
Objective-C Basics

iPhone SDK
•  Enrolled students will be invited to developer

program
–  Login to Program Portal
–  Request a Certificate
–  Download and install the SDK

The First Program
in Objective-C

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

 NSLog(@"Hello, World!");

 return 0;
}

OOP Vocabulary

•  Class: defines the grouping of data and
code, the “type” of an object

•  Instance: a specific allocation of a class
•  Method: a “function” that an object

knows how to perform
•  Instance Variable (or “ivar”): a specific

piece of data belonging to an object

OOP Vocabulary

•  Encapsulation
– keep implementation private and separate

from interface
•  Polymorphism

– different objects, same interface
•  Inheritance

– hierarchical organization, share code,
customize or extend behaviors

Inheritance
•  Hierarchical relation between classes
•  Subclass “inherit” behavior and data from superclass
•  Subclasses can use, augment or replace superclass

methods

More OOP Info?

•  Tons of books and articles on OOP
•  Most Java or C++ book have OOP

introductions
•  Objective-C 2.0 Programming Language

– http://developer.apple.com/documentation/
Cocoa/Conceptual/ObjectiveC

Objective-C
•  Strict superset of C

–  Mix C with ObjC
–  Or even C++ with ObjC (usually referred to as ObjC+

+)
•  A very simple language, but some new syntax
•  Single inheritance, classes inherit from one and

only one superclass
•  Protocols define behavior that cross classes
•  Dynamic runtime

Classes and Instances

•  In Objective-C, classes and instances are
both objects

•  Class is the blueprint to create instances

Classes and Objects

•  Classes declare state and behavior
•  State (data) is maintained using instance

variables
•  Behavior is implemented using methods
•  Instance variables typically hidden

– Accessible only using getter/setter methods

Object

Behavior

Message

State

Other Objects As State

OOP From ObjC Perspective

•  Everybody has their own spin on OOP
– Apple is no different

•  For the spin on OOP from an ObjC
perspective:
– Read the “Object-Oriented Programming

with Objective-C” document
– http://developer.apple.com/iphone/library/

documentation/Cocoa/Conceptual/OOP_ObjC

Class and Instance Methods

•  Instances respond to instance methods
–  (id) init;
–  (float) height;
–  (void) walk;

•  Classes respond to class methods
+  (id) alloc;
+  (id) person;
+  (Person *) sharedPerson;

Message syntax

•  [receiver message]
•  [receiver message:argument]
•  [receiver message:arg1 andArg:arg2]

Message examples
Person *voter; //assume this exists
[voter castBallot];
int theAge = [voter age];
[voter setAge:21];
if ([voter canLegallyVote]) {
// do something voter-y
}
[voter registerForState:@”OH" party:@"Independant"];
NSString *name = [[voter spouse] name];

Terminology
•  Message expression

 [receiver method: argument]
•  Message

 [receiver method: argument]
•  Selector

 [receiver method: argument]
•  Method

 The code selected by a message

The First OO-Program in
Objective-C

Shape-Procedure: Suppose a program draws a bunch of geometric shapes
 on the screen: circle, square, egg-shaped (Color and Boundary)

Let us first take a look of the procedure-C program!

NSString *colorName (ShapeColor color)
{
 switch (color) {

 case kRedColor:
 return @"red";
 break;

 …
 return @"no clue";

} // colorName

void drawCircle (ShapeRect bounds,
ShapeColor fillColor)
{
 NSLog (@"drawing a circle at (%d %d
%d %d) in %@",

 bounds.x, bounds.y,
bounds.width, bounds.height,

 colorName (fillColor));
} // drawCircle

Class Definition

@interface Circle: NSObject
{

 ShapeColor fillColor;
 ShapeRect bounds;

}

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bound;

- (void) draw;

@end // Circle;

Class Implementation
@implementation Circle

- (void) setFillColor: (ShapeColor) c
{

 fillColor = c;
} //setFillColor

- (void) setBounds: (ShapeRect) b
{

 bounds=b;
} //setBound

- (void) draw
{

 NSLog (@"drawing a circle at (%d %d %d %d) in %@",
 bounds.x, bounds.y, bounds.width, bounds.height,
 colorName (fillColor));

} //draw

@end

Message Examples

void drawShapes (id shapes[], int count)
{

 int i;

 for (i=0; i< count; i++) {
 [shapes[i] draw];
 }

} // drawShapes

int main (int argc, const char * argv[]) {
 id shapes[3];

 ShapeRect rect0 = {0, 0, 10, 30};
 shapes[0] = [Circle new];
 [shapes[0] setBounds: rect0];
 [shapes[0] setFillColor:kRedColor];

 ShapeRect rect1 = {30, 40, 50, 60};
 shapes[1] = [Rectangle new];
 [shapes[1] setBounds: rect1];
 [shapes[1] setFillColor: kGreenColor];

 ShapeRect rect2 = {15, 19, 37, 29};
 shapes[2] = [OblateSphereoid new];
 [shapes[2] setBounds: rect2];
 [shapes[2] setFillColor: kBlueColor];

 drawShapes (shapes, 3);

 return 0;

}

Inheritance (Common Class)
@interface Shape: NSObject
{

 ShapeColor fillColor;
 ShapeRect bounds;

}

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bound;

- (void) draw;

@end // Shape;

@implementation Shape

- (void) setFillColor: (ShapeColor) c
{

 fillColor = c;
} //setFillColor

- (void) setBounds: (ShapeRect) b
{

 bounds=b;
} //setBound

- (void) draw
{
} //draw

@end

Inheritance (Common Class)

@interface Circle: Shape
@end // Circle;

@interface Rectangle: Shape
@end // Rectangle;

@interface OblateSphereoid: Shape
@end // OblateSphereoid;

@implementation Circle

- (void) setFillColor: (ShapeColor) c
{

 if (c==kRedColor) {
 c=kGreenColor;
 }

 [super setFillColor:c];

} // setFillColor

- (void) draw
{

 NSLog (@"drawing a circle at (%d
%d %d %d) in %@",

 bounds.x, bounds.y,
bounds.width, bounds.height,

 colorName (fillColor));
} //draw

@end

Dynamic and static typing
•  Dynamically-typed object

id anObject
–  Just id
–  Not id * (unless you really, really mean it...)

•  Statically-typed object
Person *anObject

•  Objective-C provides compile-time, not runtime,
type checking

•  Objective-C always uses dynamic binding

The null object pointer
•  Test for nil explicitly

if (person == nil) return;
•  Or implicitly

if (!person) return;
•  Can use in assignments and as arguments if

expected
person = nil;
[button setTarget: nil];

•  Sending a message to nil?
person = nil;
[person castBallot];

Bool areIntsDifferent (int thing1, int thing2)
{
 return (thing1-thing2);
}

if (areIntsDifferent(23,5)==YES) {
}

if (areIntsDifferent(23,5)){
}

BOOL typedef
•  When ObjC was developed, C had no boolean

type (C99 introduced one)
•  ObjC uses a typedef to define BOOL as a type

BOOL flag = NO;
•  Macros included for initialization and

comparison: YES and NO
if (flag == YES)
if (flag)
if (!flag)
if (flag != YES)
flag = YES;
flag = 1;

