiple
responders in various ways as described in Section 3.2.

The Mask Stack can contain at most 16 1-bit logical
values, and represents multiple levels of association
(discussed later).  The top of the Mask Stack always
represents the current status of the PE — whether it is
masked (‘1’) or unmasked (‘0’). In ASC, there are two
types of instructions executed by the Associative
Processing Array: masked instructions and unmasked
instructions. Masked instructions are only executed by
those PEs with a ‘1’ on the top of their Mask Stack, while
unmasked instructions are executed by all the PEs
regardless of the state of the Mask Stack. If the value in
the Responder Register is pushed onto the Mask Stack,
then masked instructions can be used to limit further
processing to only those PEs with a successful associative
search.

The remainder of this paper is organized as follows.
Section 2 describes how associative search is
implemented — how the ASC processor can search for a
particular value across all PEs, or for a maximum or
minimum value in a particular field.  Section 3 describes
various options supported by ASC for processing multiple
successful responders.
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2 Associative Search

The fundamental operation of an associative processor
such as ASC is associative searching.  If a tabular data
structure is stored in each PE’s local data memory, ASC
can search for a particular key value in a particular field
across all PEs, or find the extreme value in a field across
all PEs, in constant time (some of these timing issues
were reexamined recently in [Jin01]).  This section will
describe how associative searching is implemented in our
prototype ASC processor.

2.1 Using the Responder Register and Mask
Stack in Associative Searching

When performing an associative search for a key value,
the Responder Register in each PE is used to store the
result of the search, and the Mask Stack is used to store
multiple levels of search results (multiple association
groups).  To illustrate how the Mask Stack and the
Responder Register are used in associative search, assume
the data memories in the PE array store information for
cars on the lots of various auto dealers.  If each data
memory stores the information for one car, the
Associative Processing Array might contain the values
shown in Figure 2.

Given this data, suppose a customer wants to find all
Focus cars located on a dealer’s lot in Ohio. This search
contains two conditions:  the model must be “Focus”, and
the location must be “Ohio”. The associative search
begins by initializing the top of the Mask Stack to TRUE
for all PE cells, namely, pushing ‘1’ onto the initially
empty stacks.  After the first comparison is performed by
all PEs (in parallel), the result, which is either ‘1’ or ‘0’
(TRUE or FALSE), is stored by each PE in one of its
logical registers, perhaps $LR1. The result of the second
comparison is similarly stored in $LR2.  To produce the
final result, $LR1 is ANDed with $LR2, and the result is
temporarily stored by each PE into its Responder
Register.

The top of the Mask Stack, which indicates whether the
PE is masked (‘1’) or unmasked (‘0’), must also be
updated.  Across all PEs, the temporary result in the
Responder Register is ANDed with the top of the Mask
Stack, and the final result is pushed onto the Mask Stack,
leaving the PE masked (responding to following masked
instructions) only if it was masked before and the
associative search was successful. This final result is also
stored back into the Responder Register.

The Mask Stack is particularly useful if there are multiple
associative groups in an application.  If a search contains

Figure 1 – Associative Processing Array in ASC
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multiple levels of conditions, such as an IF-THEN
statement with several nested conditions, the result of
each condition in this statement will be pushed onto the
stack according to the order of nested levels from outside
to inside.

2.2 Maximum/Minimum (MAX/MIN)
Circuitry

An associative processor not only can search for a
particular key value in a particular field across all PEs in
constant time, but also can find the extreme (maximum or
minimum) value in a particular field across all PEs in
constant time.  The Maximum/Minimum (MAX/MIN)
circuitry provides the later capability.

2.2.1  The Algorithm

The general idea for the MIN/MAX circuitry is to use bit
slices as masks for the extreme (maximum or minimum)
value [Falkoff62]. To search for the maximum value, the
following algorithm is performed in parallel across all
PEs:

1. Search the bit slices from the most significant bit to
the least significant bit. As each bit slice is
processed, it is ANDed with the Mask bit (a 1-bit
Mask register used to indicate whether or not the
data in the specified field is the maximum).

2. Check all the results of the AND to ensure that at
least one new maximum value remains (at least one
result is 1). If this condition is true, then the Mask
bit is updated; if all the results are 0, then all
current entries are considered have the same bit
value and remain tied (the Mask value is not
updated at this time).

3. Continue to process the remaining bit slices as
above until all are processed.

4. Once all bit slices have been processed, if only one
Mask bit is 1, it marks the largest number; if more
than one Mask bit is 1, those cells are tied for the
maximum value.

