Discrete Structures for Computer Science

Ruoming Jin
MW 2:15-3:00pm
Spring 2010 rm MSB115

Course Material

- Textbook: Discrete Mathematics and Its Applications
- Kenneth H. Rosen, McGraw Hill

Course Requirements

- Homework, 20\%
- Quiz, 20\%
-Three Intermediate Exams: 10\%
- Final Exam, 30\%
- Bonus Questions 5-10\%

Why Discrete Math?

Design efficient computer systems.

-How did Google manage to build a fast search engine?
-What is the foundation of internet security?

$$
\begin{aligned}
& \text { algorithms, data structures, database, } \\
& \text { parallel computing, distributed systems, } \\
& \text { cryptography, computer networks... }
\end{aligned}
$$

Logic, sets/functions, counting, graph theory...

What is discrete mathematics?

Logic: artificial intelligence (AI), database, circuit design

Counting: probability, analysis of algorithm

Graph theory: computer network, data structures

Number theory: cryptography, coding theory
logic, sets, functions, relations, etc

Topic 1: Logic and Proofs

How do computers think?

Logic: propositional logic, first order logic

Proof: induction, contradiction

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Artificial intelligence, database, circuit, algorithms

Topic 2: Counting

- Sets
- Combinations, Permutations, Binomial theorem
- Functions
- Counting by mapping, pigeonhole principle
- Recursions, generating functions

Probability, algorithms, data structures

Topic 2: Counting

How many steps are needed to sort n numbers?

Topic 3: Graph Theory

- Relations, graphs
- Degree sequence, isomorphism, Eulerian graphs
- Trees

Computer networks, circuit design, data structures

Topic 4: Number Theory

- Number sequence
- Euclidean algorithm
- Prime number
- Modular arithmetic

Cryptography, coding theory, data structures

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

Familiar?
Obvious?

Good Proof

> Rearrange into: (i) $a c \times c$ square, and then
> (ii) $a n a \times a$ \& $a b \times b$ square

Good Proof

81 proofs in http://www.cut-the-knot.org/pythagoras/index.shtml