The minimum value can be obtained in a similar way, but
the bit slices are complemented first before being ANDed
with Mask bits.

2.2.2  The MAX/MIN Circuitry

The MAX/MIN circuitry, shown in Figure 3, uses the
above algorithm to search for the extreme value across
multiple values in constant time. In this circuitry, there
are four 8-bit shift registers (one for each PE cell), four 1-
bit Mask registers, four AND gates, and a large OR gate.
The shift registers will shift the one-byte data bit-by-bit
simultaneously for processing. The Mask registers always
keep track of the result of comparison of one bit slice.
After all the eight bit slices are processed, the Mask
register will contain the result for identifying the extreme
value. Since this ASC processor is byte-serial, the
MAX/MIN circuitry is also designed to process data byte
by byte for consistency.

2.2.3  An Example of Searching for a Maximum
Value

Using the car example from Figure 2 again, if the
customer wants to find the largest rebate offered among
all the cars, the algorithm works as shown in Figure 4.  To
begin, the MAX/MIN circuitry loads the rebate data from
the PE’s data memories into the corresponding shift
registers, and all Mask registers are initialized to ‘1’ to

                               ID      Color       Model   State   Rebate

Figure 2 – Auto Information Stored in the PE Cells

1     Burgundy     Focus    OH    170       ……. PE0

2     Blue             Taurus   OH    160       ……. PE1

3     Blue              Focus    OH    190       ……. PE2

4     Red              Focus    PA     180       ……. PE3
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indicate that all PEs are active.  Then it begins to process
the bit slices from left to right.  Since all of the seventh
bits are ‘1’, and all the results of ANDing each seventh bit
with its corresponding Mask bit are ‘1’, the ANDing
results update the values in the Mask registers after
processing the seventh bit slice.

The remaining bits are processed similarly.  After the
sixth bit slice is processed, the Mask registers remain
unchanged since all the sixth bits are ‘0’. All the fifth bits
are ‘1’, so the Mask registers all remain ‘1’. In the fourth
bit slice, two bits are ‘0’ and two ANDing results are ‘0’,
so the value of two Mask registers become ‘0’ while other
two remain ‘1’.  Continuing the algorithm, after
processing the third bit slice, only the value of Mask2
register remains ‘1’. The Mask2 register remains ‘1’ until

the end. This result indicates that PE2 has the maximum
rebate value.

2.2.4  MAX/MIN Processing of Multi-byte Values

The example above searches to find the maximum value
in one-byte data. However, the MIN/MAX circuitry can
also be used to search for the extreme value in multiple-
byte data. Since the IS Control Unit is responsible for
processing multiple-byte fields, it would execute
assembly code for searching for the maximum value in 4-
byte data as follows:

SETMAXIN // load responder bit to Mask
register

LDMAXIN $GR1 // load the most significant
byte to shift register

       Data 0

       RPD 0                                                                                                                                                                                                        RPD 0

       Data 1                                                                                                                                                                                                        RPD 1

       RPD 1

       Data 2

Figure 6 – MAX/MIN Circuitry

        RPD 2                                                                                                                                                                                                      RPD 2

       Data 3

       RPD 3                                                                                                                                                                                                        RPD 3

       Write

Figure 3 – MAX/MIN Circuitry
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MAX // search for the maximum
LDMAXIN $GR2 // load the second byte to

shift register
MAX // search for the maximum
LDMAXIN $GR3 // load the third byte to shift

register
MAX // search for the maximum
LDMAXIN $GR4 // load the least significant byte

to shift register
MAX // search for the maximum
STMAXIN // store value of Mask register

back to responder bit in PE

In the code above, the 4-byte data is stored across $GR1,
$GR2, $GR3 and $GR4 in each PE.  The MAX
instruction needs 8 cycles to process 8 bit-slices in
parallel from the most significant bit to the least
significant bit.  As successive bytes are processed, the
Mask registers store the result, eventually identifying the
maximum value after all bit-slices are processed.  Finally,
the STMAXIN instruction stores the values of Mask
registers back to the Responder Registers.

Searching for the minimum value is similar to searching
for the maximum value.  Instead of using the MAX
instruction, the minimum value searching uses the MIN
instruction.  The assembly code needed for searching for
the minimum value of 4-byte data is as follows:

SETMAXIN // load responder bit to Mask
register

LDMAXIN $GR1 // load the most significant byte
to MAX/MIN

MIN // search for the minimum
LDMAXIN $GR2 // load the second byte to shift

register
MIN // search for the minimum

LDMAXIN $GR3 // load the third byte to shift
register

MIN // search for the minimum
LDMAXIN $GR4 // load the least significant byte

to MAX/MIN
MIN // search for the minimum
STMAXIN // store value of Mask register

back to responder bit in PE

3 Responder Resolution and Selection

As described in Section 2.1, the result of a successful
associative search is indicated by a ‘1’ in a PE’s
Responder Register (such a PE is often referred to
informally as a “responder”).  Because there may be more
than one successful match, responder resolution circuitry
is necessary to recognize responders, and responder
selection circuitry is often necessary to select one
particular responder for further processing.

3.1 Responder Resolution Circuitry

The responder resolution circuitry is used to identify
whether or not there exists at least one responding PE.
Based on the hardware implementation of the reduction
network in the STARAN [Batcher99], the current
responder resolution circuitry for our 4-PE Associative
Processing Array is shown in Figure 5.  This responder
resolution circuitry has two important functions:  (1) to
send an At_Least_One_Responder signal to the IS
Control Unit to tell it that a PE has responded, and (2) to
send a corresponding Responders_Before_Me signal to
the Step/Find/ResolveFirst circuitry in each PE.  (The
Step/Find/ResolveFirst circuitry selects a particular
responder as described later in Section 3.2.)

Figure 4 – Processing Data in the MAX/MIN Circuitry

  Bit Slice (7..0) of Rebate              Value in Mask Register During Processing

Process bit from left to right                                        After processing each bit

(Bit order)   7 6 5 4 3 2 1 0                             Initialize     7 6 5 4 3 2 1 0
Rebate
(170)           1 0 1 0 1 0 1 0                Mask 0       1            1 1 1 0 0 0 0 0
(160)           1 0 1 0 0 0 0 0                Mask 1       1            1 1 1 0 0 0 0 0
(190)           1 0 1 1 1 1 1 0                Mask 2       1            1 1 1 1 1 1 1 1
(180)           1 0 1 1 0 1 0 0                Mask 3       1            1 1 1 1 0 0 0 0
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As shown in Figure 6, each PE has a responder bit (only
PE0 is shown for simplicity), which is used to indicate
whether or not a PE is a responder after an associative
search operation as described in Section 2.1. The four
inputs to the responder resolution circuitry are the four
responder bits (R 0 ~ R 3 ), and V0 ~ V4 are the five 1-bit
outputs of this circuitry. We call signals V0 ~ V3

Responders_Before_Me signals, and V4 the
At_Least_One_Responder signal.

This circuitry recognizes a responder in unit time as
follows.  Assume we select a responder with the smallest
PE ID number if there are several responders.  Since PE0

has the smallest PE number among these four PEs, we
give V0, which is sent to PE0, a constant value ‘0’. This
tells PE0 that no responder whose PE ID number is
smaller than ‘0’ exists.

The formula for other Vj outputs is: Vj = R0  ∨ R1  ∨ …
Rj-1 (j = 1, 2, 3, 4).  By sending Vi (i = 0, 1, 2, 3) to PEi,
the resolution circuitry tells each PE whether or not there
exists a responder whose PE ID number is smaller than
that of the PE itself.

When a Responders_Before_Me signal is ‘0’, the PE
receiving this signal is the selected responder if the value
of its own responder bit is ‘1’. In this way, at most one PE
will recognize itself as a responder at a time.  Meanwhile,
the resolution circuitry also sends signal V4 to the IS
Control Unit to tell it whether or not there exists at least
one responder. V4 is the result of ORing all responder bits,
so it can identify the existence of any responder in the
Associative Processing Array.

3.2 Responder Selection
(Step/Find/ResolveFirst) Circuitry

In an ASC program, it may often occur that an associative
search results in multiple responding PEs. In this case,
those responding PEs can be processed, using masked
instructions as described in Section 1, either in parallel or
sequentially.  If the responding PEs are processed in
parallel, all the responding PEs execute the same set of
instructions under the direction of the IS Control Unit.
However, if the responding PEs must be processed
sequentially, there must exist some mechanism to select a
particular responder each time.

                   V0

                                 R0

                                 V1

                                                     R1

                                V2

                                                                                                                                                               V4

                                R2

                                V3

                                R3

Figure 5 – Implementation of Responder Resolution Circuitry for 4 PEs

 ‘0’
 PE0

 PE1

 PE2

 PE3
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In the ASC language, special responder iteration
instructions are used to process multiple responding PEs
in the PE array:

• The STEP instruction is repetitively used to pick one
responding PE each time for further processing, until
all the responding PEs have been visited.  It can be
thought of as a “for” loop that processes all
responders in turn. For the example in Figure 2, after
the associative search has found all the Focus cars in
Ohio, a STEP instruction could be used to step
through the responding PEs to see what color choices
are available.

• The FIND instruction is used when only one
responding PE must be processed at the moment, but
later other operations might be applied to all the
responding PEs.  FIND must select a responding PE,
while still keeping all responders identifiable.  It can
be thought of as a “while” loop that processes all
responders. For the example in Figure 2, a FIND
instruction could be used to select one of the Ohio

Focus cars, so that Ohio related expenses such as
sales tax, emission inspection fees, etc, can be
determined for that one car, and then applied to all
the Ohio Focus cars in a subsequent step.

• The RESOLVEFIRST instruction is used when only
one responding PE must be processed.
RESOLVEFIRST must select a responding PE and
clear all Responder Registers.  For example, after
searching for an extreme value, e.g., the maximum
rebate, it is possible that multiple PEs might have that
same extreme value.  However, if all we care about is
getting that value, RESOLVEFIRST can be used here
to select a responding PE from multiple responding
PEs and keep only that one responder identifiable.

Implemented at the assembly language level, Step, Find
and ResolveFirst are the three associative selection
operations that are used when responders must be
processed individually.  These three instructions might be
issued and sent to the Associative Processing Array by the
IS Control Unit when at least one responder exists in the
PE array (i.e., when the At-Least-One-Responder signal

Figure 6 – Responder Circuitry and MAX/MIN Circuitry With PE0

                                                                                           Responder Resolution Circuitry

 PE0

Signal to CU

MAX/MIN Circuitry
        clr

        clr

Mask

Stack

Responder

Step/Find
/RslvFst

R0                V0

R1                V1

R2                V2

R3                V3

   V4

From PE0

From PE1

From PE2

From PE3

to  PE0

to  PE1

to  PE2

to  PE3

D0        Mask3
R0

D1        Mask2
R1

D2        Mask1
R2

D3        Mask0
R3

From PE0 : GPR
                  RPD

From PE1:GPR
                  RPD

From PE2:GPR
                  RPD

From PE3:GPR
                  RPD

to  PE3

to  PE2

to  PE1

to  PE0

GPRs

0-7695-1573-8/02/$17.00 (C) 2002 IEEE



8

from the Associative Processing Array is true). In our
ASC processor, dedicated responder selection
(Step/Find/ResolveFirst) circuitry is used in each PE to
process these three instructions.  As mentioned before, the
responder resolution circuitry sends each PE a
Responders_Before_Me signal. The responder selection
circuitry utilizes this signal to make its own decision.

The Step instruction is useful when the responding PEs
must be stepped through sequentially.  It clears the
Responder Register of the selected PE (so that it will not
be selected again in the future), yet leaves other PE
responders’ Responder Registers unchanged.  The Step
operation in PEi works as follows:

IF ( Responders_Before_Me = “0”) AND ( the
responder bit of PEi  is “1” )

THEN
{ push “1” into MaskStack; //  mask this PE

to respond to masked instructions
clear Responder Register; //  clear the

responder bit of this PE
}

ELSE
{  push “0” into MaskStack; //  unmask this

PE
}

The Find instruction is useful when one responding PEs
must be selected, but it does not matter which one.
However, it leaves all Responder Registers unchanged.
The Find operation in PEi works as follows:

IF ( Responders_Before_Me = “0” ) AND ( the
responder bit of PEi  is “1” )

THEN
{ push “1” into MaskStack; // mask this PE to

respond to masked instructions
}

ELSE
{  push “0” into MaskStack; //  unmask this

PE
}

The ResolveFirst instruction is useful when one
responding PEs must be selected, but it does not matter
which one.  It not only selects this PE, but also clears the
Responder Register of the other PEs (so that they will not
be selected in the future).  The ResolveFirst operation in
PEi works as follows:

IF ( Responders_Before_Me = “0” ) AND ( the
responder bit of PEi  is “1” )

THEN
{ push “1” into MaskStack; // mask this PE to

respond to masked instructions
}

ELSE
{  push “0” into MaskStack; //  unmask this

PE
clear Responder Register; //  clear the

responder bit of this PE
}

4 Conclusions and Future Work

This paper has described the implementation of
associative searching in our prototype ASC processor.
Although we have described a design with only 4 PEs, the
design can be scaled up substantially.  Using Altera FLEX
10K chips, 4 PEs and the support circuitry described here
require about 70,000 gates, so a chip with a million gates
could accommodate approximately 60 PEs.  We are
currently exploring the option of using larger chips versus
many smaller chips.
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